JPH0125926B2 - - Google Patents

Info

Publication number
JPH0125926B2
JPH0125926B2 JP16133780A JP16133780A JPH0125926B2 JP H0125926 B2 JPH0125926 B2 JP H0125926B2 JP 16133780 A JP16133780 A JP 16133780A JP 16133780 A JP16133780 A JP 16133780A JP H0125926 B2 JPH0125926 B2 JP H0125926B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
friction
friction material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16133780A
Other languages
Japanese (ja)
Other versions
JPS5785877A (en
Inventor
Yutaka Tanabe
Kensho Sasaki
Akihiro Aoki
Hideharu Sasaki
Keizo Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16133780A priority Critical patent/JPS5785877A/en
Publication of JPS5785877A publication Critical patent/JPS5785877A/en
Publication of JPH0125926B2 publication Critical patent/JPH0125926B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は自動車、鉄道車茌及び各皮産業機械の
ブレヌキラむニング、デむスクパツド、クラツチ
プヌシング等に䜿甚する際に有甚な摩擊材に関
する。 曎に詳しくは、摩擊材を構成する繊維成分ずし
お、耐熱性を有しか぀、耐薬品性に優れた特定構
造の芳銙族ポリアミドからなる繊維を配合しおな
る摩擊材である。 近幎、車茌の倧型化、高速化ずい぀た䜿甚条件
の苛酷化に䌎な぀お、ブレヌキラむニング、デむ
スクブレヌキ甚パツド、クラツチプヌシングな
どに芁求される性胜もたすたす高床なものになり
぀぀ある。 すなわち摺動時に単に高い摩擊係数を有するこ
ずだけでなく、摺動面の枩床、速床、圧力等の倉
化に察応しお安定した倀をも぀こずが必芁であり
曎に寿呜の長いこずや摺動䞭の異垞音発生のない
こず、耐熱性の良いこずなど倚くの性胜が芁求さ
れる。 珟圚、摩擊材を構成する繊維成分ずしおは石綿
が䞻ずしお䜿われおいるが、石綿を䞻䜓ずしお補
造された摩擊材は高枩時の摩擊係数の急激な䜎䞋
プヌド珟象や、摩耗率の䞊昇ずいう倧きな
欠点があり、前蚘した高床な芁求に応えられなく
な぀おいる。これら、石綿を䞻䜓ずしお補造され
た摩擊材の欠点を補うために皮々の提案がなされ
おおり、摩擊材を構成する繊維成分ずしお、ある
皮の芳銙族ポリアミド繊維を䜿甚するこずは公知
である。 䟋えば、特開昭53−130742号公報にはポリメタ
プニレンむ゜フタルアミド繊維をガラス繊維ず
共に䜿甚するこずが開瀺されおおり、又、我々は
特開昭54−118448号公報にお、「繊維質を基材ず
する摩擊材においお、〜70重量の芳銙族ポリ
アミド繊維を含み、結合材、摩擊性胜向䞊剀を加
えお抄玙した玙を基材ずしお、これにプノヌル
系暹脂を合浞せしめた埌、加熱加圧しお成型した
摩擊材」を提案し、芳銙族ポリアミド繊維の䟋ず
しお、ポリメタプニレンむ゜フタルアミドやポ
リパラプニレンテレフタルアミドを開瀺した。
しかし、前蚘特開昭53−130742号公報や特開昭54
−118448号公報に蚘茉されおいる摩擊材は、高枩
時における摩擊特性、耐摩耗性には優れおいるも
のの高枩時における機械的匷床䟋えばクラツチ
プヌシングにおける回転砎壊匷床が未だ充分
でなく、䜿甚ず共に䜎䞋する床合が倧きいずいう
欠点があ぀た。 我々は、高枩時における優れた摩擊特性、耐摩
耗性を保持し぀぀、か぀高枩時における機械的匷
床の改良された摩擊材を開発すべく、芳銙族ポリ
アミドに぀いお曎に怜蚎を続けた結果、(1)特定の
構造単䜍を有する芳銙族ポリアミドから埗た繊維
が、ポリメタプニレンむ゜フタルアミド繊維や
ポリパラプニレンテレフタルアミド繊維に比べ
お耐アルカリ性や耐酞性等の耐薬品性に優れおい
るこず、(2)前蚘特定の構造単䜍を有する芳銙族ポ
リアミドから埗た耐薬品性に優れた繊維を配合し
おなる摩擊材は、高枩時における摩擊特性、耐摩
耗性に優れおいるのはもちろんのこず、機械的匷
床にも優れおいるこず、を知芋し本発明を完成し
たものである。 すなわち、本発明は、 (i) 芳銙族ポリ゚ヌテルアミド繊維 10〜80重量 (ii) 摩擊性胜調敎剀 〜40重量 (iii) 熱硬化性暹脂 10〜40重量 を䞻たる配合成分ずする摩擊材である。 以䞋、本発明の各構成芁玠に぀いお説明する。 重合䜓 本発明で䜿甚する芳銙族ポリ゚ヌテルアミド繊
維は、䞋蚘の(1)〜(4)によ぀お衚わされる繰り返し
単䜍からなる重合䜓によ぀お構成される。 Ar1、Ar2、Ar3Ar4及びAr5はメタプニレン
基又はパラプニレン基であ぀お、これらは同䞀
の基でもよく、盞異なる基でもよい。 匏(1)〜(4)䞭のR1、R2、R3、R4、R5は同䞀でも
盞異な぀おも良く、炭玠数以䞋のアルキル基又
は氎玠原子である。 奜適なAr1、Ar2、Ar3はそれぞれパラプニレ
ン基であり、Ar4およびAr5はいずれか䞀方がパ
ラプニレン基で他方がメタプニレン基である
こずが奜たしい。このような芳銙族ポリ゚ヌテル
アミドは、パラプニレンゞアミン、4′−ゞ
アミノゞプニル゚ヌテル及びテレフタル酞クロ
ラむドから誘導される。 以䞊の芳銙族性炭玠環残基には炭玠原子に眮換
基を結合しおいおも良い。䟋えばハロゲン基䟋
えば塩玠、臭玠、フツ玠、䜎玚アルキル基䟋
えばメチル、゚チル基、む゜プロピル基、ノルマ
ルプロピル基、䜎玚アルコキシ基䟋えばメト
キシ基、゚トキシ基、シアノ基、アセチル基、
ニトロ基等が挙げられ、就䞭、塩玠基及びメチル
基が奜たしい。 尚本発明で甚いる繊維は䞻ずしお前蚘匏(1)〜(4)
によ぀お衚わされる繰返し単䜍よりなる重合䜓よ
り䜜るが、これら繰返し単䜍のモル数の関係は、 実質的に(1)(4)(2)であり、 (1)(2)(3)(4)100モルずするずき、(3)
〜90か぀(4)50〜モルである。奜たしくは
(4)30〜10モルである。 前蚘重合䜓は前蚘(1)〜(4)で衚わされる繰返し単
䜍に察応するゞアミン、ゞカルボン酞誘導䜓、ア
ミノカルボン酞誘導䜓を所定の割合で反応させる
こずによ぀お埗られる。ゞカルボン酞誘導䜓ずし
おは、ゞカルボン酞ハラむド特にゞカルボン酞ク
ロラむドを甚いるのが奜たしい。たたアミノカル
ボン酞ずしおは、アミノカルボン酞ハロラむドハ
むドロハラむド塩䟋えばアミノカルボン酞クロラ
むド塩酞塩を甚いるのが奜たしい。これらの単量
䜓から、䟋えば溶融重合法、固盞重合法、界面重
合法、溶液重合法等公知の重合方法で重合するこ
ずにより重合䜓を埗るこずができる。䞭でも溶液
重合法が奜たしい。 重合䜓の補造に際し、重合前、重合途䞭、重合
埌に各皮の添加剀を添加するこずができる。 添加剀ずしおは、重合反応により副生するハむ
ドロハラむドを䞭和するために及び又は重合䜓
の溶解を容易にするための無機化合物䟋えば塩化
リチりム、炭酞リチりム、酞化カルシりム、氎酞
化カルシりム、塩化カルシりム、炭酞カルシりム
などが挙げられる。 曎に必芁に応じお末端停止剀、光安定剀、架橋
剀などを添加するこずができる。 繊維の補造及び性質 本発明においお䜿甚する繊維は、前蚘重合䜓を
溶解せしめた溶液を脱泡、過埌、氎性凝固液䞭
に玡出し、掗浄、也燥、熱延䌞を行うこずによ぀
お埗られる。重合䜓の溶媒ずしおは、テトラメチ
ル尿玠、ヘキサルメチルホスホルアミド、
−ゞメチルアセトアミド、−メチル−−ピロ
リドン、−ゞメチルホルムアミドなどの非
プロトン系アミド系極性溶媒が奜たしい。 重合䜓溶液の玡出は凝固液䞭で行぀おもよい
し、あるいは、䞀床気䜓䞭に玡出させその埌凝固
液䞭に導びく方法すなわち、ドラむゞ゚ツト湿匏
玡糞法で行な぀おも良いが、ドラむゞ゚ツト湿匏
玡糞法が奜たしく甚いられる。 たた熱延䌞は250℃以䞊600℃以䞋の枩床におい
お倍以䞊の延䌞倍率で行うこずが奜たしい。 高匷力で高モゞナラスのKevlar に代衚され
る盎線配䜍性芳銙族ポリアミドは、玡糞した埌也
燥し熱凊理を斜すこずなくそのたゝ摩擊材甚ずし
お䜿甚されたり、たた、玡糞、也燥の埌䟋えば
200℃以䞊䞀般には300℃以䞊の枩床で緊匵䞋ある
いは匛緩状態で熱凊理するこずによ぀おさらに匷
力、モゞナラスを向䞊させた埌摩擊材ずしお䜿甚
されるこずもある。 しかしながら盎線配䜍性芳銙族ポリアミド繊維
の耐薬品性は、本発明に甚いる特定構造を有する
芳銙族ポリ゚ヌテルアミドからなる繊維の耐薬品
性よりも劣る。 䟋えばポリパラプニレンテレフタルアミドの
ような盎線配䜍性芳銙族ポリアミドからなる繊維
は200℃以䞊の枩床においお匛緩熱凊理あるいは
延䌞倍率1.5倍以䞋の緊匵熱凊理しかできないの
に察しお、本発明に甚いる特定構造を有する芳銙
族ポリ゚ヌテルアミドからなる繊維は200℃以䞊
の枩床においお倍以䞊奜たしくは倍以䞊に熱
延䌞され、高い匷床ず高いモゞナラスを発珟する
ずずもに高い耐薬品性を瀺すようになる。 䟋えば10重量のカセむ゜ヌダ氎溶液に95℃で
10時間浞挬した堎合の匷力保持率を比范するず、
盎線配䜍性芳銙族ポリアミドであるポリパラプ
ニレンテレフタルアミド繊維Kevlar−29 
は玄20であり、それをさらに緊匵熱凊理したず
ころの繊維Kevlar−49 は玄60であるの
に察しお本発明に甚いる繊維の匷力保持率は玄95
以䞊であり非垞に優れおいる。 又、20重量の硫酞氎溶液に95℃で20時間浞挬
した堎合の匷力保持率はそれぞれ次のずおりであ
぀た。 Kevlar−29 15 Kevlar−49 50 本発明で䜿甚する繊維 97 本発明に甚いられる繊維のこのような優れた耐
薬品性は、該繊維を構成する重合䜓の組成ず200
℃以䞊の枩床で倍以䞊に熱延䌞するこずにより
発珟される。 䞀方摩擊材、䟋えば自動車のデむスクブレヌキ
のデむスクパツドは補匷甚の裏金ず接着しお䜿わ
れるが、デむスクパツドず補匷甚裏金ずの接着面
から発生する錆によ぀おデむスクパツドが裏金か
らはく離するずいう問題を防止する為に、デむス
クパツドは、ある皋床アルカリ性を瀺すようにそ
の組成が遞ばれるこずがある。 又、湿匏抄玙法により玙状物を䜜り、この玙状
物を加工しお䟋えばクラツチプヌシング甚摩擊
材を補造する方法も知られおいるが、この堎合、
充おん材、摩擊性胜調敎剀等が抄玙党網から挏掩
するのを少くする為に定着剀ずしお硫酞バンドを
䜿甚するこずが倚い。この堎合にはクラツチプ
シング甚摩擊材は酞性を瀺すようになる堎合があ
る。埓぀お、摩擊材を構成する繊維ずしお耐アル
カリ性、耐酞性等の耐薬品性に優れた本発明の繊
維を䜿甚する事は非垞に倧きな意味を持぀事にな
り、特に高枩時における機械的性質の優れた摩擊
材を埗るこずができるのである。 本発明に䜿甚する繊維の単糞繊床は0.5〜15デ
ニヌル、奜たしくは〜10デニヌルである。又、
繊維は切断しお短繊維ずしお䜿甚するのが奜たし
く、この堎合繊維の長さは、繊維の単糞繊床、摩
擊材䞭の割合、摩擊材の補法などにより倧きく異
なるが、100mm以䞋、奜たしくは60mm以䞋である。 たた、本発明の繊維ず他の繊維ずを必芁に応じ
お混合しお䜿甚するこずもできる。この堎合、他
の繊維ずしおアスベスト繊維、ガラス繊維、セラ
ミツク繊維、シリカ繊維、アルミナ繊維、チタン
酞カリりム繊維、酞化チタン繊維、ボヌキサむト
繊維、カダナむト繊維、ホり玠系繊維、マグネシ
ア繊維、ロツクりヌル、鉱滓綿、金属繊維、石こ
う繊維、ドヌ゜ナむト繊維等の無機質繊維朚
綿、矊毛、麻、レヌペン、芳銙族ポリアミド繊
維、炭玠繊維、プノヌル繊維等の非溶融性有機
繊維が挙げられる。 本発明においお䜿甚する繊維ず他の繊維ずを混
合䜿甚する堎合の混合割合は、甚途、芁求特性に
よ぀お遞定されるべきである。 又、本発明に䜿甚する、特定構造を有する芳銙
族ポリアミド繊維からの繊維を也匏又は湿匏で剪
断力により繊維の䞀郚又は倧郚分をフむブリル化
せしめおた埌、䜿甚に䟛するこずもできる。 曎に、芳銙族ポリアミドからなるパルプ状粒子
を混合しお䜿甚するこずもできる。 摩擊材の補造 本発明の摩擊材の補造に際しおは公知の方法を
採甚するこずができる。 䟋えば、繊維成分、摩擊性胜調敎剀、及び熱硬
化性暹脂を充分混合したものを仮成型し所定の金
型に入れ、50Kgcm2以䞊奜たしくは100Kgcm2以
䞊の圧力で成型枩床130〜290℃奜たしくは170〜
250℃で成型する。成型したものは冷华したのち
研磚機にかけお仕䞊げする。たた成型した埌、金
型からずり出した状態で熱硬化性暹脂の硬化反応
を完了させるなどの目的で熱凊理しおもよい。 たた特にクラツチプヌシングを補造する際に
は、繊維成分ず摩擊性胜調敎剀を氎に均䞀にしお
混合分散した埌、順に抄玙、熱硬化性暹脂の含
浞、予備也燥、加圧加熱成型、クランクプレス等
による打抜き等の工皋を経お補造する方法もあ
る。 曎には、繊維成分ず摩擊性胜調敎剀ずを配合
し、呚知のダヌン補造法によ぀おダヌンずした
埌、順に熱硬化性暹脂の含浞、予備也燥、ルヌプ
状に巻き取り、加圧加熱成圢、熱凊理等の工皋を
通しお補造する事もできる。 曎に、繊維成分ず摩擊性胜調敎剀を配合し、呚
知のプルト補造法によりプルト状ずなした
埌、熱硬化性暹脂の含浞、予備也燥、加圧加熱成
圢、打抜き等の工皋を通しお補造する方法もあ
る。 本発明の摩擊材補造に際しお䜿甚する摩擊性胜
調敎剀ずしおは次のようなものが挙げられる。 アルミナ、シリカ、タルク、カオリン、雲母、
酞化クロム、酞化マグネシりム、酞化チタン等の
金属酞化物銅又は銅合金、亜鉛、鉄、アルミニ
りム等の金属硫酞バリりム、生石灰、リン酞カ
ルシりム、北化カルシりム、カヌボランダム等の
無機化合物粘土、緑柱石、ムラむト、クロム鉄
鉱等の鉱物陶磁噚粉末など砥粒的摩擊性胜調敎
剀やフリクシペンダストず蚀われおいる硬化した
暹脂の粒子ゎムの粉末カヌボンブラツク黒
鉛等の非砥粒的摩擊性胜調敎剀が䜿甚できる。
又、本発明の摩擊材の補造に際しお䜿甚する熱硬
化性暹脂ずしおはプノヌル系、メラミン系、尿
玠系、゚ポキシ系、ポリむミド系等が挙げられる
が、プノヌル暹脂系が倚く甚いられる。 プノヌル暹脂の堎合、ノボラツク圢プノヌ
ル暹脂、レゟヌル圢プノヌル暹脂及び倉性プ
ノヌル暹脂䟋えば、メラミン倉性プノヌル暹
脂、クレゟヌル倉性プノヌル暹脂、カシナヌ倉
性プノヌル暹脂等で、液状又は固䜓状の物が利
甚できる。 次に、本発明の摩擊材を補造するに圓り、繊維
成分、摩擊性胜調敎剀及び熱硬化性暹脂の配合割
合に぀いお述べる。 党配合剀䞭に占める繊維成分の割合は10〜80重
量であり奜たしくは20〜70重量である。 同様に摩擊性胜調敎剀の総和は〜40重量で
あり奜たしくは〜20重量である。 又、熱硬化性暹脂は10〜40重量であり奜たし
くは15〜35重量である。 以䞋実斜䟋により本発明を詳述する。 尚、郚たたはは特に断らない限り、重量基準
である。 実斜䟋  パラプニレンゞアミン25mol、4′−ゞ
アミノゞプニル゚ヌテル25mol、テレフタル
酞クロラむド50molを甚いお、−メチル−
−ピロリドン䞭で重合した埌、氎酞化カルシりム
で䞭和し、芳銙族ポリ゚ヌテルアミドの濃床が
の玡糞甚溶液を埗た。この溶液を孔埄0.2mm、
孔数1000の玡糞甚ノズルから䞀旊空気䞭に抌し出
し玄cmの空気局を通過せしめた埌、氎性凝固液
䞭に導き、匕き続き氎掗济䞭で充分に掗浄した
埌、也燥ロヌラヌで也燥した。也燥した繊維は
510℃の熱板䞊で11.0倍に延䌞し油剀を぀けお巻
き取り、単糞繊床1.5デニヌル、匕匵匷床430Kg
mm2、初期モゞナラス7.5×103Kgmm2の繊維を埗
た。 かくしお埗た繊維を51mmの長さに切断しお摩擊
材甚の繊維ずし䞋蚘によりクラツチプヌシング
を䜜成した。 前蚘芳銙族ポ゚ヌテルアミド繊維 40郚 長繊維石綿ケベツク・スタンダヌドクラス
10郚 䞊蚘成分を解綿しおプルト状ずなし、該フ
゚ルトにプノヌル暹脂ず摩擊性胜調敎剀ずの混
合液䜓を含浞し也燥機で枩床120℃、時間40分間
也燥した。前蚘プルト50郚に察しプノヌル暹
脂20郚摩擊性胜調敎剀30郚が含浞されおいた。 次いで、これをスリツタヌで幅20mmのテヌプに
切断し、このテヌプの呚囲には黄銅線を䞀端から
他端ぞ向぀おらせん状に巻き぀けおおき、これを
うず巻状に巻いた埌、金型に入れおプレスで枩床
160℃、圧力170Kgcm2、時間分間プレスしお取
出し、曎に枩床200℃で60分間加熱埌研磚しおク
ラツチプヌシングを埗た。 かくしお埗たクラツチプヌシングの性胜は衚
のずおりであ぀た。
The present invention relates to a friction material useful for use in brake linings, disk pads, clutch facings, etc. of automobiles, railway vehicles, and various industrial machines. More specifically, it is a friction material in which fibers made of an aromatic polyamide having a specific structure, which has heat resistance and excellent chemical resistance, are blended as fiber components constituting the friction material. In recent years, as vehicles have become larger and faster, and their operating conditions have become more severe, the performance required of brake linings, disc brake pads, clutch facings, etc. has become increasingly sophisticated. In other words, it is not only necessary to have a high friction coefficient during sliding, but also to have a stable value in response to changes in the temperature, speed, pressure, etc. of the sliding surface, and also to have a long life and a high coefficient of friction during sliding. Many performance requirements are required, including no abnormal noise generation and good heat resistance. Currently, asbestos is mainly used as the fiber component that makes up friction materials, but friction materials made mainly of asbestos suffer from rapid decreases in the coefficient of friction at high temperatures (fade phenomenon) and increased wear rates. It has major drawbacks and is no longer able to meet the high demands mentioned above. Various proposals have been made to compensate for the drawbacks of friction materials made mainly of asbestos, and it is known to use certain aromatic polyamide fibers as a fiber component constituting friction materials. For example, JP-A-53-130742 discloses the use of polymetaphenylene isophthalamide fibers together with glass fibers, and in JP-A-54-118448, we disclose that A friction material based on a paper containing 5 to 70% by weight of aromatic polyamide fibers and a binder and a friction performance improver, which is impregnated with a phenolic resin. He then proposed a friction material molded by heating and pressing, and disclosed polymetaphenylene isophthalamide and polyparaphenylene terephthalamide as examples of aromatic polyamide fibers.
However, the above-mentioned Japanese Patent Application Laid-Open No. 53-130742 and Japanese Patent Application Laid-open No. 54
Although the friction material described in Publication No. 118448 has excellent friction properties and wear resistance at high temperatures, its mechanical strength at high temperatures (for example, rotational fracture strength in clutch facings) is still insufficient. The drawback was that the degree of deterioration was large with use. In order to develop a friction material that maintains excellent friction properties and wear resistance at high temperatures and has improved mechanical strength at high temperatures, we continued to study aromatic polyamides and found that (1 ) Fibers obtained from aromatic polyamides having specific structural units have superior chemical resistance such as alkali resistance and acid resistance compared to polymetaphenylene isophthalamide fibers and polyparaphenylene terephthalamide fibers; (2)Friction materials made by blending fibers with excellent chemical resistance obtained from aromatic polyamide having the above-mentioned specific structural units not only have excellent friction properties and wear resistance at high temperatures. The inventors completed the present invention by discovering that the material also has excellent mechanical strength. That is, the present invention includes (i) aromatic polyetheramide fibers 10 to 80% by weight, (ii) friction performance modifier 1 to 40% by weight, and (iii) thermosetting resin 10 to 40% by weight as the main ingredients. It is a friction material. Each component of the present invention will be explained below. Polymer The aromatic polyetheramide fiber used in the present invention is composed of a polymer consisting of repeating units represented by (1) to (4) below. Ar 1 , Ar 2 , Ar 3 Ar 4 and Ar 5 are metaphenylene groups or paraphenylene groups, and these may be the same group or different groups. R 1 , R 2 , R 3 , R 4 and R 5 in formulas (1) to (4) may be the same or different, and are an alkyl group having 5 or less carbon atoms or a hydrogen atom. Preferably, Ar 1 , Ar 2 and Ar 3 are each a paraphenylene group, and one of Ar 4 and Ar 5 is preferably a paraphenylene group and the other is a metaphenylene group. Such aromatic polyether amides are derived from paraphenylene diamine, 3,4'-diaminodiphenyl ether and terephthalic acid chloride. A substituent may be bonded to the carbon atom of the above aromatic carbocyclic residue. For example, halogen groups (e.g. chlorine, bromine, fluorine), lower alkyl groups (e.g. methyl, ethyl group, isopropyl group, n-propyl group), lower alkoxy groups (e.g. methoxy group, ethoxy group), cyano group, acetyl group,
Examples include nitro group, among which chlorine group and methyl group are preferred. The fibers used in the present invention mainly have the above formulas (1) to (4).
The relationship between the number of moles of these repeating units is essentially (1) + (4) = (2), and (1) + (2) + When (3)+(4)=100 mol%, (3)=
0-90 and (4)=50-5 mol%. Preferably
(4) = 30 to 10 mol%. The polymer can be obtained by reacting diamines, dicarboxylic acid derivatives, and aminocarboxylic acid derivatives corresponding to the repeating units represented by (1) to (4) above in a predetermined ratio. As the dicarboxylic acid derivative, it is preferable to use a dicarboxylic acid halide, particularly a dicarboxylic acid chloride. As the aminocarboxylic acid, it is preferable to use aminocarboxylic acid halide hydrohalide salts, such as aminocarboxylic acid chloride hydrochloride. Polymers can be obtained from these monomers by polymerization using known polymerization methods such as melt polymerization, solid phase polymerization, interfacial polymerization, and solution polymerization. Among these, solution polymerization is preferred. When producing a polymer, various additives can be added before, during, or after polymerization. Additives include inorganic compounds such as lithium chloride, lithium carbonate, calcium oxide, calcium hydroxide, and calcium chloride to neutralize hydrohalides produced as by-products of polymerization reactions and/or to facilitate dissolution of the polymer. , calcium carbonate, etc. Furthermore, a terminal stopper, a light stabilizer, a crosslinking agent, etc. can be added as necessary. Production and Properties of Fibers The fibers used in the present invention are obtained by defoaming and filtering a solution in which the polymer is dissolved, spinning the solution into an aqueous coagulation solution, washing, drying, and hot stretching. As a solvent for the polymer, tetramethylurea, hexalmethylphosphoramide, N,N
-Aprotic amide polar solvents such as -dimethylacetamide, N-methyl-2-pyrrolidone, and N,N-dimethylformamide are preferred. The spinning of the polymer solution may be carried out in a coagulating liquid, or it may be carried out by a dry jet wet spinning method, in which the polymer solution is first spun into a gas and then introduced into a coagulating liquid. A spinning method is preferably used. Further, the hot stretching is preferably carried out at a temperature of 250° C. or higher and 600° C. or lower at a stretching ratio of 2 times or more. Linear aromatic polyamides such as Kevlar, which has high strength and high modulus, are used as friction materials after spinning and drying without heat treatment, or after spinning and drying, for example.
It is sometimes used as a friction material after improving its strength and modulus by heat treatment under tension or relaxation at a temperature of 200°C or higher, generally 300°C or higher. However, the chemical resistance of linearly coordinated aromatic polyamide fibers is inferior to that of fibers made of aromatic polyetheramide having a specific structure used in the present invention. For example, fibers made of linearly coordinated aromatic polyamides such as polyparaphenylene terephthalamide can only be subjected to relaxation heat treatment at a temperature of 200°C or higher or tension heat treatment at a draw ratio of 1.5 times or less. Fibers made of aromatic polyetheramide having a structure are hot-stretched at a temperature of 200° C. or more to a factor of 2 or more times, preferably 5 times or more, and exhibit high strength and modulus as well as high chemical resistance. For example, in a 10% by weight aqueous solution of caustic soda at 95°C.
Comparing the strength retention rate when soaked for 10 hours,
Polyparaphenylene terephthalamide fiber (Kevlar-29), a linear aromatic polyamide
The strength retention rate of the fiber used in the present invention is approximately 95%, whereas the strength retention rate of the fiber used in the present invention is approximately 20%, and the fiber (Kevlar-49) that is further subjected to tension heat treatment is approximately 60%.
% or more, which is very excellent. In addition, the strength retention rates when immersed in a 20% by weight aqueous sulfuric acid solution at 95°C for 20 hours were as follows. Kevlar-29 15% Kevlar-49 50% Fiber used in the present invention 97% The excellent chemical resistance of the fiber used in the present invention is due to the composition of the polymer constituting the fiber and the 200%
It is developed by hot stretching to double or more at a temperature of ℃ or higher. On the other hand, friction materials, such as the disc pads of automobile disc brakes, are used by adhering them to a reinforcing back metal, but this prevents the problem of the disc pad peeling off from the back metal due to rust generated from the adhesive surface between the disc pad and the reinforcing back metal. In order to achieve this, the composition of the disk pad is sometimes chosen to exhibit some degree of alkalinity. There is also a known method of producing a paper-like material using a wet papermaking method and processing this paper-like material to produce, for example, a friction material for clutch facings, but in this case,
Sulfate band is often used as a fixing agent in order to reduce the leakage of fillers, friction performance modifiers, etc. from the entire paper mesh. In this case, the clutch facing friction material may become acidic. Therefore, it is of great significance to use the fibers of the present invention, which have excellent chemical resistance such as alkali resistance and acid resistance, as fibers constituting friction materials. This makes it possible to obtain an excellent friction material. The fiber used in the present invention has a single fiber fineness of 0.5 to 15 deniers, preferably 1 to 10 deniers. or,
It is preferable to cut the fibers and use them as short fibers. In this case, the length of the fibers varies greatly depending on the fineness of the fibers, their proportion in the friction material, the manufacturing method of the friction material, etc., but the length of the fibers is 100 mm or less, preferably 60 mm. It is as follows. Furthermore, the fibers of the present invention and other fibers may be mixed and used as necessary. In this case, other fibers include asbestos fiber, glass fiber, ceramic fiber, silica fiber, alumina fiber, potassium titanate fiber, titanium oxide fiber, bauxite fiber, kyanite fiber, boron fiber, magnesia fiber, rock wool, mineral wool, and metal. Examples include inorganic fibers such as fibers, gypsum fibers, and dawsonite fibers; non-melting organic fibers such as cotton, wool, linen, rayon, aromatic polyamide fibers, carbon fibers, and phenol fibers. When the fibers used in the present invention are mixed with other fibers, the mixing ratio should be selected depending on the intended use and required characteristics. Further, the fibers made of aromatic polyamide fibers having a specific structure used in the present invention can be used after partially or most of the fibers are fibrillated by shearing force in a dry or wet process. Furthermore, pulp-like particles made of aromatic polyamide can also be mixed and used. Manufacture of Friction Material When manufacturing the friction material of the present invention, known methods can be employed. For example, a mixture of a fiber component, a friction performance modifier, and a thermosetting resin is pre-molded, placed in a predetermined mold, and molded at a pressure of 50 kg/cm 2 or more, preferably 100 kg/cm 2 or more, at a molding temperature of 130~ 290℃ preferably 170~
Mold at 250℃. After the molded product is cooled, it is finished using a polishing machine. Further, after molding, heat treatment may be performed for the purpose of completing the curing reaction of the thermosetting resin in a state taken out from the mold. In particular, when manufacturing clutch facings, the fiber components and friction performance modifiers are uniformly mixed and dispersed in water, followed by paper making, impregnation with thermosetting resin, pre-drying, pressure and heat molding, and crank press. There is also a method of manufacturing through a process such as punching. Furthermore, a fiber component and a friction performance modifier are blended and made into a yarn using a well-known yarn manufacturing method, followed by impregnation with a thermosetting resin, pre-drying, winding into a loop, pressurizing and heating forming, It can also be manufactured through processes such as heat treatment. Furthermore, there is also a method in which a fiber component and a friction performance modifier are blended, the felt is made into a felt shape using a well-known felt manufacturing method, and then the product is manufactured through processes such as impregnation with a thermosetting resin, preliminary drying, pressurized heat molding, and punching. be. Examples of the friction performance modifier used in producing the friction material of the present invention include the following. Alumina, silica, talc, kaolin, mica,
Metal oxides such as chromium oxide, magnesium oxide, and titanium oxide; Metals such as copper or copper alloys, zinc, iron, and aluminum; Inorganic compounds such as barium sulfate, quicklime, calcium phosphate, calcium fluoride, and carborundum; Clay, and beryl Minerals such as , mullite, and chromite; abrasive friction performance modifiers such as ceramic powder and hardened resin particles called friction dust; non-abrasive friction performance modifiers such as rubber powder; carbon black; graphite, etc. Conditioners can be used.
Further, thermosetting resins used in the production of the friction material of the present invention include phenolic, melamine, urea, epoxy, and polyimide resins, and phenolic resins are often used. In the case of phenolic resins, liquid or solid products such as novolac-type phenolic resins, resol-type phenolic resins, and modified phenolic resins such as melamine-modified phenolic resins, cresol-modified phenolic resins, and cashew-modified phenolic resins can be used. Next, in manufacturing the friction material of the present invention, the blending ratios of the fiber component, friction performance modifier, and thermosetting resin will be described. The proportion of the fiber component in the total formulation is 10 to 80% by weight, preferably 20 to 70% by weight. Similarly, the total amount of frictional performance modifiers is 1 to 40% by weight, preferably 5 to 20% by weight. Further, the amount of the thermosetting resin is 10 to 40% by weight, preferably 15 to 35% by weight. The present invention will be explained in detail with reference to Examples below. Incidentally, unless otherwise specified, parts or percentages are based on weight. Example 1 N-methyl-2
- Polymerization in pyrrolidone followed by neutralization with calcium hydroxide until the concentration of aromatic polyetheramide is 6
% spinning solution was obtained. This solution has a pore size of 0.2 mm.
The material was once extruded into the air through a spinning nozzle with 1000 holes, passed through an air layer of about 2 cm, and then introduced into an aqueous coagulation solution, thoroughly washed in a water washing bath, and then dried with a drying roller. The dried fibers
Stretched 11.0 times on a hot plate at 510°C, coated with oil and wound, single yarn fineness 1.5 denier, tensile strength 430 kg/
mm 2 and an initial modulus of 7.5×10 3 Kg/mm 2 . The thus obtained fibers were cut into a length of 51 mm to be used as fibers for a friction material, and a clutch facing was prepared as follows. Aromatic polyetheramide fiber 40 length fiber asbestos (Quebec Standard 3 class)
10 parts The above two components were opened into a felt, the felt was impregnated with a liquid mixture of a phenol resin and a friction performance modifier, and dried in a dryer at a temperature of 120°C for 40 minutes. Fifty parts of the felt was impregnated with 20 parts of phenolic resin and 30 parts of a friction performance modifier. Next, this was cut into a tape with a width of 20 mm using a slitter, and a brass wire was wound around the tape in a spiral shape from one end to the other. Put it in the press at the temperature
It was pressed at 160° C., pressure 170 kg/cm 2 for 6 minutes, taken out, heated at 200° C. for 60 minutes, and then polished to obtain a clutch facing. The performance of the clutch facing thus obtained was as shown in Table 1.

【衚】 尚、衚においお摩擊係数及び摩耗率は
JISD4311に基づいお実斜した。 たた回転砎壊匷床は、倖埄200mm、内埄130mm、
厚さ3.5mmの詊料を200℃で24時間攟眮埌枩床200
℃の雰囲気で増速回転し、砎壊時の回転数を枬定
した。 比范䟋  実斜䟋においお、芳銙族ポリ゚ヌテルアミド
繊維の代りに、ポリパラプニレンテレフタルア
ミド繊維duPont瀟Kevlar−29 を䜿甚する
以倖は実斜䟋ず党く同様に実斜しおクラツチフ
゚ヌシングを埗た。このクラツチプヌシングの
摩擊係数、摩耗率は実斜䟋の堎合ずほずんど同
じで良奜であ぀たが、回転砎壊匷床は16000r・
・ず劣぀おいた。 比范䟋  実斜䟋においお、芳銙族ポリ゚ヌテルアミド
繊維の代りに長繊維石綿を䜿う以倖は実斜䟋ず
党く同様に実斜しおクラツチプヌシングを埗
た。 埗られたクラツチプヌシングの性胜を衚に
瀺した。
[Table] In Table 1, the friction coefficient and wear rate are
Conducted based on JISD4311. In addition, the rotational breaking strength is 200 mm in outer diameter, 130 mm in inner diameter,
After leaving a 3.5mm thick sample at 200℃ for 24 hours, the temperature was 200℃.
It was rotated at increased speed in an atmosphere at ℃, and the number of rotations at the time of failure was measured. Comparative Example 1 Clutch facing was carried out in exactly the same manner as in Example 1 except that polyparaphenylene terephthalamide fiber (duPont Kevlar-29) was used instead of the aromatic polyetheramide fiber. I got it. The friction coefficient and wear rate of this clutch facing were almost the same as in Example 1, which was good, but the rotational fracture strength was 16000 r.
It was inferior to P.M. Comparative Example 2 A clutch facing was obtained in exactly the same manner as in Example 1 except that long fiber asbestos was used instead of the aromatic polyetheramide fiber. Table 2 shows the performance of the obtained clutch facing.

【衚】 200℃における摩耗率、回転砎壊匷床が䞍充分
であ぀た。 実斜䟋  パラプニレンゞアミン15mol、3.4′−ゞア
ミノゞプニル゚ヌテル15mol、クロルパラフ
゚ニレンゞアミン20mol、テレフタル酞クロラ
むド50molを甚いお、−メチル−−ピロリ
ドン䞭で重合した埌、氎酞化カルシりムで䞭和し
重合䜓の濃床がの玡糞甚溶液を埗た。 この溶液を甚いお、実斜䟋ず党く同様にしお
繊維を埗た。埗られた繊維は単糞繊床1.5デニヌ
ル、匕匵匷床395Kgmm2、初期モゞナラス9.7×
103Kgmm2であ぀た。 かくしお埗た繊維をmmの長さに切断し摩擊材
甚ずした。 (1) 䞊蚘芳銙族ポリ゚ヌテルアミド繊維 30郚 (2) 短繊維石綿 15郚 (3) プノヌル暹脂 20郚 (4) カシナヌ粉末 15郚 (5) 硫酞バリりム 10郚 (6) 粉末充おん材無機質 10郚 前蚘(1)〜(6)を均䞀混合しお埗た混合物を予備成
型し次いで金型に入れ、170℃、230Kgcm2、分
間の条件で圧瞮成型した埌、曎に190℃の熱颚炉
䞭で時間熱凊理し、プノヌル暹脂の硬化反応
を完党なものずした。 かくしお埗た摩擊材の性胜は衚のずおりであ
りいずれも良奜であ぀た。
[Table] The wear rate and rotational fracture strength at 200°C were insufficient. Example 2 After polymerization in N-methyl-2-pyrrolidone using 15 mol% paraphenylene diamine, 15 mol% 3.4′-diaminodiphenyl ether, 20 mol% chlorparaphenylene diamine, and 50 mol% terephthalic acid chloride, A solution for spinning with a polymer concentration of 6% was obtained by neutralization with calcium hydroxide. Using this solution, fibers were obtained in exactly the same manner as in Example 1. The obtained fiber had a single yarn fineness of 1.5 denier, a tensile strength of 395 Kg/mm 2 , and an initial modulus of 9.7×
It was 103 Kg/ mm2 . The fiber thus obtained was cut into a length of 5 mm to be used as a friction material. (1) 30 parts of the above aromatic polyetheramide fiber (2) Short fiber asbestos 15 parts (3) Phenol resin 20 parts (4) Cashew powder 15 parts (5) Barium sulfate 10 parts (6) Inorganic powder filler 10 parts The mixture obtained by uniformly mixing the above (1) to (6) was preformed, then put into a mold, compression molded at 170°C, 230Kg/cm 2 for 5 minutes, and then further heated in a hot air oven at 190°C. The resin was heat-treated for 5 hours to complete the curing reaction of the phenolic resin. The performance of the friction material thus obtained is shown in Table 3, and all were good.

【衚】 衚においお、曲げ匷さは、摩擊材を200℃で
24時間熱劣化凊理した埌、宀枩迄冷华し
JISD4311に芏定されおいる方法で枬定したが、
200℃−24時間の熱化化凊理を経おもKgmm2の
曲げ匷床を瀺し、機械的匷床は充分であ぀た。 比范䟋  実斜䟋においお、芳銙族ポリ゚ヌテルアミド
繊維の代りにポリパラプニレンテレフタルアミ
ド繊維duPont瀟、Kevlar を䜿甚する以倖
は実斜䟋ず党く同様に実斜しお摩擊材を埗た。 かくしお埗た摩擊材の摩擊係数及び摩耗率は実
斜䟋の堎合ずほずんど同じで良奜であ぀たが、
実斜䟋の堎合ず同様の方法で枬定した曲げ匷さ
はKgmm2ず劣぀おいた。
[Table] In Table 3, the bending strength of the friction material at 200℃ is
After heat aging treatment for 24 hours, cool to room temperature.
Although it was measured using the method specified in JISD4311,
Even after thermal treatment at 200°C for 24 hours, it exhibited a bending strength of 6 kg/mm 2 and had sufficient mechanical strength. Comparative Example 3 In Example 2, a friction material was obtained in exactly the same manner as in Example 1, except that polyparaphenylene terephthalamide fiber (duPont, Kevlar) was used instead of aromatic polyetheramide fiber. . The friction coefficient and wear rate of the friction material thus obtained were almost the same as in Example 2, and were good.
The bending strength measured in the same manner as in Example 1 was poor at 4 Kg/mm 2 .

Claims (1)

【特蚱請求の範囲】  (i) 芳銙族ポリ゚ヌテルアミド繊維
10〜80重量 (ii) 摩擊性胜調敎剀 〜40重量 (iii) 熱硬化性暹脂 10〜40重量 を䞻たる配合成分ずする摩擊材。  芳銙族ポリ゚ヌテルアミド繊維が、パラプ
ニレンゞアミン、4′−ゞアミノゞプニル゚
ヌテル及びテレフタル酞クロラむドから誘導され
たポリ゚ヌテルアミドの繊維であ぀お、か぀250
℃以䞊600℃以䞋の枩床においお、延䌞倍率倍
以䞊で延䌞された繊維である特蚱請求の範囲第
項蚘茉の摩擊材。
[Claims] 1 (i) Aromatic polyetheramide fiber
10 to 80% by weight (ii) Friction performance modifier 1 to 40% by weight (iii) Thermosetting resin 10 to 40% by weight A friction material whose main compounding components are 10 to 80% by weight. 2. The aromatic polyetheramide fiber is a polyetheramide fiber derived from paraphenylene diamine, 3,4'-diaminodiphenyl ether, and terephthalic acid chloride, and
Claim 1, which is a fiber drawn at a draw ratio of 2 times or more at a temperature of ℃ to 600℃
Friction material described in section.
JP16133780A 1980-11-18 1980-11-18 Friction material Granted JPS5785877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16133780A JPS5785877A (en) 1980-11-18 1980-11-18 Friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16133780A JPS5785877A (en) 1980-11-18 1980-11-18 Friction material

Publications (2)

Publication Number Publication Date
JPS5785877A JPS5785877A (en) 1982-05-28
JPH0125926B2 true JPH0125926B2 (en) 1989-05-19

Family

ID=15733158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16133780A Granted JPS5785877A (en) 1980-11-18 1980-11-18 Friction material

Country Status (1)

Country Link
JP (1) JPS5785877A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221374A (en) * 1983-05-31 1984-12-12 Akebono Brake Ind Co Ltd Friction material
JP5334466B2 (en) * 2007-08-10 2013-11-06 アむシン化工株匏䌚瀟 Wet friction material

Also Published As

Publication number Publication date
JPS5785877A (en) 1982-05-28

Similar Documents

Publication Publication Date Title
CA1197936A (en) Friction material
JP3159781B2 (en) Friction material having a heat-resistant paper support supporting resin-bonded carbon particles
EP0982513B1 (en) Non-asbestos friction materials
JPS6162628A (en) Friction disk and manufacture thereof
JPS5861169A (en) Aramid-containing abrasive material
EP2270075A1 (en) Friction material and resin composition for friction material
JP2007246590A (en) Friction material
JPH0125926B2 (en)
JP2006193685A (en) Friction material and method for producing the same
JPH0243787B2 (en) MASATSUZAI
JPS6327446B2 (en)
JPH023048B2 (en)
JPH023049B2 (en)
JPH0148304B2 (en)
JPH0241559B2 (en)
JPS59206436A (en) Manufacture of dry friction material
JPH1054000A (en) Para-oriented aromatic polyamide paper and its production
JP2000144106A (en) Nonasbestos-based friction material
JPS6125674B2 (en)
JP2002294218A (en) Friction material using aramid resin powder
JPH01126446A (en) Non-asbestos friction material
JPH1036522A (en) Production of friction material
JPH08209116A (en) Friction material composition for brake pad and production of brake pad
KR910000052B1 (en) Composition of friction material
JP2822239B2 (en) Non-asbestos-based friction material and method for producing the same