JPH01256817A - A/d converter - Google Patents

A/d converter

Info

Publication number
JPH01256817A
JPH01256817A JP63086813A JP8681388A JPH01256817A JP H01256817 A JPH01256817 A JP H01256817A JP 63086813 A JP63086813 A JP 63086813A JP 8681388 A JP8681388 A JP 8681388A JP H01256817 A JPH01256817 A JP H01256817A
Authority
JP
Japan
Prior art keywords
circuit
converter
video signal
ladder
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63086813A
Other languages
Japanese (ja)
Inventor
Tsutomu Takayama
勉 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63086813A priority Critical patent/JPH01256817A/en
Priority to US07/331,171 priority patent/US5343201A/en
Publication of JPH01256817A publication Critical patent/JPH01256817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To obtain a uniform quantization accuracy over the entire signal level range of a video signal by providing a weighting means to an A/D converter of a video signal in an image pickup device or the like, and applying different weighting to each quantization step of A/D conversion. CONSTITUTION:A ladder resistance circuit 1 in an A/D converter such as N-bit full parallel comparison system consists of 2N sets of resistors. Moreover, the potential Vref across the ladder resistor is controlled variably by using a control signal of a gain control circuit GCC. Then ladder resistances R1, R2...R2N are determined to supply an equal quantization step DELTAV after nonlinear processing such as gamma characteristic or white level compression characteristic. Digital outputs D0, D1...DN-1 from a decoder circuit 3 obtained in such a way are subject to nonlinear processing, then no new gamma correction circuit or white level compression circuit is required. Thus, the resistance values of the ladder resistor circuit of the A/D conversion are made correspondent to the nonlinear characteristic in such a way, then almost uniform quantization accuracy over the entire signal level range of the video signal is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は撮像装置等における映像信号のA/D変換器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an A/D converter for video signals in an imaging device or the like.

〔従来の技術〕[Conventional technology]

従来映像信号のA/D変換器としては多(の公知例があ
り、最近では信号の広帯域化に伴いA/D変換速度を数
十M Hzまで向上し、量子化も8ビツトのものが実用
化されている。
There are many known examples of conventional A/D converters for video signals, and recently, as the signal band has become wider, the A/D conversion speed has been improved to several tens of MHz, and 8-bit quantization has become practical. has been made into

〔発明が解決しようとしている問題点〕しかしながら撮
像装置における映像信号のA/D変換では、下記理由に
より従来の量子化ビット数では不足であった。
[Problems to be Solved by the Invention] However, in A/D conversion of a video signal in an imaging device, the conventional number of quantization bits is insufficient for the following reasons.

(1)映像信号のダイナミックレンジが通常のテレビジ
ョン信号より何倍も大きい。
(1) The dynamic range of the video signal is many times larger than that of a normal television signal.

(2)A/D変換後にガンマ補正をかける場合は低輝度
部の量子化ノイズが3倍以上となる。
(2) When gamma correction is applied after A/D conversion, quantization noise in low-luminance areas becomes three times or more.

(3)A/D変換後にホワイトバランスを行う場合は更
に2倍以上のダイナミックレンジの余裕が必要となる。
(3) When performing white balance after A/D conversion, a dynamic range that is twice as large is required.

(4)A/D変換後にAGCをかける場合は更に何倍か
のダイナミックレンジの余裕が必要となる。
(4) When applying AGC after A/D conversion, a dynamic range several times larger is required.

上記したように量子化ビット数が不足する為に、従来で
はA/D変換前に白圧縮、ガンマ補正、ホワイトバラン
ス等のアナログ信号処理をしてお(必要が生じ、回路規
模が増加するだけでなく、デジタル信号処理化の効果も
半減していた。
As mentioned above, due to the insufficient number of quantization bits, conventional analog signal processing such as white compression, gamma correction, and white balance is performed before A/D conversion (this only increases the circuit scale). Moreover, the effect of digital signal processing was also halved.

当然のことながらn子化ビット数を増加するということ
は、莫大な回路規模の増加となり、またA/D変換速度
も不足し、現状のA/D変換技術、LSI技術では非常
に困難である。
Naturally, increasing the number of n-bits requires a huge increase in circuit scale, and the A/D conversion speed is also insufficient, which is extremely difficult with current A/D conversion technology and LSI technology. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明のA/D変換器は映像信号のA/D変換器におい
てA /′D変換の各量子化ステップに異なる重み付け
をする重み付け手段を有する。
The A/D converter of the present invention has weighting means for weighting each quantization step of A/'D conversion differently in the A/D converter for a video signal.

〔作用〕[Effect]

本発明はA/D変換の各量子化ステップに異なる重み付
けをしたことにより、映像信号の全信号レベル範囲にわ
たって均等な量子化精度が得られるようにしたものであ
る。
The present invention provides uniform quantization accuracy over the entire signal level range of a video signal by weighting each quantization step of A/D conversion differently.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例を示したもので、Nビッ
トの全並列比較方式のA/D変換器の例を示したもので
あり、1はラダー抵抗回路で2N個の抵抗により構成さ
れる。又、このラダー抵抗の両端電位Vrefは利得制
御回路GCCの制御信号により可変制御される。2は比
較回路で(2N−1)個の比較器で構成される。3は比
較回路2の出力をNビットの自然2進コードに変換する
デコーダ回路である。
FIG. 1 shows the first embodiment of the present invention, and shows an example of an N-bit all-parallel comparison A/D converter, where 1 is a ladder resistor circuit with 2N resistors. Consisted of. Further, the potential Vref across the ladder resistor is variably controlled by a control signal from a gain control circuit GCC. Reference numeral 2 denotes a comparison circuit, which is composed of (2N-1) comparators. 3 is a decoder circuit that converts the output of the comparison circuit 2 into an N-bit natural binary code.

第2図は第1図のラダー抵抗回路1の2N個の抵抗の抵
抗値の比率(相対値)と信号の量子化ステップの関係を
示したものであり、横軸にラダー抵抗値、縦軸に量子化
ステップを表わしている。また第2図では同時に映像信
号の非直線特性を示しており、第2図A部は映像信号の
ガンマ特性に対応した特性、第2図B部は白圧縮特性に
対応した特性を表わしている。
Figure 2 shows the relationship between the ratio (relative value) of the resistance values of the 2N resistors of the ladder resistance circuit 1 in Figure 1 and the quantization step of the signal, where the horizontal axis represents the ladder resistance value and the vertical axis represents the quantization step. In addition, Fig. 2 also shows the non-linear characteristics of the video signal, where part A in Fig. 2 shows the characteristic corresponding to the gamma characteristic of the video signal, and part B in Fig. 2 shows the characteristic corresponding to the white compression characteristic. .

本実施例では第2図より明らかなように、ガンマ特性や
白圧縮特性等、非直線処理された後に等しい量子化ステ
ップΔVとなるように、ラダー抵抗値R1,R2,R3
・・・、 R2・−1,R2・が決められている。これ
らの抵抗値は勿論所望の非直線特性が得られる範囲で、
例えば3〜4種類の抵抗値としても一向に差し支えない
In this embodiment, as is clear from FIG. 2, the ladder resistance values R1, R2, R3 are
..., R2・-1, R2・ are determined. Of course, these resistance values are within the range where the desired nonlinear characteristics can be obtained.
For example, there is no problem in using three to four types of resistance values.

こうして得られたデコーダ回路3からのデジタル出力D
O,DI、・・・ D N−1は非直線処理がされてい
る為、新たにガンマ補正回路や白圧縮回路を必要としな
い。
Digital output D from the decoder circuit 3 obtained in this way
O, DI, . . . DN-1 undergoes non-linear processing, so no new gamma correction circuit or white compression circuit is required.

以上説明したように、本実施例ではA/D変換のラダー
抵抗回路の抵抗値を非直線特性に対応させることにより
、映像信号の全信号レベル範囲にわたってほぼ均等な量
子化精度を得ることかできる。
As explained above, in this embodiment, by making the resistance value of the A/D conversion ladder resistance circuit correspond to non-linear characteristics, it is possible to obtain almost uniform quantization accuracy over the entire signal level range of the video signal. .

〔他の実施例〕[Other Examples]

第3図は本発明の第2の実施例を示したもので、11は
ラダー抵抗回路であり、2N個の抵抗により構成される
。抵抗値は一般の全並列比較方式のA/D変換器と同様
に2種類であり、第3図に示すように(2N−2)個の
抵抗Rと2個の−の抵抗により構成されている。又、ラ
ダー抵抗の両端電位Vrefは利得制御回路GCCによ
りコントロールされる。I2は比較回路で(2N−1,
)個の比較器で構成されている。13はデコーダ回路で
あり、比較回路I2の出力をNビットの自然2進コード
に変換する。14゜15.16は定電流回路である。
FIG. 3 shows a second embodiment of the present invention, in which reference numeral 11 denotes a ladder resistance circuit, which is composed of 2N resistors. There are two types of resistance values, similar to general A/D converters using the all-parallel comparison method, and as shown in Figure 3, it is composed of (2N-2) resistors R and two - resistors. There is. Further, the potential Vref across the ladder resistor is controlled by a gain control circuit GCC. I2 is a comparison circuit (2N-1,
) comparators. A decoder circuit 13 converts the output of the comparison circuit I2 into an N-bit natural binary code. 14°15.16 is a constant current circuit.

第4図は第3図のラダー抵抗回路で発生する基準電圧V
 + 、 V 2 、 V 3 ・= V ;u−k・
−V 21−Z −V2’−m 、 −V 21−+ 
Figure 4 shows the reference voltage V generated in the ladder resistance circuit of Figure 3.
+ , V 2 , V 3 ・= V; u−k・
-V 21-Z -V2'-m, -V 21-+
.

Vrefと量子化ステップの関係を示したものである。It shows the relationship between Vref and quantization step.

また同時に映像信号の非直線特性を示しており、A部は
3折線近似のガンマ特性、B部は白圧縮特性を表わして
いる。
At the same time, it shows the non-linear characteristics of the video signal, where part A shows gamma characteristics approximating a trifold line, and part B shows white compression characteristics.

本実施例では第4図より明らかなように、ガンマ特性や
白圧縮特性等非直線処理された後に、等しい量子化ステ
ップΔV(但し信号の白黒両端はΔv/2)となるよう
に基準電圧値vl + V 2 、 V 3・・・V 
2r−に−V 21− t −V 2’−m 、 −V
 2I−2,V 2−−+が定められている。これらの
基準電圧値は定電流源14,15,1.6の電流値によ
って任意に設定することが可能である。例えば第3図端
子b−c間の電流値を端子a−b間の電流値の%となる
ように定電流源14の電流値IIを決めれば、届に圧縮
される白圧縮特性が得られる。同様に端子c−c1間、
端子d−GND間の電流値を所望の3折線近似のガンマ
特性が得らるように、定電流源15.16の電流値12
. r3を決めればよい。
In this embodiment, as is clear from FIG. 4, after nonlinear processing such as gamma characteristics and white compression characteristics, the reference voltage value is vl + V2, V3...V
2r- to -V 21- t -V 2'-m , -V
2I-2, V 2--+ are defined. These reference voltage values can be arbitrarily set by the current values of the constant current sources 14, 15, and 1.6. For example, if the current value II of the constant current source 14 is determined so that the current value between terminals b and c in FIG. . Similarly, between terminals c and c1,
The current value 12 of the constant current source 15.
.. All you have to do is decide r3.

以上説明したように、本実施例ではA/D変換のラダー
抵抗回路の所定の端子に定電流源を設け、こ° の定電
流源の電流値を所望の非直線特性が得られるように設定
することにより、映像信号の全信号レベル範囲にわたっ
てほぼ均等な量子化精度を得ることができる。また本実
施例では定電流源を外部に設けてやれば非直線特性を任
意に変えることも可能である。
As explained above, in this embodiment, a constant current source is provided at a predetermined terminal of the A/D conversion ladder resistance circuit, and the current value of this constant current source is set so as to obtain the desired nonlinear characteristics. By doing so, substantially uniform quantization accuracy can be obtained over the entire signal level range of the video signal. Furthermore, in this embodiment, if a constant current source is provided externally, it is possible to arbitrarily change the nonlinear characteristics.

また前記定電流源は抵抗に置き替えても全く差し支えな
い。
Further, the constant current source may be replaced with a resistor without any problem.

更に実施例では全並列比較方式のA/D変換器に関して
説明したが、ラダー抵抗回路を用いる形式であれば限定
されることはない。
Further, in the embodiment, an all-parallel comparison type A/D converter has been described, but the present invention is not limited to any type as long as it uses a ladder resistance circuit.

又、本実施例では1キヤンネルのA/D変換器について
述べたが撮像信号φの複数の色信号の処理チャンネルφ
に本発明のA/D変換器を夫々設け、ホワイトバランス
調整の為の゛制御信号により各色信号毎に設けられた前
記利得制御回路GCCを相対的に制御することにより各
色信号チャンネルφのA/D変換器のVrefを相対的
に可変制御しても良い。
Furthermore, in this embodiment, a one-channel A/D converter has been described, but a plurality of color signal processing channels φ of an image pickup signal φ are used.
The A/D converter of the present invention is provided in each of the channels, and the gain control circuit GCC provided for each color signal is relatively controlled by a control signal for white balance adjustment, so that the A/D converter of each color signal channel φ is adjusted. Vref of the D converter may be relatively variably controlled.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、A/D変換器の量子化ステップを
信号レベルに応じて異なる重み付けをしたことにより、
映像信号の全信号レベル範囲にわたって均等な量子化精
度を得ることができ、量子化ノイズが低信号レベル部に
おいて増大してしまうということがない。
As explained above, by weighting the quantization step of the A/D converter differently depending on the signal level,
Uniform quantization accuracy can be obtained over the entire signal level range of the video signal, and quantization noise does not increase in low signal level parts.

また、本発明ではガンマ特性や白圧縮特性等所望の非直
線特性を同時に得ることができる為に、大巾な回路削減
が可能である。
Further, in the present invention, desired nonlinear characteristics such as gamma characteristics and white compression characteristics can be obtained at the same time, so that a large amount of circuits can be reduced.

尚、本発明をカラー撮像装置に適用する場合、カラー信
号例えばR,G、B信号のホワイトバランス調整を予め
しておいてから、本発明のA/D変換器に入力すれば容
易に実施することができる。
When the present invention is applied to a color imaging device, the white balance adjustment of color signals, for example, R, G, and B signals can be performed in advance and then inputted to the A/D converter of the present invention. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例で、A/D変換器の回路
図、 第2図は第1図のラダー抵抗の抵抗値と、量子化ステッ
プの関係を示す図、 第3図は本発明の第2の実施例で、A/D変換器の回路
図、 第4図は第3図の基準電圧と量子化ステップの関係を示
す図。 1.11・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・ラダー抵抗回路、2
.12・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・比較回路、3.13・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・デコーダ回路、14.15.1
6・・・・・・・・・・・・・・・・・・・・・・・・
・・定電流源。
Figure 1 shows the first embodiment of the present invention, and is a circuit diagram of an A/D converter. Figure 2 is a diagram showing the relationship between the resistance value of the ladder resistor in Figure 1 and the quantization step. Figure 3 4 is a circuit diagram of an A/D converter according to a second embodiment of the present invention, and FIG. 4 is a diagram showing the relationship between the reference voltage and quantization step in FIG. 3. 1.11・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・Ladder resistance circuit, 2
.. 12・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・Comparison circuit, 3.13・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・Decoder circuit, 14.15.1
6・・・・・・・・・・・・・・・・・・・・・・・・
...Constant current source.

Claims (3)

【特許請求の範囲】[Claims] (1)映像信号のA/D変換器において、A/D変換の
各量子化ステップに異なる重み付けをする重み付け手段
を有することを特徴とするA/D変換器。
(1) An A/D converter for video signals, characterized by having weighting means for weighting each quantization step of A/D conversion differently.
(2)前記異なる重み付けは映像信号のガンマ特性に応
じたものであることを特徴とする特許請求の範囲第(1
)項記載のA/D変換器。
(2) The different weightings are based on the gamma characteristics of the video signal.
The A/D converter described in ).
(3)前記異なる重み付けは映像信号の白圧縮特性に応
じたものであることを特徴とする特許請求の範囲第(1
)項記載のA/D変換器。
(3) The different weightings are based on the white compression characteristics of the video signal.
) The A/D converter described in item 1.
JP63086813A 1988-04-07 1988-04-07 A/d converter Pending JPH01256817A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63086813A JPH01256817A (en) 1988-04-07 1988-04-07 A/d converter
US07/331,171 US5343201A (en) 1988-04-07 1989-03-31 A-D converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086813A JPH01256817A (en) 1988-04-07 1988-04-07 A/d converter

Publications (1)

Publication Number Publication Date
JPH01256817A true JPH01256817A (en) 1989-10-13

Family

ID=13897251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086813A Pending JPH01256817A (en) 1988-04-07 1988-04-07 A/d converter

Country Status (1)

Country Link
JP (1) JPH01256817A (en)

Similar Documents

Publication Publication Date Title
JP3208172B2 (en) Digital-to-analog conversion circuit and method for converting digital input signal
US5231398A (en) Method and apparatus for self-tracking multiple analog to digital conversion
US5343201A (en) A-D converter
JPS61120530A (en) Analog/digital converter
JPH06284431A (en) Video camera
US5175615A (en) White balance processing device
JPH01256817A (en) A/d converter
JPH01256816A (en) A/d converter
JP2974323B2 (en) Imaging device
US5426461A (en) Image pickup signal processing apparatus for performing nonlinear processing
JPS63244934A (en) Analog/digital converter
JPH07212232A (en) Analog-to-digital converter gamma-corrected in piecewise linear way
JPH0484520A (en) A/d converter
JP2650969B2 (en) Digital television camera device
US5835040A (en) Digital processing circuit with gain control
JPH04329713A (en) Analog digital converter
JP3760503B2 (en) Clamp circuit
JP2667871B2 (en) A / D converter
JP2637555B2 (en) White balance processing device
JP2728907B2 (en) Semi-flash AD converter
JPH09219643A (en) A/d converter
JPS63286024A (en) Digital converter for analog voltage
JPH0685675A (en) A/d converter
JPS6195621A (en) Parallel type a-d converter
JPH06233155A (en) Digital gamma correcting circuit