JPH01258832A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH01258832A
JPH01258832A JP63087676A JP8767688A JPH01258832A JP H01258832 A JPH01258832 A JP H01258832A JP 63087676 A JP63087676 A JP 63087676A JP 8767688 A JP8767688 A JP 8767688A JP H01258832 A JPH01258832 A JP H01258832A
Authority
JP
Japan
Prior art keywords
superconductor
oxide superconductor
powder
metal tube
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63087676A
Other languages
Japanese (ja)
Other versions
JP2653462B2 (en
Inventor
Minoru Yamada
穣 山田
Akira Murase
村瀬 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63087676A priority Critical patent/JP2653462B2/en
Publication of JPH01258832A publication Critical patent/JPH01258832A/en
Application granted granted Critical
Publication of JP2653462B2 publication Critical patent/JP2653462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase the current capacity of the oxide superconductor contg. Bi, Sr, Ca, and Cu at specific atomic ratios or Tl, Ba, Ca, and Cu at specific atomic ratios and to increase the critical current density thereof by packing the above-mentioned superconductor into a metal pipe and rolling the pipe to a laminar state of a specific thickness. CONSTITUTION:Powder 2 of the oxide superconductor is packed into the metal pipe 1 and both ends thereof are sealed. The oxide superconductor contains the Bi, Sr, Ca, and Cu at 2:2:1:2 or 2:2:2:3 by atomic ratios or the Tl, Ba, Ca, and Cu at 2:2:1:2 or 2:2:2:3 by atomic ratios. The oxide superconductor 2 is rolled together with the metal pipe 1 to the laminar state of <=100mum thickness. The plural metal pipes packed with the powder are housed in a common metal pipe and are rolled. The current capacity of the superconductor is thereby increased and the critical current density thereof is increased.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、B1−8r−Ca−Cu−0系またはTi 
−Ba−Ca−Cu−0系の酸化物超電導体粉末を用い
た超電導体に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention provides B1-8r-Ca-Cu-0 system or Ti
-Regarding a superconductor using Ba-Ca-Cu-0 based oxide superconductor powder.

(従来の技術) 近年s La−Ba−Cu−0系の層状ペロブスカイト
型の酸化物が高い臨界温度を有する可能性のあることが
発表されて以来、各所で酸化物超電導体の研究が行われ
ている(Z、Phys、B Condensed Ma
tter 64゜189−193(1986))。その
中でもY−Ba−Cu−0系で代表される酸素欠陥を有
する欠陥ペロブスカイト型の酸化物超電導体は、臨界温
度T が90に以上と液体窒素以上の高い温度を有する
ことが確認されている(Phys、Rev、Lett、
vol、  5B No、9.908−910)。
(Prior art) Since it was announced in recent years that La-Ba-Cu-0 layered perovskite oxides may have a high critical temperature, research on oxide superconductors has been carried out in various places. (Z, Phys, B Condensed Ma
tter 64°189-193 (1986)). Among them, defective perovskite-type oxide superconductors with oxygen defects, represented by the Y-Ba-Cu-0 system, have been confirmed to have a critical temperature T of 90 or higher, which is higher than liquid nitrogen. (Phys, Rev, Lett,
vol, 5B No. 9.908-910).

さらに、最近、臨界温度が105にのB1−8r−Ca
−Cu−θ系やTJ2−Ba−Ca−Cu−0系の酸化
物超電導体が発見されるに至った。
Furthermore, recently, B1-8r-Ca whose critical temperature is 105
-Cu-θ system and TJ2-Ba-Ca-Cu-0 system oxide superconductors have been discovered.

これらの旧−8r−Ca−Cu−0系やTi −Ba−
Ca−Cu−0系の酸化物超電導体は、La−Ba−C
u−0系やY−Ba−Cu−0系の酸化物超電導体に比
べて、臨界温度が高いばかりでなく、高価な希土類元素
が不要であること、水分に対する化学的安定性が高いこ
となどの利点があり、より優れた酸化物超電導体である
These old -8r-Ca-Cu-0 series and Ti -Ba-
Ca-Cu-0 based oxide superconductor is La-Ba-C
Compared to u-0 series and Y-Ba-Cu-0 series oxide superconductors, it not only has a higher critical temperature, but also does not require expensive rare earth elements, and has high chemical stability against moisture. It has the following advantages and is a better oxide superconductor.

ところで、この超電導体は、焼結体として得られる結晶
性の酸化物であって、その単結晶の6面に平行に超電導
電流を流したときのj。1lCplaneeと6面に垂
直に流したときのJ LCplaneとでは、J //
/J J−の比でlO〜1000と大きな差があり、ま
た    C 臨界磁場B。2も、6面に垂直、平行に磁場をかけた場
合、B、ttl B、Lで20以上も差があるという性
質がある。
By the way, this superconductor is a crystalline oxide obtained as a sintered body, and when a superconducting current is passed parallel to the six faces of the single crystal, j. J //
There is a large difference in the ratio of /JJ-, lO ~ 1000, and the critical magnetic field B. 2 also has the property that when a magnetic field is applied perpendicularly and parallel to the six faces, there is a difference of more than 20 between B, ttl, B, and L.

したがって、この酸化物超電導体の焼結体そのままや、
これを粉砕した粉末を単に長尺化しただけでは、結晶の
配列方向がランダムになり、所望の電流密度や臨界磁場
が得られないという問題があった。
Therefore, the sintered body of this oxide superconductor as it is,
If the pulverized powder was simply made into a long length, the orientation of the crystals would be random, resulting in a problem in that the desired current density and critical magnetic field could not be obtained.

(発明が解決しようとする課題) このように、B1−8r−Ca−Cu−0系やTl2−
Ba−Ca−Cu−0系の酸化物超電導体は、結晶の6
面に沿って超電導電流が流れるため、この酸化物超電導
体の焼結体そのままや、これを粉砕した粉末を単に長尺
化しただけでは、結晶の配列方向がランダムになり、所
望の臨界電流密度j が得られないという問題があった
(Problem to be solved by the invention) In this way, the B1-8r-Ca-Cu-0 system and the Tl2-
Ba-Ca-Cu-0 based oxide superconductor has a crystalline 6
Because superconducting current flows along the plane, if the sintered body of this oxide superconductor is used as it is, or if the pulverized powder is simply made into a long length, the orientation of the crystals will be random, and the desired critical current density will not be achieved. There was a problem that j could not be obtained.

本発明は、このような従来の難点を解消すべくなされた
もので、B1−8r−Ca−Cu−0系またはTl2−
Ba−Ca−Cu−0系の超電導体粉末を用いた臨界電
流密度の大きいテープ状または平角状の酸化物超電導体
を提供することを目的とする。
The present invention has been made to solve these conventional difficulties, and is based on the B1-8r-Ca-Cu-0 system or Tl2-
The object of the present invention is to provide a tape-shaped or rectangular oxide superconductor with a high critical current density using Ba-Ca-Cu-0 based superconductor powder.

[発明の構成] (課題を解決するための手段) 本発明の酸化物超電導体は、下記式 8式% (δは酸素欠陥を表わす。以下同じ) で表わされる酸化物超電導体粉末を、金属管に充填して
なる超電導体において、前記酸化物超電導体の粉末が、
前記金属管とともに圧延されて、厚さ 100μ履以下
の層状とされていること、および、上記酸化物超電導体
粉末を、金属管に充填してコアとし、このコアの複数条
を、共通の金属管中に収容してなる超電導体において、
前記酸化物超電導体粉末が、前記コアの金属管とともに
、または、前記コアの金属管および共通の金属管ととも
に圧延されて、厚さ 100μm以下の層状とされてい
ることを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The oxide superconductor of the present invention is produced by combining an oxide superconductor powder represented by the following formula 8% (δ represents an oxygen defect; the same applies hereinafter) into a metal. In the superconductor filled in a tube, the oxide superconductor powder is
The oxide superconductor powder is rolled together with the metal tube to form a layer with a thickness of 100 μm or less, and the metal tube is filled with the oxide superconductor powder to form a core, and a plurality of cores are made of a common metal. In a superconductor housed in a tube,
It is characterized in that the oxide superconductor powder is rolled together with the core metal tube or together with the core metal tube and a common metal tube to form a layer with a thickness of 100 μm or less.

本発明の酸化物超電導体および酸化物超電導体線材は、
例えば以下に示す方法により得られる。
The oxide superconductor and oxide superconductor wire of the present invention are
For example, it can be obtained by the method shown below.

[酸化物超電導体粉末の製造] まず、旧、Sr、 Ca、 CuもしくはTl、Ba、
 Ca。
[Manufacture of oxide superconductor powder] First, old, Sr, Ca, Cu or Tl, Ba,
Ca.

CuなどのB1−8r−Ca−Cu−0系またはTl 
−Ba−Ca−Cu−0系の構成元素の炭酸塩、酸化物
、有機酸塩等を、化学量論比、すなわち、原子比で、2
:2:L:2もしくは2:2:2:3となるよう配合し
、これらを十分混合する。なお、これらの酸化物超電導
体を構成する元素は、厳密に化学量論比である必要はな
く、製造条件等とのかね合いでlO%程度ずれていても
よい。また、微量のアルカリ金属化合物を添加して反応
温度を低下させることも可能である。
B1-8r-Ca-Cu-0 system such as Cu or Tl
- Carbonates, oxides, organic acid salts, etc. of the constituent elements of the Ba-Ca-Cu-0 system are mixed in a stoichiometric ratio, that is, an atomic ratio of 2
:2:L:2 or 2:2:2:3 and mix them thoroughly. Note that the elements constituting these oxide superconductors do not need to be in a strictly stoichiometric ratio, and may differ by about 10% depending on manufacturing conditions and the like. It is also possible to lower the reaction temperature by adding a trace amount of an alkali metal compound.

前述の原料を混合した後、仮焼、粉砕し所望の形状にし
た後、焼成する。仮焼は必ずしも必要ではない。焼成、
仮焼は十分な酸素が供給できるような酸素含有雰囲気で
800℃以上、融点以下の温度、好ましくは870〜9
00℃が適当である。
After mixing the aforementioned raw materials, they are calcined and pulverized into a desired shape, and then fired. Calcining is not necessarily necessary. firing,
Calcination is carried out in an oxygen-containing atmosphere where sufficient oxygen can be supplied at a temperature of 800°C or higher and below the melting point, preferably 870°C to 9°C.
00°C is appropriate.

そして、得られた酸化物超電導体焼結体を、ボールミル
、その他公知の手段により粉砕する。このとき、酸化物
超電導体の粉末は、へき開面から分割されて微粉末とな
る。平均粒径は1μα前後が適当である。なお、必要に
応じて、粉砕した粉末を分級して用いてもよい。
The obtained oxide superconductor sintered body is then pulverized using a ball mill or other known means. At this time, the oxide superconductor powder is divided from the cleavage plane and becomes fine powder. The average particle diameter is suitably around 1 μα. Note that, if necessary, the pulverized powder may be classified and used.

[シングル超電導体の製造] 前述した酸化物超電導体の粉末を金属管に入れ、常法に
より、鍛造、圧延、線引き等の減面加工を順に行ない断
面円形状態で細線化する。任意の外径まで縮径したとこ
ろで、ロールにより酸化物超電導体層の厚さが100μ
m以下となるまで偏平に圧延する。
[Manufacture of a single superconductor] The powder of the oxide superconductor described above is placed in a metal tube, and subjected to area reduction processing such as forging, rolling, and wire drawing in order by conventional methods to form a thin wire with a circular cross section. When the diameter is reduced to an arbitrary outer diameter, the thickness of the oxide superconductor layer is reduced to 100μ by rolling.
Roll it flat until it becomes less than m.

なお、加工硬化により減面加工が困難になった場合には
、適宜焼鈍処理を行なうようにする。
In addition, when surface reduction processing becomes difficult due to work hardening, annealing treatment is performed as appropriate.

また、断面円形に加工せずに、タークスヘ・ソドロール
等により側面を規制しながら矩形のままで減面加工を施
すようにしてもよい。
Further, instead of processing the cross section into a circular shape, the surface reduction processing may be performed while keeping the rectangular shape while restricting the side surfaces with Turkshe Sodolol or the like.

金属管としては、Ag、 Au、 pi、 Pdq C
uqキュプロニッケル、ステンレス等の金属管を使用す
ることができる。
Metal tubes include Ag, Au, pi, Pdq C
Metal tubes such as uq cupronickel and stainless steel can be used.

第1図は、このようにして得られた超電導体を示すもの
で、1は矩形の金属管、2は厚さtが100μl以下に
まで金属管1とともに圧延加工された酸化物超電導体で
あって、その配向率は、通常70%以上となっている。
FIG. 1 shows the superconductor obtained in this way, where 1 is a rectangular metal tube, and 2 is an oxide superconductor that has been rolled together with the metal tube 1 to a thickness t of 100 μl or less. The orientation rate is usually 70% or more.

なお、上記配向率は、被覆金属を取り除き、内部の酸化
物超電導体をX線回折を用いて回折強度を測定し、0面
の(00エユ)ピークと(117)面ビークとの比率で
示したものである。
The above orientation rate is determined by removing the coating metal and measuring the diffraction intensity of the internal oxide superconductor using X-ray diffraction, and is expressed as the ratio of the (00 eu) peak of the 0 plane and the peak of the (117) plane. It is something that

このようにして製造された超電導体は、加圧または線引
きの過程で酸化物超電導体粉末の0面が加圧方向と直交
する方向、または線材の長手方向に配向されているので
、線材全体としての電流容量が大きく向上し、また臨界
磁場も向上する。
In the superconductor manufactured in this way, the zero surface of the oxide superconductor powder is oriented in the direction perpendicular to the pressing direction or in the longitudinal direction of the wire during the pressurization or wire drawing process, so that the wire as a whole The current capacity of the device is greatly improved, and the critical magnetic field is also improved.

[マルチ超電導体の製造] 上記シングル超電導体をコアとして用い、これを第2図
に示すように、矩形金属管3中に積層して配置し、必要
に応じて、さらに減面加工を施してマルチ超電導体とす
る。この金属管3用の素材としては、前記したコア用の
金属を使用することができる。なお、コアの段階までは
、酸化物超電導体3の層が100μ讃を越える範囲で圧
延しておき、マルチ構成としてから、さらに圧延して最
終的にこの層を100μ■以下としてもよい。
[Manufacture of multi-superconductor] The single superconductor described above is used as a core, and as shown in FIG. Multi-superconductor. As the material for this metal tube 3, the metal for the core described above can be used. Incidentally, up to the core stage, the layer of oxide superconductor 3 may be rolled in a range exceeding 100 .mu.m, and after forming a multi-structure, it may be further rolled to finally make this layer 100 .mu.m or less.

また、高周波の交流やパルス電流用に用いる場合には、
例えば第3図に示すように、内側を銅1aのような良導
電金属とし外側をキュプロニッケル1bのような抵抗金
属とした複合管を用いるようにすれば、高周波ロスを低
減させることができる。
In addition, when used for high frequency alternating current or pulsed current,
For example, as shown in FIG. 3, if a composite tube is used in which the inside is made of a highly conductive metal such as copper 1a and the outside is made of a resistance metal such as cupronickel 1b, high frequency loss can be reduced.

(作 用) 本発明の超電導体は、金属管内に充填されたB1−3r
−Ca−Cu−0系またはTi−Ba−Ca−Cu−0
系の酸化物超電導体粉末の結晶の0面が圧延過程で長さ
方向、すなわち超電導電流の流れる方向に配向されるの
で、超電導電流は、金属管の長手方向に流れ易くなり、
また、コイル形成時に偏平面を磁場の方向と平行に配置
することにより、磁場による臨界電流密度の変化を少な
くすることもできる。
(Function) The superconductor of the present invention is a B1-3r filled in a metal tube.
-Ca-Cu-0 system or Ti-Ba-Ca-Cu-0
Since the zero plane of the crystal of the oxide superconductor powder of the system is oriented in the length direction, that is, in the direction in which the superconducting current flows, during the rolling process, the superconducting current tends to flow in the longitudinal direction of the metal tube.
Furthermore, by arranging the flat plane parallel to the direction of the magnetic field when forming the coil, changes in critical current density due to the magnetic field can be reduced.

さらに本発明の超電導体を製造する際に、金属管の延伸
加工により、超電導体粉末が延伸方向に0面が平行とな
るよう配向されるので、延伸加工の縮径の程度を考慮す
るだけで、圧延と同時に超電導体粉末が配向される。
Furthermore, when producing the superconductor of the present invention, the superconductor powder is oriented by drawing the metal tube so that the zero plane is parallel to the drawing direction, so it is only necessary to consider the degree of diameter reduction during the drawing process. , the superconductor powder is oriented simultaneously with rolling.

またさらに、これをコアとして用い、矩形金属管内に複
数条積層して収容した場合には電流容量が大きくなり、
さらに圧延することにより容易に超電導体層を薄く加工
することができる。この場合各コアの金属管は安定化材
として機能する。さらに、各コアの金属管として銅のよ
うな良導電金属上にキュプロニッケルのような抵抗金属
を被覆した複合金属管を使用した場合には、高周波特性
が向上する。
Furthermore, when this is used as a core and multiple layers are stacked and housed in a rectangular metal tube, the current capacity increases,
By further rolling, the superconductor layer can be easily processed into a thinner layer. In this case the metal tube of each core acts as a stabilizing material. Furthermore, when a composite metal tube in which a highly conductive metal such as copper is coated with a resistance metal such as cupronickel is used as the metal tube of each core, the high frequency characteristics are improved.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1 旧 0SSrCO1CaCO3、CuOの各粉末をモル
比で、l:2:1:2で充分混合し、850℃で10時
間空気中で仮焼し、これを2回繰り返したのち、ボール
ミルで24時間粉砕して、B125r2CaICu20
  粉末を得た。
Example 1 Old 0SSrCO1 CaCO3 and CuO powders were thoroughly mixed in a molar ratio of l:2:1:2, calcined in air at 850°C for 10 hours, and after repeating this twice, they were heated in a ball mill for 24 hours. Time-pulverized, B125r2CaICu20
A powder was obtained.

8+δ この粉末を、一端を封止した外径2011、内径171
1、長さ 100 mlのAg管中に入れ、通気孔を残
して他端も封止した後、スウエージング加工と、ロール
加工により、種々の厚み(酸化物超電導体層の厚み)ま
で圧延したテープを作成した。次にこのテープを880
℃で5時間空気中で熱処理を行なった。
8+δ This powder is sealed at one end with an outer diameter of 2011 and an inner diameter of 171
1. After putting it into a 100 ml Ag tube and sealing the other end leaving a ventilation hole, it was rolled to various thicknesses (thickness of the oxide superconductor layer) by swaging and rolling. I made a tape. Next, add this tape to 880
Heat treatment was carried out in air at .degree. C. for 5 hours.

得られたテープについてそれぞれ臨界電流密度(77K
)を測定し、またこれらのテープの金属被覆を剥ぎとっ
て酸化物超電導体層の厚みと配向率との関係を測定した
。測定結果を第4図に示す。なお、配向率は、X線回折
のグラフに現れた結晶の0面の(0010)ピークと(
117)面ピークとの比率で示した。同図から明らかな
ように、酸化物超電導体層の厚みが100μm以下にな
ったところで配向性および臨界電流密度は急速に向上し
ていることがわかる。
Critical current density (77K
), and the metal coating of these tapes was stripped off to measure the relationship between the thickness of the oxide superconductor layer and the orientation rate. The measurement results are shown in Figure 4. Note that the orientation rate is determined by the (0010) peak of the 0-plane of the crystal appearing in the X-ray diffraction graph and (
117) as a ratio to the surface peak. As is clear from the figure, the orientation and critical current density are rapidly improved when the thickness of the oxide superconductor layer becomes 100 μm or less.

なお以上の実施例では、酸化物超電導体として81  
Sr  Ca  Cu  Oを使用した例について説2
2128+δ Tβ 明したが、B10 Srz Ca2Cua Oto+a
、  2Baz Ca2Cu30 to+a、およびT
J22Ba2CalCu  Oを使用して同様の実験を
行なった場合28+δ にも配向による特性の著しい向上が認められた。
In the above examples, 81 was used as the oxide superconductor.
Theory 2 regarding an example using Sr Ca Cu O
2128+δ Tβ Although it was clear, B10 Srz Ca2Cua Oto+a
, 2Baz Ca2Cu30 to+a, and T
When a similar experiment was conducted using J22Ba2CalCuO, a remarkable improvement in properties due to orientation was also observed for 28+δ.

また、上記超電導体テープをコアとして第3図に示すよ
うなマルチの超電導体を製造したが、実施例と同様の酸
化物超電導体の厚み一配向率一臨界電流特性が得られた
Further, a multi-layer superconductor as shown in FIG. 3 was manufactured using the above-mentioned superconductor tape as a core, and the same thickness-orientation-critical current characteristics of the oxide superconductor as in the example were obtained.

[発明の効果] 以上の実施例からも明らかなように、本発明の超電導体
は、結晶の0面が電流の流れる方向に配向されているの
で、高い電流密度が得られ、また磁場による臨界電流密
度の減少が少ない。また、この超電導体をコアとしてマ
ルチ構造とすることにより電流容量を大きくすることが
でき、さらに酸化物超電導体層の薄膜化が容易となって
高い臨界電流密度が得られる。
[Effects of the Invention] As is clear from the above examples, the superconductor of the present invention has the zero plane of the crystal oriented in the direction of current flow, so a high current density can be obtained, and the criticality caused by the magnetic field can be reduced. Less reduction in current density. Further, by forming a multi-structure using this superconductor as a core, the current capacity can be increased, and furthermore, the oxide superconductor layer can be easily made thinner, and a high critical current density can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、それぞれ本発明の実施例を概略
的に示す拡大断面図、第4図は本発明の効果を示すグラ
フである。 1・・・・・・・・・矩形の金属管 1a・・・・・・銅 1b・・・・・・キュプロニッケル 2・・・・・・・・・酸化物超電導体 3・・・・・・・・・矩形金属管
1 to 3 are enlarged cross-sectional views schematically showing embodiments of the present invention, and FIG. 4 is a graph showing the effects of the present invention. 1... Rectangular metal tube 1a... Copper 1b... Cupronickel 2... Oxide superconductor 3...・・・・・・Rectangular metal tube

Claims (2)

【特許請求の範囲】[Claims] (1)Bi、Sr、Ca、Cuを原子比で、2:2:1
:2もしくは2:2:2:3で含む酸化物超電導体、ま
たはTl、Ba、Ca、Cuを原子比で、2:2:1:
2もしくは2:2:2:3で含む酸化物超電導体の粉末
を、金属管に充填してなる超電導体において、前記酸化
物超電導体の粉末が、前記金属管とともに圧延されて、
厚さ100μm以下の層状とされていることを特徴とす
る超電導体。
(1) Bi, Sr, Ca, Cu in atomic ratio of 2:2:1
:2 or 2:2:2:3, or an oxide superconductor containing Tl, Ba, Ca, Cu in an atomic ratio of 2:2:1:
2 or 2:2:2:3 in a metal tube, the oxide superconductor powder is rolled together with the metal tube,
A superconductor characterized by having a layered structure with a thickness of 100 μm or less.
(2)Bi、Sr、Ca、Cuを原子比で、2:2:1
:2もしくは2:2:2:3で含む酸化物超電導体、ま
たはTl、Ba、Ca、Cuを原子比で、2:2:1:
2もしくは2:2:2:3で含む酸化物超電導体の粉末
を、金属管に充填してコアとし、このコアの複数条を、
共通の金属管中に収容してなる超電導体において、前記
酸化物超電導体粉末が、前記コアの金属管とともに、ま
たは、前記コアの金属管および共通の金属管とともに圧
延されて、厚さ100μm以下の層状とされていること
を特徴とする超電導体。
(2) Bi, Sr, Ca, Cu in atomic ratio of 2:2:1
:2 or 2:2:2:3, or an oxide superconductor containing Tl, Ba, Ca, Cu in an atomic ratio of 2:2:1:
A metal tube is filled with oxide superconductor powder containing a ratio of 2 or 2:2:2:3 to form a core, and multiple strips of this core are
In the superconductor housed in a common metal tube, the oxide superconductor powder is rolled together with the core metal tube or together with the core metal tube and the common metal tube to a thickness of 100 μm or less. A superconductor characterized by being layered.
JP63087676A 1988-04-09 1988-04-09 Superconductor Expired - Lifetime JP2653462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087676A JP2653462B2 (en) 1988-04-09 1988-04-09 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087676A JP2653462B2 (en) 1988-04-09 1988-04-09 Superconductor

Publications (2)

Publication Number Publication Date
JPH01258832A true JPH01258832A (en) 1989-10-16
JP2653462B2 JP2653462B2 (en) 1997-09-17

Family

ID=13921541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087676A Expired - Lifetime JP2653462B2 (en) 1988-04-09 1988-04-09 Superconductor

Country Status (1)

Country Link
JP (1) JP2653462B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357110A (en) * 1989-07-26 1991-03-12 Furukawa Electric Co Ltd:The Manufacture of oxide superconductor
JPH03204131A (en) * 1989-12-28 1991-09-05 Sumitomo Electric Ind Ltd Manufacture of oxide superconducting wire rod

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357110A (en) * 1989-07-26 1991-03-12 Furukawa Electric Co Ltd:The Manufacture of oxide superconductor
JPH03204131A (en) * 1989-12-28 1991-09-05 Sumitomo Electric Ind Ltd Manufacture of oxide superconducting wire rod
US6311384B1 (en) 1989-12-28 2001-11-06 Hidehito Mukai Method of manufacturing oxide superconducting wire

Also Published As

Publication number Publication date
JP2653462B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
JP2711358B2 (en) Superconducting wire manufacturing method
US5798312A (en) Elongate superconductor elements comprising oxide superconductors, superconducting coils and methods of making such elements
DE4445405A1 (en) Process for producing an elongated superconductor with a bismuth phase with a high transition temperature
JPH01258832A (en) Superconductor
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JPH02273418A (en) Manufacture of oxide superconductive conductor
US5384088A (en) Oxide superconductive material of T1 (thallium) and Pb (lead) system and method for manufacturing the same
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JP3099891B2 (en) Superconducting material
EP0325751B1 (en) Method of making elongated conductors containing a superconducting oxide material, and apparatus for carrying out this method
JP2895495B2 (en) Manufacturing method of oxide superconducting conductor
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH05334921A (en) Ceramic superconductor
JP2644245B2 (en) Oxide superconducting wire
JPH01163907A (en) Oxide superconductive wire
JPH0261910A (en) Superconducting material wire and its manufacture
JP3713284B2 (en) Manufacturing method of oxide superconducting coil
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH05166426A (en) Manufacture for ceramics superconductor
JPS63241826A (en) Manufacture of superconducting wire
JPH02153701A (en) Manufacture of bismuth-based superconductor wire material
JPH01261232A (en) Production of superconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term