JPH0243787B2 - MASATSUZAI - Google Patents

MASATSUZAI

Info

Publication number
JPH0243787B2
JPH0243787B2 JP18277680A JP18277680A JPH0243787B2 JP H0243787 B2 JPH0243787 B2 JP H0243787B2 JP 18277680 A JP18277680 A JP 18277680A JP 18277680 A JP18277680 A JP 18277680A JP H0243787 B2 JPH0243787 B2 JP H0243787B2
Authority
JP
Japan
Prior art keywords
formula
aromatic
same
pulp
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18277680A
Other languages
Japanese (ja)
Other versions
JPS57108180A (en
Inventor
Yutaka Tanabe
Kensho Sasaki
Akihiro Aoki
Hideharu Sasaki
Keizo Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP18277680A priority Critical patent/JPH0243787B2/en
Publication of JPS57108180A publication Critical patent/JPS57108180A/en
Publication of JPH0243787B2 publication Critical patent/JPH0243787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Polyamides (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は自動車のブレヌキラむニング、デむス
クパツドやクラツチプヌシングあるいは皮々の
動力機械の動力䌝達機構等に甚いるに有甚な摩擊
材に関する。 曎に詳しくは特定構造の耐熱性を有する芳銙族
系重合䜓のパルプ状物質を配合しおなる摩擊材で
ある。 本発明の目的の䞀぀は、高枩時の摩擊係数の急
激な䜎䞋プヌド珟象や、摩擊率の䞊昇ずい
う埓来の石綿を䞻䜓ずする摩擊材の欠点を解消し
埗る摩擊材を提䟛するこずであり、目的の他の䞀
぀は、高枩時における機械的匷床䟋えばクラツ
チプヌシングにおける回転砎壊匷床などの改
良された摩擊材を提䟛するこずである。曎に他の
目的の䞀぀は、珟圚、劎働環境衛生䞊、問題ずな
り぀぀ある石綿を䜿甚しない堎合でも、石綿を䞻
䜓ずする埓来の摩擊材よりも優れた摩擊材を提䟛
するこずである。 近幎、車茛の倧型化、高速化ずい぀た䜿甚条件
の苛酷化に䌎な぀おブレヌキラむニング、デむス
クパツドやクラツチプヌシングなどに芁求され
る性胜もたすたす高床なものになり぀぀ある。 すなわち、摺動時に単に高い摩擊係数を有する
こずだけでなく、摺動面の枩床、速床、圧力等の
倉化に察応しお安定した倀をも぀事が必芁であ
り、曎に寿呜の長いこずや摺動䞭の異垞音発生の
ないこず、耐熱性の良いこずなど倚くの性胜が芁
求される。 珟圚、摩擊材を構成する繊維成分ずしおは、石
綿が䞻ずしお䜿われおいるが、石綿を䞻䜓ずしお
補造された摩擊材は高枩時の摩擊係数の急激な䜎
䞋プヌド珟象や、摩擊率の䞊昇ずいう倧き
な欠点があり、前蚘したような高床な芁求に応え
られなくな぀おいる。これら、石綿を䞻䜓ずしお
補造された摩擊材の欠点を補うために皮々の提案
がなされおおり、䟋えば摩擊材を構成する繊維成
分ずしお、ある皮の芳銙族ポリアミド繊維を䜿甚
するこずは公知である。䟋えば、特開昭53−
130742号公報にはポリメタプニレンむ゜フタル
アミド繊維をガラス繊維ず共に䜿甚するこずが開
瀺されおおり、又、我々は特開昭54−125239号公
報にお、 「繊維質を基材ずする摩擊材においお、構成す
る繊維に芳銙族ポリアミド繊維ず結合材ずしお耐
熱性高分子重合䜓からなるパルプ状粒子を含み、
曎に摩擊性胜向䞊剀を加えお抄玙した玙を基材ず
し、これにプノヌル系暹脂を含浞せしめた埌、
加熱加圧しお成型した摩擊材。」 を提案し、芳銙族ポリアミド繊維の䟋ずしお、ポ
リメタプニレンむ゜フタルアミドやポリパラフ
゚ニレンテレフタルアミドからなる繊維を開瀺し
た。又、耐熱性高分子重合䜓からなるパルプ状粒
子ずしお、ポリメタプニレンむ゜フタルアミド
からなるパルプ状粒子を開瀺した。 しかし、前蚘特開昭53−130742号公報や特開昭
54−125239号公報に蚘茉されおいる摩擊材は、高
枩時における摩擊特性、耐摩耗性には優れおいる
ものの高枩時における機械的匷床䟋えばクラツ
チプヌシングにおける回転砎壊匷床が未だ充
分でなく、䜿甚ず共に䜎䞋する床合が倧きいずい
う欠点があ぀た。 我々は、高枩時における優れた摩擊特性、耐摩
擊性を保持し぀぀、か぀高枩時における機械的匷
床の改良された摩擊材を開発すべく、芳銙族ポリ
アミドに぀いお曎に怜蚎を続けた結果、(1)特定の
構造単䜍を有する芳銙族ポリアミドから埗たパル
プ状物質が、ポリメタプニレンむ゜フタルアミ
ドやポリパラプニレンテレフタルアミドに比べ
お耐アルカリ性や耐酞性等の耐薬品性に優れおい
るこず、(2)前蚘特定の構造単䜍を有する芳銙族ポ
リアミドから埗た耐薬品性に優れたパルプ状物質
を配合しおなる摩擊材は、高枩時における摩擊特
性、耐摩耗性に優れおいるのはもちろんのこず、
機械的匷床にも優れおいるこずを知芋し、本発明
を完成したものである。 すなわち、本発明は芳銙族ポリ゚ヌテルアミ
ド、芳銙族ポリサルフアむドアミド、芳銙族ポリ
スルホンアミド、芳銙族ポリメチレンアミド、芳
銙族ポリアミンアミド及びこれらの共重合䜓から
なる矀から遞ばれた共重合䜓のパルプ状物質を、
䞀皮又は二皮以䞊配合しおなる摩擊材である。 重合䜓 本発明で䜿甚するパルプ状物質は、䞻ずしお䞋
蚘の匏(1)〜(4)によ぀お衚わされる繰返し単䜍より
なる重合䜓から埗られる。 匏(1)(2)(3)におけるAr1Ar2Ar3は同䞀で
も盞異぀おもよく、結合鎖が共に同軞方向又は平
行軞方向に䌞びおいる芳銙族性炭玠環残基、最倧
間隔を衚わす環原子によ぀お結合しなければなら
ない芳銙族性耇玠環残基及びこれらの組み合わせ
を衚わす。 結合鎖が同軞方向に䌞びおいる芳銙族性炭玠環
残基ずは、䟋えば−プニレン−
ナフチレンなどを意味し、結合鎖が平行軞方向に
䌞びおいる芳銙族性炭玠環残基ずは䟋えば
−ナフチレン−ナフチレンなどを意味す
る。 たた、最倧間隔を衚わす環原子によ぀お結合し
おいる芳銙族性耇玠環残基ずは、䟋えば−
ピリゞレン
The present invention relates to a friction material useful for use in automobile brake linings, disk pads, clutch facings, and power transmission mechanisms of various power machines. More specifically, it is a friction material containing a pulp-like substance of an aromatic polymer having a specific structure and heat resistance. One of the objects of the present invention is to provide a friction material that can eliminate the drawbacks of conventional friction materials mainly made of asbestos, such as a rapid decrease in the coefficient of friction at high temperatures (fade phenomenon) and an increase in the coefficient of friction. Another objective is to provide a friction material with improved mechanical strength (for example, rotational fracture strength in clutch facings) at high temperatures. Another objective is to provide a friction material that is superior to conventional friction materials that mainly contain asbestos, even when asbestos, which is currently becoming a problem in terms of occupational health and hygiene, is not used. In recent years, as vehicles have become larger and faster, and their operating conditions have become more severe, the performance required of brake linings, disk pads, clutch facings, etc. has become increasingly sophisticated. In other words, it is not only necessary to have a high friction coefficient during sliding, but also to have a stable value in response to changes in the temperature, speed, pressure, etc. of the sliding surface, and also to have a long life and a high friction coefficient. Many performance requirements are required, including no abnormal noise during operation and good heat resistance. Currently, asbestos is mainly used as the fiber component that makes up friction materials, but friction materials made mainly of asbestos suffer from a rapid drop in the coefficient of friction at high temperatures (fade phenomenon) and an increase in the coefficient of friction. This is a major drawback, and it is becoming impossible to meet the high-level demands mentioned above. Various proposals have been made to compensate for these drawbacks of friction materials manufactured mainly from asbestos, and for example, it is known to use a certain type of aromatic polyamide fiber as a fiber component constituting the friction material. . For example, JP-A-53-
Publication No. 130742 discloses the use of polymetaphenylene isophthalamide fibers together with glass fibers, and we have also disclosed in Japanese Patent Application Laid-open No. 125239/1989, "Friction material based on fibrous material". The constituent fibers include aromatic polyamide fibers and pulp-like particles made of a heat-resistant polymer as a binder,
Furthermore, after adding a friction performance improver and making paper as a base material and impregnating it with phenolic resin,
Friction material molded by heating and pressurizing. '' and disclosed fibers made of polymetaphenylene isophthalamide and polyparaphenylene terephthalamide as examples of aromatic polyamide fibers. Moreover, as pulp-like particles made of a heat-resistant high molecular weight polymer, pulp-like particles made of polymetaphenylene isophthalamide have been disclosed. However, the above-mentioned Japanese Patent Application Laid-Open No. 53-130742 and
Although the friction material described in Publication No. 54-125239 has excellent friction properties and wear resistance at high temperatures, its mechanical strength at high temperatures (for example, rotational fracture strength in clutch facings) is still insufficient. However, there was a drawback that the degree of deterioration was large with use. In order to develop a friction material that maintains excellent friction properties and friction resistance at high temperatures and has improved mechanical strength at high temperatures, we continued to study aromatic polyamides (1 ) A pulp-like material obtained from an aromatic polyamide having a specific structural unit has superior chemical resistance such as alkali resistance and acid resistance compared to polymetaphenylene isophthalamide and polyparaphenylene terephthalamide; (2)Friction materials made by blending pulp-like substances with excellent chemical resistance obtained from aromatic polyamides having the above-mentioned specific structural units not only have excellent friction properties and wear resistance at high temperatures. about,
They discovered that it also has excellent mechanical strength and completed the present invention. That is, the present invention provides a copolymer selected from the group consisting of aromatic polyether amide, aromatic polysulfamide amide, aromatic polysulfonamide, aromatic polymethylene amide, aromatic polyamine amide, and copolymers thereof. pulpy substance,
It is a friction material made of one kind or a combination of two or more kinds. Polymer The pulp-like material used in the present invention is obtained from a polymer mainly composed of repeating units represented by the following formulas (1) to (4). Ar 1 , Ar 2 , and Ar 3 in formulas (1), ( 2 ), and ( 3 ) may be the same or different, and are aromatic carbocyclic residues in which bond chains extend in the same or parallel axes. represents groups, aromatic heterocyclic residues which must be bonded by the ring atoms representing the maximum spacing, and combinations thereof. Aromatic carbocyclic residues in which bond chains extend coaxially include, for example, 1,4-phenylene, 1,4-
Naphthylene, etc., and aromatic carbocyclic residues with bond chains extending in the parallel axis direction are, for example, 1,5
- Naphthylene, 2,6-naphthylene, etc. In addition, aromatic heterocyclic residues bonded by ring atoms representing the maximum spacing are, for example, 2,5-
Pyridylene,

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 などを挙げるこずができる。 曎に、結合鎖が同軞方向又は平行軞方向に䌞び
おいる芳銙族性炭玠環残基ず最倧間隔を衚わす環
原子によ぀お結合しなければならない芳銙族性耇
玠環残基ずの組合わせずは䟋えば、4′−ビフ
゚ニレン、
[Formula] etc. Furthermore, what is the combination of an aromatic carbocyclic residue whose bonding chain extends in the coaxial direction or in the parallel axis direction and an aromatic heterocyclic residue which must be bonded by the ring atoms representing the maximum spacing? For example, 4,4'-biphenylene,

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

などを挙げるこずができる。 該芳銙族性残基は−−−CH−−
CHCH−−≡−からなる矀より遞ばれる
基によ぀お互いに結合しおいおも良く、䟋えば、
etc. can be mentioned. The aromatic residue is -N=N-, -N=CH-, -
They may be bonded to each other by a group selected from the group consisting of CH=CH-, -C≡C-, for example,

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 などを含む。 又、匏(1)〜(4)䞭のR1R2R3R4R5は同䞀
でも盞異぀おもよく、炭玠数以䞋のアルキル基
及び氎玠原子を衚わす。 炭玠数以䞋のアルキル基ずしおはメチル基、
゚チル基、プロピル基、ブチル基、ペンチル基な
どが挙げられるが、奜たしくはメチル基である。 匏(4)䞭のAr4Ar5は同䞀でも盞異぀おもよく、
パラプニレン基、メタプニレン基より遞ばれ
る。匏(4)䞭のは䟡の基であ぀お、−−−
−−SO2−
[Formula] etc. Furthermore, R 1 , R 2 , R 3 , R 4 , and R 5 in formulas (1) to (4) may be the same or different, and represent an alkyl group having 5 or less carbon atoms and a hydrogen atom. As the alkyl group having 5 or less carbon atoms, a methyl group,
Examples include ethyl group, propyl group, butyl group, pentyl group, etc., but methyl group is preferable. Ar 4 and Ar 5 in formula (4) may be the same or different,
Selected from paraphenylene group and metaphenylene group. Y in formula (4) is a divalent group, -O-, -S
−, −SO 2 −,

【匏】【formula】 【匏】【formula】

【匏】から遞ば れる基である。R6R7R8は前蚘R1〜R5ず同じ
であり、奜たしくは氎玠原子及びメチル基であ
る。ずしお奜たしくは−−−−
A group selected from [Formula]. R 6 , R 7 and R 8 are the same as R 1 to R 5 above, and are preferably a hydrogen atom or a methyl group. Y is preferably -O-, -S-,

【匏】【formula】

【匏】−CH2− であり、最も奜たしくは−−である。 以䞊の芳銙族性炭玠環残基及び芳銙族性耇玠環
残基には炭玠原子に眮換基を結合しおいおも良
い。䟋えばハロゲン基䟋えば塩玠、臭玠、フツ
玠、䜎玚アルキル基䟋えばメチル、゚チル基、
む゜プロピル基、ノルマルプロピル基、䜎玚ア
ルコキシ基䟋えばメトキシ基、゚トキシ基、
シアノ基、アセチル基、ニトロ基等が挙げられ、
就䞭、塩玠基及びメチル基が奜たしい。 尚、本発明で甚いる繊維は䞻ずしお前蚘匏(1)〜
(4)によ぀お衚わされる繰返し単䜍よりなる重合䜓
より䜜るが、これら繰返し単䜍のモル数の関数
は、実質的に(1)(4)(2)であり、(1)(2)(3)(4
)
100モルずするずき、(3)〜90、か぀(4)
50〜モルである。奜たしくは(4)30〜10モル
である。 前蚘重合䜓は前蚘(1)〜(4)で衚わされる繰返し単
䜍に察応するゞアミン、ゞカルボン酞誘導䜓、ア
ミノカルボン酞誘導䜓を所定の割合で反応させる
こずによ぀お埗られる。ゞカルボン酞誘導䜓ずし
おは、ゞカルボン酞ハラむド、特にゞカルボン酞
クロラむドを甚いるのが奜たしい。たたアミノカ
ルボン酞ずしおはアミノカルボン酞ハロラむドハ
むドロハラむド塩、䟋えばアミノカルボン酞クロ
ラむド塩酞塩を甚いるのが奜たしい。これらの単
量䜓から、䟋えば溶融重合法、固盞重合法、界面
重合法、溶液重合法等公知の重合方法で重合する
こずにより重合䜓を埗るこずができる。䞭でも溶
液重合法が奜たしい。 重合䜓の補造に際し、重合前、重合途䞭、重合
埌に各皮の添加剀を添加するこずができる。 添加剀ずしおは、重合反応により副生するハむ
ドロハラむドを䞭和するために及び又は重合䜓
の溶解を容易にするための無機化合物、䟋えば塩
化リチりム、炭酞リチりム、酞化カルシりム、氎
酞化カルシりム、塩化カルシりム、炭酞カルシり
ムなどが挙げられる。 曎に必芁に応じお末端停止剀、光安定剀、架橋
剀などを添加するこずができる。 パルプ状物質 本発明に蚀うパルプ状物質は、前蚘重合䜓より
補造された熱延䌞繊維を〜10mm、奜たしくは
〜mmに切断埌、䟋えばデむスクリフアむナヌ、
ビヌタヌ等を甚いお叩解及び又は剪断䜜甚を䞎
えるこずにより埗られるフむブリル化繊維及び䟋
えば特公昭35−11851号公報や特公昭37−5732号
公報に蚘茉されおいるように、重合䜓を溶媒に溶
かした溶液を高速撹拌しおいる沈殿剀䞭に導入
し、埮现な粒子ずしお沈殿せしめるこずにより埗
られるいわゆるフむブリツドである。 これらパルプ状物質は互いにあるいは他の粒子
ず機械的にも぀れあうこずのできる倚数の觊手状
突起を有しおいる為に、摩擊材䞭の他の組成物ず
パルプ状物質ずの界面においおは党くすべり珟象
を生じず、理想的な補匷効果を埗るこずができる
のである。 いわゆるフむブリツドず称するパルプ状物質を
甚いた堎合でも、本発明の目的ずする摩擊材を埗
るこずができるのはもちろんであるが、パルプ状
物質ずしお前蚘フむブリル化繊維を甚いるのがよ
り奜たしい結果を䞎える。曎にフむブリツドず称
するパルプ状物質ずフむブリル化繊維ず同時に混
合しお䜿甚するこずもできる。 摩擊材䞭に占めるパルプ状物質の量は摩擊材の
機械的性質、摩擊性胜等を発珟するうえで重芁な
芁玠であり、〜70重量、奜たしくは10〜50重
量である。 前蚘フむブリル化繊維を䜜るために甚いる原料
繊維の補造及び原料繊維の性質に぀いお次に説明
する。 本発明においお䜿甚するフむブリル化繊維を䜜
るために甚いる原料繊維は、前蚘重合䜓を溶解せ
しめた溶液を脱泡、過埌、氎性凝固液䞭に玡出
し、掗浄、也燥、熱延䌞を行うこずによ぀お埗ら
れる。重合䜓の溶媒ずしおは、テトラメチル尿
玠、ヘキサメチルホスホルアミド、−ゞメ
チルアセトアミド−メチル−−ピロリド
ン−ゞメチルホルムアミドなどの非プロ
トン系アミド系極性溶媒が奜たしい。 重合䜓溶液の玡出は、凝固液䞭で行぀おもよい
し、あるいは、䞀床気䜓䞭に玡出させその埌凝固
液䞭に導びく方法、すなわち、ドラむゞ゚ツト湿
匏玡糞法で行な぀おも良いが、ドラむゞ゚ツト湿
匏玡糞法が奜たしく甚いられる。 たた、熱延䌞は250℃以䞊600℃以䞋の枩床にお
いお倍以䞊の延䌞倍率で行うこずが奜たしい。 高匷力で高モゞナラスのKevlar に代衚され
る盎線配䜍性芳銙族ポリアミドは、玡糞した埌也
燥し、熱凊理を斜すこずなく、そのたゝ摩擊材甚
ずしお䜿甚されたり、たた、玡糞、也燥の埌、䟋
えば200℃以䞊䞀般には300℃以䞊の枩床で緊匵䞋
あるいは匛緩状態で熱凊理するこずによ぀おさら
に匷力、モゞナラスを向䞊させた埌摩擊材ずしお
䜿甚されるこずもある。 しかしながら、盎線配䜍性芳銙族ポリアミド繊
維の耐薬品性は、本発明に甚いる特定構造を有す
る芳銙族ポリアミドからなる繊維の耐薬品性より
も劣る。 䟋えばポリパラプニレンテレフタルアミドの
ような盎線配䜍性芳銙族ポリアミドからなる繊維
は200℃以䞊の枩床においお匛緩熱凊理あるいは
延䌞倍率1.5倍以䞋の緊匵熱凊理しかできないの
に察しお、本発明に甚いる特定構造を有する芳銙
族ポリアミドからなる繊維は200℃以䞊の枩床に
おいお倍以䞊、奜たしくは倍以䞊に熱延䌞さ
れ、高い匷床ず高いモゞナラスを発珟するずずも
に、高い耐薬品性を瀺すようになる。 䟋えば10重量のカセむ゜ヌダ氎溶液に95℃で
10時間浞挬した堎合の匷力保持率を比范するず、
盎線配䜍性芳銙族ポリアミドであるポリパラプ
ニレンテレフタルアミド繊維Kevlar−29 
は玄20であり、それをさらに緊匵熱凊理したず
ころの繊維Kevlar−49 は玄60であるの
に察しお本発明に甚いる繊維の匷力保持率は95
以䞊であり、非垞に優れおいる。 又、20重量の硫酞氎溶液に95℃で20時間浞挬
した堎合の匷力保持率はそれぞれ次のずおりであ
぀た。 Kevlar−29 15 Kevlar−49 50 本発明で䜿甚する繊維 97 本発明に甚いられる繊維のこのような優れた耐
薬品性は、該繊維を構成する重合䜓の組成ず200
℃以䞊の枩床で倍以䞊に熱延䌞するこずにより
発珟される。 䞀方、摩擊材䟋えば自動車のデむスクブレヌキ
のデむスクパツドは補匷甚の裏金ず接着しお䜿わ
れるが、デむスクパツドず補匷甚裏金ずの接着面
から発生する錆によ぀おデむスクパツドが裏金か
らはく離するずいう問題を防止する為に、デむス
クパツドは、ある皋床アルカリ性を瀺すようにそ
の組成が遞ばれるこずがある。 又、湿匏抄玙法により玙状物を䜜り、この玙状
物を加工しお䟋えばクラツチプヌシング甚摩擊
材を補造する方法も知られおいるが、この堎合、
充おん材、摩擊性胜調敎剀等が抄玙党網から挏掩
するのを少くする為に定着剀ずしお硫酞バンドを
䜿甚するこずが倚い。この堎合にはクラツチプ
シング甚摩擊材は酞性を瀺すようになる堎合があ
る。埓぀お、摩擊材を構成するフむブリル化繊維
ずしお耐アルカリ性、耐酞性等の耐薬品性に優れ
た本発明のフむブリル化繊維を䜿甚する事は非垞
に倧きな意味を持぀事になり、特に高枩時におけ
る機械的性質の優れた摩擊材を埗るこずができる
のである。 本発明に䜿甚する前蚘原料繊維の単糞繊床は
0.5〜15デニヌル、奜たしくは〜10デニヌルで
ある。 本発明の摩擊材の補造に際しお、パルプ状物質
ず他の繊維ずを必芁に応じお混合しお䜿甚するこ
ずもできる。この堎合、他の繊維ずしお、石綿、
ガラス繊維、セラミツク繊維シリカ繊維、アル
ミナ繊維、チタン酞カリりム繊維、酞化チタン繊
維、ボヌキサむト繊維、カダナむト繊維、ホり玠
系繊維、マグネシア繊維、ロツクりヌル、鉱滓
綿、金属繊維、石こう繊維、ドヌ゜ナむト繊維等
の無機質繊維朚綿、矊毛、麻、レヌペン、芳銙
族ポリアミド繊維、炭玠繊維、プノヌル繊維等
の非溶融性有機繊維が挙げられる。 これら他の繊維のうち、石綿は劎働環境衛生䞊
からは䜿甚しない方が奜たしいが、特に高枩時に
おける摩擊特性、機械的性質を損わない範囲内で
䜿甚するこずは差し支えない。 本発明に䜿甚するパルプ状物質ず他の繊維ずを
混合䜿甚する堎合の混合割合は、摩擊材の甚途、
芁求特性によ぀お遞定されるべきである。 摩擊材の補造 本発明の摩擊材の補造に際しおは、公知の方法
を採甚するこずができる。 䟋えば、繊維成分、摩擊性胜調敎剀及び熱硬化
性暹脂を充分混合したものを仮成型し所定の金型
に入れ、50Kgcm2以䞊、奜たしくは100Kgcm2以
䞊の圧力で成型枩床130〜290℃、奜たしくは170
〜250℃で成型する。成型したものは冷华したの
ち研磚機にかけお仕䞊げする。たた成型した埌、
金型からずり出した状態で熱硬化性暹脂の硬化反
応を完了させるなどの目的で熱凊理しおもよい。 たた特にクラツチプヌシングを補造する際に
は、パルプ状物質ず摩擊性胜調敎剀を氎に均䞀に
混合分散した埌、順に抄玙、熱硬化性暹脂の含
浞、予備也燥、加圧加熱成型、クランクプレス等
による打抜き等の工皋を経お補造する方法もあ
る。 本発明の摩擊材補造に際しお䜿甚する摩擊性胜
調敎剀ずしおは、次のようなものが挙げられる。 アルミナ、シリカ、タルク、カオリン、雲母、
酞化クロム、酞化マグネシりム、酞化チタン等の
金属酞化物銅又は銅合金、亜鉛、鉄、アルミニ
りム等の金属硫酞バリりム、生石灰、リン酞カ
ルシりム、北化カルシりム、カヌボランダム等の
無機化合物粘土、瞁柱石、ムラむト、クロム鉄
鉱等の鉱物陶磁噚粉末など砥粒的摩擊性胜調敎
剀やフリクシペンダストず蚀われおいる硬化した
暹脂の粒子ゎムの粉末カヌボンブラツク黒
鉛等の非砥粒的摩擊性胜調敎剀が䜿甚できる。
又、本発明の摩擊材の補造に際しお䜿甚する熱硬
化性暹脂ずしおはプノヌル系、メラミン系、尿
玠系、゚ポキシ系、ポリむミド系等が挙げられる
が、プノヌル暹脂系が倚く甚いられる。 プノヌル暹脂の堎合、ノボラツク圢プノヌ
ル暹脂、レゟヌル圢プノヌル暹脂及び倉性プ
ノヌル暹脂、䟋えばメラミン倉性プノヌル暹
脂、クレゟヌル倉性プノヌル暹脂、カシナヌ倉
性プノヌル暹脂等で、液䜓又は固䜓状の物が利
甚できる。 次に、本発明の摩擊材を補造するに圓り、パル
プ状物質、摩擊性胜調敎剀及び熱硬化性暹脂の配
合割合に぀いお述べる。 党配合剀䞭に占めるパルプ状物質の割合は〜
70重量であり、奜たしくは10〜50重量であ
る。 同様に摩擊性胜調敎剀の総和は〜40重量で
あり、奜たしくは〜20重量である。 又、熱硬化性暹脂は10〜40重量であり、奜た
しくは15〜35重量である。 以䞋実斜䟋により本発明を詳述する。 尚、郚たたはは特に断らない限り、重量基準
である。 実斜䟋  パラプニレンゞアミン25mol、4′−ゞ
アミノゞプニル゚ヌテル25mol、テレフタル
酞クロラむド50molを甚いお、−メチル−
−ピロリドン䞭で重合した埌、氎酞化カルシりム
で䞭和し、芳銙族ポリ゚ヌテルアミドの濃床が
の玡糞甚溶液を埗た。この溶液を孔埄0.2mm、
孔数000の玡糞甚ノズルから䞀旊空気䞭に抌
し出し、玄cmの空気局を通過せしめた埌、氎性
凝固液䞭に導き、匕き続き氎掗济䞭で充分に掗浄
した埌、也燥ロヌラで也燥した。也燥した繊維は
510℃の熱板䞊で11.0倍に延䌞し、油剀を぀けお
巻き取り、単糞繊床1.5デニヌル、匕匵匷床430
Kgmm2、初期モゞナラス7.5×103Kgmm2の繊維を
埗た。 かくしお埗た繊維をmmの長さに切断し、1.0
の濃床になるように氎に分散した。この芳銙族
ポリ゚ヌテルアミド繊維を含む氎分散液をデむス
クリフアむナヌ熊谷理機工業補に回繰返し
お通し、前蚘繊維をフむブリル化させおパルプ状
物質を埗た。次いで前蚘パルプ状物質を過・也
燥し摩擊材補造に䟛した。 摩擊材の補造は䞋蚘により実斜した。 (1) 䞊蚘芳銙族ポリ゚ヌテルアミドパルプ状物質
30郚 (2) ガラス繊維盎埄10Ό、長さmm 10郚 (3) プノヌル暹脂 20郚 (4) カシナヌ粉末 15郚 (5) 硫酞バリりム 10郚 (6) 黄銅粉末 郚 (7) 粉末無機質充おん材 10郚 前蚘(1)〜(7)を氎に分散し、均䞀混合した埌
過・也燥しお埗た混合物を予備成型し、次いで金
型に入れ、170℃、250Kgcm2、分間の条件で圧
瞮成型した埌、曎に190℃の熱颚炉䞭で時間熱
凊理し、プノヌル暹脂の硬化反応を完党なもの
ずした。金型から取り出し冷华埌研磚しお埗た摩
擊材の性胜は第衚のずおりであり、いずれも良
奜であ぀た。
[Formula] -CH 2 -, most preferably -O-. A substituent may be bonded to the carbon atom of the above aromatic carbocyclic residue and aromatic heterocyclic residue. For example, halogen groups (e.g. chlorine, bromine, fluorine), lower alkyl groups (e.g. methyl, ethyl,
isopropyl group, normal propyl group), lower alkoxy group (e.g. methoxy group, ethoxy group),
Examples include cyano group, acetyl group, nitro group, etc.
Among these, chlorine and methyl groups are preferred. Incidentally, the fibers used in the present invention mainly have the above formulas (1) to
It is made from a polymer consisting of repeating units represented by (4), and the function of the number of moles of these repeating units is essentially (1) + (4) = (2), and (1) + ( 2)+(3)+(4
)
= 100 mol%, (3) = 0 to 90, and (4) =
It is 50 to 5 mol%. Preferably (4) is 30 to 10 mol%. The polymer can be obtained by reacting diamines, dicarboxylic acid derivatives, and aminocarboxylic acid derivatives corresponding to the repeating units represented by (1) to (4) above in a predetermined ratio. As the dicarboxylic acid derivative, it is preferable to use a dicarboxylic acid halide, particularly a dicarboxylic acid chloride. As the aminocarboxylic acid, it is preferable to use an aminocarboxylic acid halide hydrohalide salt, for example, aminocarboxylic acid chloride hydrochloride. Polymers can be obtained from these monomers by polymerization using known polymerization methods such as melt polymerization, solid phase polymerization, interfacial polymerization, and solution polymerization. Among these, solution polymerization is preferred. When producing a polymer, various additives can be added before, during, or after polymerization. Examples of additives include inorganic compounds such as lithium chloride, lithium carbonate, calcium oxide, calcium hydroxide, and chloride to neutralize hydrohalides produced as by-products of the polymerization reaction and/or to facilitate dissolution of the polymer. Examples include calcium and calcium carbonate. Furthermore, a terminal stopper, a light stabilizer, a crosslinking agent, etc. can be added as necessary. Pulp-like material The pulp-like material referred to in the present invention is a 1 to 10 mm, preferably 2 mm, hot drawn fiber produced from the above polymer.
After cutting to ~8mm, e.g. Disccliff Einer,
Fibrillated fibers obtained by beating and/or shearing with a beater etc. and polymers in a solvent as described in Japanese Patent Publication No. 35-11851 and Japanese Patent Publication No. 37-5732, These are so-called fibrids obtained by introducing a dissolved solution into a precipitant that is being stirred at high speed and causing it to precipitate as fine particles. These pulpy substances have numerous tentacle-like protrusions that can mechanically entangle with each other or with other particles, so there is no slippage at the interface between the pulpy substance and other components in the friction material. This makes it possible to obtain an ideal reinforcing effect without causing any phenomena. Although it is possible to obtain the objective friction material of the present invention even when a pulp-like substance called so-called fibrillated material is used, it is preferable to use the fibrillated fibers as the pulp-like substance to give more preferable results. . Furthermore, a pulp-like substance called fibrid and fibrillated fibers can be mixed together for use. The amount of pulp-like material in the friction material is an important factor in developing the mechanical properties, friction performance, etc. of the friction material, and is 5 to 70% by weight, preferably 10 to 50% by weight. The production of the raw material fibers used to make the fibrillated fibers and the properties of the raw material fibers will be explained next. The raw material fibers used to make the fibrillated fibers used in the present invention are obtained by defoaming and filtering a solution in which the above-mentioned polymer is dissolved, then spinning it into an aqueous coagulation solution, washing, drying, and hot stretching. You can get it. As the solvent for the polymer, aprotic amide polar solvents such as tetramethylurea, hexamethylphosphoramide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and N,N-dimethylformamide are preferred. The spinning of the polymer solution may be carried out in a coagulating liquid, or it may be carried out by a dry jet wet spinning method, in which the polymer solution is first spun into a gas and then introduced into a coagulating liquid. A dry jet wet spinning method is preferably used. Further, the hot stretching is preferably carried out at a temperature of 250° C. or higher and 600° C. or lower at a stretching ratio of 2 times or more. Linear aromatic polyamides, such as Kevlar, which has high strength and high modulus, are dried after spinning and used as friction materials without heat treatment, or after spinning and drying. For example, it may be used as a friction material after being heat-treated at a temperature of 200°C or higher, generally 300°C or higher, under tension or in a relaxed state to improve its strength and modulus. However, the chemical resistance of linearly coordinated aromatic polyamide fibers is inferior to that of fibers made of aromatic polyamide having a specific structure used in the present invention. For example, fibers made of linearly coordinated aromatic polyamides such as polyparaphenylene terephthalamide can only be subjected to relaxation heat treatment at a temperature of 200°C or higher or tension heat treatment at a draw ratio of 1.5 times or less. Fibers made of aromatic polyamide having a structure are hot-stretched at a temperature of 200° C. or higher by a factor of 2 times or more, preferably 5 times or more, and exhibit high strength and modulus as well as high chemical resistance. For example, in a 10% by weight aqueous solution of caustic soda at 95°C.
Comparing the strength retention rate when soaked for 10 hours,
Polyparaphenylene terephthalamide fiber (Kevlar-29), a linear aromatic polyamide
The strength retention rate of the fiber used in the present invention is 95%, whereas the strength retention rate of the fiber used in the present invention is about 20%, and the strength retention rate of the fiber used in the present invention is about 60% when the fiber (Kevlar-49) is further subjected to tension heat treatment.
That's all, and it's very good. In addition, the strength retention rates when immersed in a 20% by weight aqueous sulfuric acid solution at 95°C for 20 hours were as follows. Kevlar-29 15% Kevlar-49 50% Fiber used in the present invention 97% The excellent chemical resistance of the fiber used in the present invention is due to the composition of the polymer constituting the fiber and the 200%
It is developed by hot stretching to double or more at a temperature of ℃ or higher. On the other hand, friction materials such as the disc pads of automobile disc brakes are used by adhering them to a reinforcing back metal, but this prevents the problem of the disc pad peeling off from the back metal due to rust generated from the adhesive surface between the disc pad and the reinforcing back metal. In order to achieve this, the composition of the disk pad is sometimes chosen to exhibit some degree of alkalinity. There is also a known method of producing a paper-like material using a wet papermaking method and processing this paper-like material to produce, for example, a friction material for clutch facings, but in this case,
Sulfate band is often used as a fixing agent in order to reduce the leakage of fillers, friction performance modifiers, etc. from the entire paper mesh. In this case, the clutch facing friction material may become acidic. Therefore, it is of great significance to use the fibrillated fiber of the present invention, which has excellent chemical resistance such as alkali resistance and acid resistance, as the fibrillated fiber constituting the friction material, especially at high temperatures. A friction material with excellent mechanical properties can be obtained. The single yarn fineness of the raw material fiber used in the present invention is
It is 0.5 to 15 denier, preferably 1 to 10 denier. When producing the friction material of the present invention, a pulp-like substance and other fibers may be mixed and used as necessary. In this case, other fibers include asbestos,
Inorganic materials such as glass fiber, ceramic fiber, silica fiber, alumina fiber, potassium titanate fiber, titanium oxide fiber, bauxite fiber, kyanite fiber, boron-based fiber, magnesia fiber, rock wool, mineral wool, metal fiber, gypsum fiber, dawsonite fiber, etc. Fibers include non-melting organic fibers such as cotton, wool, hemp, rayon, aromatic polyamide fibers, carbon fibers, and phenol fibers. Among these other fibers, it is preferable not to use asbestos from the viewpoint of occupational hygiene, but it may be used as long as it does not impair the frictional properties and mechanical properties, especially at high temperatures. When mixing the pulp-like substance used in the present invention with other fibers, the mixing ratio should be determined depending on the application of the friction material,
It should be selected according to the required characteristics. Manufacture of Friction Material When manufacturing the friction material of the present invention, known methods can be employed. For example, a mixture of a fiber component, a friction performance modifier, and a thermosetting resin is pre-molded, placed in a predetermined mold, and molded at a pressure of 50 kg/cm 2 or higher, preferably 100 kg/cm 2 or higher, at a molding temperature of 130 to 100 kg/cm 2 . 290℃, preferably 170
Mold at ~250℃. After the molded product is cooled, it is finished using a polishing machine. After molding again,
Heat treatment may be performed for the purpose of completing the curing reaction of the thermosetting resin in the state taken out from the mold. In particular, when manufacturing clutch facings, after uniformly mixing and dispersing the pulp-like material and friction performance modifier in water, the process is followed by paper making, impregnation with thermosetting resin, pre-drying, pressure and heat molding, and crank press. There is also a method of manufacturing through a process such as punching. Examples of the friction performance modifier used in producing the friction material of the present invention include the following. Alumina, silica, talc, kaolin, mica,
Metal oxides such as chromium oxide, magnesium oxide, and titanium oxide; Metals such as copper or copper alloys, zinc, iron, and aluminum; Inorganic compounds such as barium sulfate, quicklime, calcium phosphate, calcium fluoride, and carborundum; Clay, curbstone Minerals such as , mullite, and chromite; abrasive friction performance modifiers such as ceramic powder and hardened resin particles called friction dust; non-abrasive friction performance modifiers such as rubber powder; carbon black; graphite, etc. Conditioners can be used.
Further, thermosetting resins used in the production of the friction material of the present invention include phenolic, melamine, urea, epoxy, and polyimide resins, and phenolic resins are often used. In the case of phenolic resins, liquid or solid products such as novolac type phenolic resins, resol type phenolic resins, and modified phenolic resins such as melamine-modified phenolic resins, cresol-modified phenolic resins, and cashew-modified phenolic resins can be used. Next, in manufacturing the friction material of the present invention, the blending ratios of the pulp-like material, friction performance modifier, and thermosetting resin will be described. The proportion of pulp-like substances in the total formulation is 5 to 5.
70% by weight, preferably 10-50% by weight. Similarly, the total amount of frictional performance modifiers is 1 to 40% by weight, preferably 5 to 20% by weight. Further, the amount of the thermosetting resin is 10 to 40% by weight, preferably 15 to 35% by weight. The present invention will be explained in detail with reference to Examples below. Incidentally, unless otherwise specified, parts or percentages are based on weight. Example 1 N-methyl-2
- Polymerization in pyrrolidone followed by neutralization with calcium hydroxide until the concentration of aromatic polyetheramide is 6
% spinning solution was obtained. This solution has a pore size of 0.2 mm.
It was once extruded into the air through a spinning nozzle with 1,000 holes, passed through an air layer of about 2 cm, and then introduced into an aqueous coagulation solution. After thoroughly washing in a water washing bath, it was dried with a drying roller. . The dried fibers
Stretched 11.0 times on a hot plate at 510℃, coated with oil and wound, single yarn fineness 1.5 denier, tensile strength 430
A fiber with an initial modulus of 7.5×10 3 Kg/mm 2 was obtained. The fiber thus obtained was cut into a length of 7 mm and 1.0
Dispersed in water to a concentration of %. This aqueous dispersion containing aromatic polyetheramide fibers was repeatedly passed through Disc Cliff Eye Iner (manufactured by Kumagai Riki Kogyo) five times to fibrillate the fibers to obtain a pulp-like material. Next, the pulp-like material was over-dried and used for manufacturing a friction material. The friction material was manufactured as follows. (1) The above aromatic polyether amide pulp material
30 parts (2) Glass fiber (diameter 10 Ό, length 5 mm) 10 parts (3) Phenol resin 20 parts (4) Cashew powder 15 parts (5) Barium sulfate 10 parts (6) Brass powder 5 parts (7) Powdered inorganic material Filling material 10 parts The above (1) to (7) were dispersed in water, mixed uniformly, filtered and dried, and the resulting mixture was preformed, then placed in a mold, and heated at 170°C, 250Kg/cm 2 , 5 After compression molding for 1 minute, heat treatment was performed in a hot air oven at 190°C for 5 hours to complete the curing reaction of the phenol resin. The performance of the friction material obtained by taking it out from the mold, cooling it, and polishing it is shown in Table 1, and all were good.

【衚】 第衚においお、曲げ匷さは摩擊材を200℃で
24時間熱劣化凊理した埌、宀枩迄冷华し、JIS
D4311に芏定されおいる方法で枬定したが、200
℃−24時間の熱劣化凊理を経おも6.7Kgmm2の曲
げ匷床を瀺し、機械的匷床は充分であ぀た。 比范䟋  実斜䟋においお、芳銙族ポリ゚ヌテルアミド
のパルブ状物質の代りにポリパラプニレンテレ
フタルアミド繊維du Pont瀟、Kevlar を䜿
甚する以倖は実斜䟋ず党く同様に実斜しお摩擊
材を埗た。 かくしお埗た摩擊材の摩擊係数及び摩耗率は実
斜䟋の堎合ずほずんど同じで良奜であ぀たが、
実斜䟋の堎合ず同様の方法で枬定した曲げ匷さ
は4.3Kgmm2ず劣぀おいた。 実斜䟋  パラプニレンゞアミン15mol、4′−ゞ
アミノゞプニル゚ヌテル15mol、クロルパラ
プニレンゞアミン20mol、テレフタル酞クロ
ラむド50molを甚いお、−メチル−−ピロ
リドン䞭で重合した埌、氎酞化カルシりムで䞭和
し、重合䜓の濃床がの玡糞甚溶液を埗た。 この溶液を甚いお、実斜䟋ず党く同様にしお
繊維を埗た。埗られた繊維は単糞繊床1.5デニヌ
ル、匕匵匷床395Kgmm2、初期モゞナラス9.7×
103Kgmm2であ぀た。 以降実斜䟋ず党く同様にしおパルプ状物質を
䜜り、曎に摩擊材を補造した。 埗られた摩擊材の性胜は実斜䟋の堎合ずほず
んど同じで良奜なものであ぀た。 実斜䟋  実斜䟋で埗た玡糞甚溶液に曎に−メチル−
−ピロリドンを加えお垌釈し、重合䜓濃床1.5
の溶液ずした。 䞀方、沈殿剀ずしお、−メチル−−ピロリ
ドンず氎ずを混合し、−メチル−−ピロリド
ンの濃床が20の沈殿剀を䜜぀た。 沈殿装眮ずしお、パツフルの぀いおいるステヌ
タヌずタヌビン翌型枚矜根ロヌタヌずの組み合
せからなり、か぀沈殿剀、重合䜓溶液の䟛絊口お
よび沈殿埌のパルプ状物質スラリヌの排出口を備
えた管路撹拌匏連続沈殿機を䜿い、前蚘重合䜓溶
液Kgmin、沈殿剀15Kgminの流量で同時に
䟛絊し、パルプ状物質スラリヌを排出口からずり
出した。 埗られたパルプ状物質スラリヌをヌツチ゚型
過機に入れ、過・掗浄し、芳銙族ポリ゚ヌテル
アミドの、いわゆるフむブリツドず称するパルプ
状物質を埗た。 このパルプ状物質を甚いお䞋蚘によりクラツチ
プヌシングを䜜成した。 (1) 前蚘パルプ状物質 20郚 (2) 実斜䟋で甚いた芳銙族ポリ゚ヌテルアミド
繊維1.5デニヌル、mm 10郚 (3) 共銅繊維 郚 (4) セラミツク繊維む゜ラむト工業補カオりヌ
ル  郚 (5) 粉末状無機質充おん材 10郚 (6) 硫酞バンド 郚 䞊蚘(1)〜(6)を0.3の濃床になるように氎に分
散した埌、長網抄玙機で抄玙・也燥し、䞊蚘(1)〜
(6)からなるシヌト状物を埗た。 該シヌト状物50郚にプノヌル暹脂20郚ず硫酞
バリりム30郚ずの混合物を含浞し、也燥機で枩床
110℃で也燥した。 次いでこれをスリツタヌで幅20mmのテヌプ状に
切断し、うず巻状に巻いた埌、金型に入れお枩床
160℃、圧力200Kgcm2、時間分間プレスしお取
出し、曎に190℃で60分間加熱埌、研磚しおクラ
ツチプヌシングを埗た。 かくしお埗たクラツチプヌシングの性胜は第
衚のずおりであり、いずれも優れたものであ぀
た。
[Table] In Table 1, the bending strength of the friction material at 200℃ is
After heat deterioration treatment for 24 hours, cool to room temperature and JIS
Although measured using the method specified in D4311, 200
Even after heat deterioration treatment at -24 hours, it exhibited a bending strength of 6.7 Kg/mm 2 and had sufficient mechanical strength. Comparative Example 1 A friction test was carried out in exactly the same manner as in Example 1, except that polyparaphenylene terephthalamide fibers (du Pont, Kevlar) were used instead of the aromatic polyetheramide pulp material. I got the material. The friction coefficient and wear rate of the friction material thus obtained were almost the same as in Example 1, and were good.
The bending strength measured in the same manner as in Example 1 was 4.3 Kg/mm 2 , which was poor. Example 2 Polymerization was carried out in N-methyl-2-pyrrolidone using 15 mol% of paraphenylene diamine, 15 mol% of 3,4'-diaminodiphenyl ether, 20 mol% of chlorparaphenylene diamine, and 50 mol% of terephthalic acid chloride. Thereafter, the solution was neutralized with calcium hydroxide to obtain a spinning solution with a polymer concentration of 6%. Using this solution, fibers were obtained in exactly the same manner as in Example 1. The obtained fiber had a single yarn fineness of 1.5 denier, a tensile strength of 395 Kg/mm 2 , and an initial modulus of 9.7×
It was 103 Kg/ mm2 . Thereafter, a pulp-like substance was produced in exactly the same manner as in Example 1, and a friction material was further produced. The performance of the obtained friction material was almost the same as that of Example 1 and was good. Example 3 N-methyl- was added to the spinning solution obtained in Example 1.
Dilute by adding 2-pyrrolidone to a polymer concentration of 1.5.
% solution. On the other hand, as a precipitant, N-methyl-2-pyrrolidone and water were mixed to prepare a precipitant having an N-methyl-2-pyrrolidone concentration of 20%. The precipitation device consists of a combination of a stator with a gusset and a two-blade rotor in the form of turbine blades, and is equipped with an inlet for the precipitant and polymer solution, and an outlet for the pulp-like substance slurry after precipitation. Using a type continuous precipitator, the polymer solution and precipitant were simultaneously supplied at a flow rate of 5 kg/min and 15 kg/min, and the pulp-like substance slurry was taken out from the outlet. The resulting slurry of pulp-like material was placed in a Nutstier-type filter and filtered and washed to obtain a pulp-like material called a so-called fibrid of aromatic polyetheramide. A clutch facing was created using this pulp material as described below. (1) 20 parts of the above pulp-like substance (2) 10 parts of the aromatic polyetheramide fiber (1.5 denier, 7 mm) used in Example 1 (3) 5 parts of co-copper fiber (4) Ceramic fiber (Kao Wool manufactured by Isolite Industries) ) 5 parts (5) Powdered inorganic filler 10 parts (6) Band sulfate 3 parts After dispersing the above (1) to (6) in water to a concentration of 0.3%, paper was made using a Fourdrinier paper machine. Dry and proceed with (1) above
A sheet-like product consisting of (6) was obtained. 50 parts of the sheet-like material was impregnated with a mixture of 20 parts of phenolic resin and 30 parts of barium sulfate, and the mixture was heated to
Dry at 110°C. Next, this was cut into a tape shape with a width of 20 mm using a slitter, wound into a spiral shape, and then placed in a mold and heated to a temperature.
It was pressed at 160° C. under a pressure of 200 kg/cm 2 for 6 minutes, taken out, heated at 190° C. for 60 minutes, and then polished to obtain a clutch facing. The performance of the clutch facings thus obtained is shown in Table 2, and all were excellent.

【衚】 尚、第衚においお摩擊係数及び摩耗率は
JISD4311に基づいお実斜した。 たた、回転砎壊匷床は倖埄200mm、内埄130mm、
厚さ3.5mmの詊料を200℃で24時間攟眮埌枩床200
℃の雰囲気で増速回転し、砎壊時の回転数を枬定
した。 比范䟋  実斜䟋においお、芳銙族ポリ゚ヌテルアミド
のパルプ状物質及び繊維の代りに、それぞれポリ
パラプニレンテレフタルアミドのパルプ状物質
du Pont瀟Kevlar を甚いお実斜䟋ず同様に
実斜しお埗た及び繊維を甚いる以倖は実斜䟋
ず同様にしおクラツチプヌシングを埗た。 埗られたクラツチプヌシングの回転砎壊匷床
実斜䟋ず同様の方法で枬定は、15000r.p.m
ず劣぀おいた。 比范䟋  実斜䟋においお芳銙族ポリ゚ヌテルアミドの
パルプ状物質及び繊維の代りに長繊維石綿を䜿甚
する以倖は、実斜䟋ず党く同様にしおクラツチ
プヌシングを埗た。 埗られたクラツチプヌシングの性胜実斜䟋
ず同じ方法で枬定したを第衚に瀺した。
[Table] In Table 2, the friction coefficient and wear rate are
Conducted based on JISD4311. In addition, the rotational breaking strength is 200 mm in outer diameter and 130 mm in inner diameter.
After leaving a 3.5mm thick sample at 200℃ for 24 hours, the temperature was 200℃.
It was rotated at increased speed in an atmosphere at ℃, and the number of rotations at the time of failure was measured. Comparative Example 2 In Example 3, the procedure was carried out in the same manner as in Example 1 except that the pulp-like material of polyparaphenylene terephthalamide (Kevlar from du Pont) was used in place of the pulp-like material of aromatic polyetheramide and the fibers, respectively. Example 3 except that the fibers were used
Clutch facing was obtained in the same manner. The rotational breaking strength of the obtained clutch facing (measured in the same manner as in Example 3) was 15000 rpm.
and was inferior. Comparative Example 3 A clutch facing was obtained in exactly the same manner as in Example 3, except that long-fiber asbestos was used instead of the aromatic polyetheramide pulp and fibers. The performance of the resulting clutch facings (measured in the same manner as in Example 3) is shown in Table 3.

【衚】 250℃における摩擊係数、200℃250℃におけ
る摩耗率及び回転砎壊匷床が満足すべき倀ではな
か぀た。
[Table] The friction coefficient at 250°C, wear rate at 200°C and 250°C, and rotational fracture strength were not satisfactory values.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明に係る党芳銙族ポリ゚ヌテルア
ミド共重合䜓の共重合組成を瀺す図である。
FIG. 1 is a diagram showing the copolymerization composition of the wholly aromatic polyetheramide copolymer according to the present invention.

Claims (1)

【特蚱請求の範囲】  芳銙族ポリ゚ヌテルアミドの共重合䜓からな
るパルプ状物質の䞀皮又は二皮以䞊を配合しおな
る摩擊材。  芳銙族ポリ゚ヌテルアミドが 䞀般匏 匏䞭、は同䞀でも異な぀おもよく、−
COXはハロゲン原子、−NH2−NH2HX
は前蚘に同じ、【匏】は炭玠数以䞋 のアルキル基、【匏】及びは前蚘 に同じから遞ばれる基である。 䞀般匏 匏䞭、は前蚘に同じ 䞀般匏 −Ar− 匏䞭、は前蚘に同じであり、Arは結合
鎖が共に同軞方向又は平行軞方向に䌞びおいる芳
銙族性炭玠環残基、最倧間隔を衚わす環原子によ
぀お結合されおいる芳銙族性耇玠環残基及びこれ
らの組合せを衚わす。 で衚わされる化合物の皮以䞊を、−COXは
前蚘に同じで衚わされる基の総モル数ず−
NH2−NH2HX【匏】【匏】 及びは前蚘に同じで衚わされる基の総モル数
ずが実質的に等しくなるように、䞔぀、 前蚘䞀般匏 は前蚘に同じ で衚わされる化合物が少くずも7.5モル含たれ
るようにしお反応させるこずを特城ずする、芳銙
族ポリ゚ヌテルアミド。 たたは、繰返し単䜍が実質的に䞋蚘䞀般匏 −NH−Ar1−NH−CO−Ar2−CO− 
(A) 及び又は −NH−Ar3−CO− 
(B) 匏䞭、Ar1Ar2Ar3は芳銙族性の炭玠環残基
であり、Ar1Ar2Ar3は同䞀でも異な぀おもよ
く、 から遞ばれる残基である。 匏䞭、は同䞀又は盞異なるハロゲン基、アル
キル基、アラルキル基、芳銙族基、アルコオキシ
基、アセチル基、シアノ基から遞ばれる皮又は
皮以䞊の基であり、は〜の敎数である。 Ar1Ar2Ar3はそれぞれ匏(a)及び又は(b)及
び又は匏(c)で衚わされ、Ar1Ar2及び又は
Ar3を合蚈した芳銙族残基のモル比で衚わされる
共重合割合が第図の䞉角図衚における点
及びを順次盎線で結んで埗られる四角圢
で囲たれる範囲斜線で瀺される範囲にある
からなり、少くずも1.5の固有粘床を有する芳銙
族ポリ゚ヌテルアミドであるパルプ状物質を配合
しおなる特蚱請求の範囲第項蚘茉の摩擊材。  パルプ状物質が、芳銙族ポリ゚ヌテルアミド
の熱延䌞繊維を切断埌叩解及び又は剪断䜜甚に
よりフむブリル化するこずによ぀お埗られるパル
プ状物質である特蚱請求の範囲第項又は第項
蚘茉の摩擊材。  パルプ状物質が、芳銙族ポリ゚ヌテルアミド
の溶液を高速撹拌されおいる沈殿剀䞭に導入し、
埮现な粒子ずしお沈殿せしめるこずによ぀お埗ら
れるパルプ状物質である特蚱請求の範囲第項又
は第項蚘茉の摩擊材。
[Scope of Claims] 1. A friction material comprising one or more pulp-like substances made of a copolymer of aromatic polyether amide. 2 Aromatic polyetheramide has the general formula [In the formula, A and B may be the same or different, -
COX (X is a halogen atom), -NH 2 , -NH 2 HX (X
is the same as above), [Formula] (R is an alkyl group having 5 or less carbon atoms), [Formula] (X and R are the same as above). ] General formula [In the formula, A and B are the same as above] General formula A-Ar-B [In the formula, A and B are the same as above, and Ar is an aromatic aromatic whose bonded chains both extend in the same or parallel axes. Represents family carbocyclic residues, aromatic heterocyclic residues connected by the ring atoms representing the largest spacing, and combinations thereof. ] One or more of the compounds represented by the total number of moles of the group represented by -COX (X is the same as above) and -
NH 2 , -NH 2 HX, [Formula] [Formula] (X and R are the same as above) so that the total number of moles of the group is substantially equal, and the general formula [A and B are the same as above] An aromatic polyether amide, characterized in that the reaction is carried out so that at least 7.5 mol% of the compound represented by the above is contained. Or, the repeating unit substantially has the following general formula [-NH-Ar 1 -NH-CO-Ar 2 -CO]-...(A) and/or [-NH-Ar 3 -CO]-...(B) [ In the formula, Ar 1 , Ar 2 and Ar 3 are aromatic carbocyclic residues, and Ar 1 , Ar 2 and Ar 3 may be the same or different, It is a residue selected from. In the formula, X is one or more groups selected from the same or different halogen groups, alkyl groups, aralkyl groups, aromatic groups, alkoxy groups, acetyl groups, and cyano groups, and n is 1 to 3 groups. is an integer. Ar 1 , Ar 2 and Ar 3 are each represented by formula (a) and/or (b) and/or formula (c), and Ar 1 , Ar 2 and/or
The copolymerization ratio expressed as the molar ratio of aromatic residues including Ar 3 is the point P in the triangular diagram in Figure 1,
It is in the range surrounded by a rectangle obtained by sequentially connecting Q, R, and S with straight lines (range indicated by diagonal lines)]
The friction material according to claim 1, further comprising a pulp-like material which is an aromatic polyetheramide having an intrinsic viscosity of at least 1.5. 3. Claims 1 or 2, wherein the pulp-like material is a pulp-like material obtained by cutting hot drawn fibers of aromatic polyetheramide and then fibrillating them by beating and/or shearing action. Friction material as described. 4. The pulp material introduces a solution of aromatic polyether amide into a precipitating agent that is being stirred at high speed;
The friction material according to claim 1 or 2, which is a pulp-like material obtained by precipitation as fine particles.
JP18277680A 1980-12-25 1980-12-25 MASATSUZAI Expired - Lifetime JPH0243787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18277680A JPH0243787B2 (en) 1980-12-25 1980-12-25 MASATSUZAI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18277680A JPH0243787B2 (en) 1980-12-25 1980-12-25 MASATSUZAI

Publications (2)

Publication Number Publication Date
JPS57108180A JPS57108180A (en) 1982-07-06
JPH0243787B2 true JPH0243787B2 (en) 1990-10-01

Family

ID=16124212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18277680A Expired - Lifetime JPH0243787B2 (en) 1980-12-25 1980-12-25 MASATSUZAI

Country Status (1)

Country Link
JP (1) JPH0243787B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221374A (en) * 1983-05-31 1984-12-12 Akebono Brake Ind Co Ltd Friction material
US4785029A (en) * 1985-07-09 1988-11-15 Toyota Jidosha Kabushiki Kaisha Friction material composition for brake lining
JPS62106133A (en) * 1985-10-31 1987-05-16 Aisin Chem Co Ltd Frictional material
JPH01269734A (en) * 1988-04-19 1989-10-27 Aisin Chem Co Ltd Wet friction material

Also Published As

Publication number Publication date
JPS57108180A (en) 1982-07-06

Similar Documents

Publication Publication Date Title
CA1197936A (en) Friction material
JP5221377B2 (en) Para-aramid pulp containing meta-aramid fibrids and method for producing the same
CA2567363C (en) Cellulosic and para-aramid pulp and processes of making same
US8444815B2 (en) Pulp comprising polypyridobisimidazole and other polymers and methods of making same
US5889082A (en) Method for manufacturing friction materials containing blends of organic fibrous and particulate components
JPH0243787B2 (en) MASATSUZAI
JP2007246590A (en) Friction material
JP2008503660A (en) Acrylic and para-aramid pulp and method for producing the same
JPH0241559B2 (en)
JPH0125926B2 (en)
JPH0148304B2 (en)
JPH023048B2 (en)
JP5221376B2 (en) Polyareneazole / thermosetting resin pulp and method for producing the same
EP0696691A1 (en) Dry friction material, dry blend and method of making a dry blend
JPH023049B2 (en)
KR100360363B1 (en) Friction materials containing blends of fibrous particulate organic components
JPH1054000A (en) Para-oriented aromatic polyamide paper and its production
JPH1036522A (en) Production of friction material
JPH03149284A (en) Friction material and its manufacture
JPS6214646B2 (en)
JPH1046431A (en) Production of pulpy thermoplastic liquid crystal resin