JPH01256770A - Heat pump - Google Patents

Heat pump

Info

Publication number
JPH01256770A
JPH01256770A JP8392188A JP8392188A JPH01256770A JP H01256770 A JPH01256770 A JP H01256770A JP 8392188 A JP8392188 A JP 8392188A JP 8392188 A JP8392188 A JP 8392188A JP H01256770 A JPH01256770 A JP H01256770A
Authority
JP
Japan
Prior art keywords
liquid
heat exchanger
liquid level
refrigerant
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8392188A
Other languages
Japanese (ja)
Inventor
Osamu Yabumoto
藪本 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8392188A priority Critical patent/JPH01256770A/en
Publication of JPH01256770A publication Critical patent/JPH01256770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To uniformly distribute a coolant to heat exchanger coils preventing a back flow of the refrigerant to a compressor by providing a liquid level sensor to a liquid separator to detect the liquid level in it, and regulating the opening of an expansion valve corresponding to signals from the liquid level sensor so as to maintain the liquid level within a specified range. CONSTITUTION:In heating operation, the refrigerant gas from a compressor 11 gives heat to hot water and liquefies in a heat exchanger 13, and enters a liquid receiver 15 as shown in solid lines and arrows. The high pressure liquid refrigerant is depressurized by expansion valve 16, vapor-liquid separation takes place in a liquid separator 1, and only the liquid refrigerant enters the bottom of heat exchange coils 18 of an air heat exchanger 17. The liquid refrigerant evaporates and the refrigerant gas is sucked by the compressor 11. Signals from a liquid level sensor 3 are transmitted to a control device 5, and the lift of the expansion valve 16 is regulated by the control device 5 so as to maintain the liquid level within a specified range. On the other hand, in cooling operation as shown in dotted lines and arrows, signals from a pressure-temperature sensor 4 are input to the control device 5, and the lift of the expansion valve 16 is regulated so as to keep the degree of overheating constant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えばビルの冷暖房に用いるヒートポンプに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat pump used for heating and cooling a building, for example.

(従来の技術) 従来、ビル用の大形ヒートポンプの多くは第2図に示す
ようなセパレート方式のものである。
(Prior Art) Conventionally, most large-scale heat pumps for buildings are of a separate type as shown in FIG.

このヒートポンプは、実線の矢印で示すように圧縮機1
1から第1切換弁12.水熱交換器13゜第2切換弁1
4.受液器15.膨張弁16.第2切換弁14.空気熱
交換器17.第1切換弁12を経て圧縮機11に戻る冷
媒の循環流路である暖房運転流路と、破線の矢印で示す
ように圧縮機11から第1切換弁12.空気熱交換器1
7.第2切換弁14、水熱交換器13.第1切換弁12
を経て圧縮機11に戻る冷媒の循環流路である冷房運転
流路を備えている。
This heat pump has a compressor 1 as shown by the solid arrow.
1 to the first switching valve 12. Water heat exchanger 13゜Second switching valve 1
4. Receiver 15. Expansion valve 16. Second switching valve 14. Air heat exchanger 17. A heating operation flow path which is a circulation flow path for refrigerant returning to the compressor 11 via the first switching valve 12, and a heating operation flow path from the compressor 11 to the first switching valve 12 as shown by the broken arrow. Air heat exchanger 1
7. Second switching valve 14, water heat exchanger 13. First switching valve 12
The cooling operation flow path is a circulation flow path for refrigerant that returns to the compressor 11 via the air conditioner.

また、上記のセパレート方式のものでは、通常空気熱交
換器17は屋上に設置され、その他の部分は建物の下層
部(地下の場合が多い)に設置される。
Furthermore, in the above-mentioned separate system, the air heat exchanger 17 is usually installed on the roof, and the other parts are installed in the lower part of the building (often underground).

そして、暖房運転時には、第1.第2切換弁12゜14
は実線で示す状態となり、圧縮機11で圧縮された冷媒
ガスは、水熱交換器13で温水で冷却され、液体となっ
て受液器15内に溜る。さらに、この溜った冷媒液は膨
張弁16で減圧され、例えば屋上に設置した空気熱交換
器17に送り込まれ、この内部の熱交換コイル18を通
過して、ここで外気との間で熱交換を行って蒸発し、再
度圧縮機11に戻り、ここで圧縮され、以後上記同様の
サイクルを繰返す。
During heating operation, the first. Second switching valve 12゜14
is in the state shown by the solid line, and the refrigerant gas compressed by the compressor 11 is cooled by hot water in the water heat exchanger 13, becomes a liquid, and accumulates in the liquid receiver 15. Furthermore, this accumulated refrigerant liquid is depressurized by an expansion valve 16 and sent to an air heat exchanger 17 installed on the roof, for example, and passes through an internal heat exchange coil 18, where it exchanges heat with the outside air. It is then evaporated, returned to the compressor 11, where it is compressed, and the same cycle as above is repeated thereafter.

また、第2図では膨張弁16は汎用的な感温式のものを
使用した例を示し、これと感温部との間の距離を大きく
出来ないため、圧縮機11の吸込側に感温筒19を設け
て、この部分における冷媒の過熱度を適正値になるよう
に感温筒19からの信号により膨張弁16の開度を制御
するようにしである。
In addition, FIG. 2 shows an example in which the expansion valve 16 is a general-purpose temperature-sensing type, and since the distance between the expansion valve 16 and the temperature-sensing part cannot be made large, the temperature-sensing valve is installed on the suction side of the compressor 11. A tube 19 is provided, and the opening degree of the expansion valve 16 is controlled by a signal from the temperature sensing tube 19 so that the degree of superheat of the refrigerant in this portion becomes an appropriate value.

ところで、上記膨張弁16の代わりに、電動式膨張弁を
使う場合は、空気熱交換器17の出口部分で冷媒の圧力
、温度を検出して、電気信号に変えて、この電気信号に
よって膨張弁の制御が行われることもある。
By the way, when using an electrically operated expansion valve instead of the expansion valve 16, the pressure and temperature of the refrigerant are detected at the outlet of the air heat exchanger 17, converted into electrical signals, and the electrical signals are used to operate the expansion valve. control may also be carried out.

なお、冷房運転時には第1.第2切換弁12.14は破
線で示すように切換えられ、圧縮機11から吐出された
冷媒ガスは空気熱交換器17で放熱し、冷却されて受液
器15に入り、膨張弁16を経由して水熱交換器13を
通過する過程で完全に気化して、水熱交換器13内の水
から奪熱した後、圧縮機llに戻るサイクルを繰返す。
Note that during cooling operation, the first The second switching valve 12.14 is switched as shown by the broken line, and the refrigerant gas discharged from the compressor 11 radiates heat in the air heat exchanger 17, is cooled, enters the liquid receiver 15, and passes through the expansion valve 16. The water is completely vaporized in the process of passing through the water heat exchanger 13, and after removing heat from the water in the water heat exchanger 13, it returns to the compressor 11, and the cycle is repeated.

(発明が解決しようとする課題) 上述した第2図に示すセパレート方式のヒートポンプで
は、膨張弁16が空気熱交換器17から離れており、空
気熱交換器17から離れた位置に感温筒19が取付けら
れているため、空気熱交換器17における温度変化に対
する膨張弁16の制御に応答遅れがあり、圧縮機11へ
の液バツク現象が起り易いという問題がある。
(Problems to be Solved by the Invention) In the separate type heat pump shown in FIG. Because of this, there is a delay in the response of the expansion valve 16 to the temperature change in the air heat exchanger 17, and there is a problem that liquid backflow to the compressor 11 is likely to occur.

また、本来的には、膨張弁J6は空気熱交換器17の入
口部分に設け、出口部分の温度、圧力で制御するのが望
ましいが、このようにすると屋上まで立上がる配管のヘ
ッドのため、膨張弁16の入口の圧力が下がり、フラッ
シュガスが発生して、膨張弁の制御が出来なくなる。こ
のため、第2図に示すように、従来は建物下層部にある
受液器15の出口部分に膨張弁16を設けて、ここで、
冷媒を減圧して、気液2相の状態にして屋上の空気熱交
換器17に送り込んでおり、空気熱交換器17の熱交換
コイル18への冷媒の分配のために一般的に知られてい
る特殊な構成要素としてディストリビュータが適宜数組
合わせて使われている。
In addition, originally, it is desirable to provide the expansion valve J6 at the inlet of the air heat exchanger 17 and control it by the temperature and pressure at the outlet. The pressure at the inlet of the expansion valve 16 decreases, flash gas is generated, and the expansion valve becomes uncontrollable. For this reason, as shown in FIG. 2, conventionally an expansion valve 16 is provided at the outlet of the liquid receiver 15 in the lower part of the building.
The refrigerant is depressurized and fed into a gas-liquid two-phase state to the rooftop air heat exchanger 17, which is generally known for the distribution of the refrigerant to the heat exchange coils 18 of the air heat exchanger 17. Distributors are used in appropriate combinations as special components.

この結果、従来の装置では特殊なディストリビュータが
必要となる他、大形化すればする程、熱交換コイル18
への冷媒の均等分配が困難になるという問題がある。
As a result, conventional devices require a special distributor, and the larger the device, the more the heat exchange coil 18
There is a problem in that it becomes difficult to evenly distribute the refrigerant to the

本発明は、上記従来の問題点を課題としてなされたもの
で、圧縮機への液バツク現象をなくし、かつ特殊な装置
を使うことなく、熱交換コイル18への冷媒の均等分配
を可能としたヒートポンプを提供しようとするものであ
る。
The present invention has been made to address the above-mentioned conventional problems, and has made it possible to eliminate the liquid back-up phenomenon to the compressor and to evenly distribute refrigerant to the heat exchange coil 18 without using any special equipment. The aim is to provide a heat pump.

(課題を解決するための手段) 上記課題を解決するために、本発明は、圧縮機から第1
切換弁、水熱交換器、第2切換弁、受液器。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a first
Switching valve, water heat exchanger, second switching valve, liquid receiver.

膨張弁、第2切換弁、空気熱交換器、第1切換弁を経て
上記圧縮機に戻る冷媒の循環流路である暖房運転流路と
、上記圧縮機から上記第1切換弁、空気熱交換器、第2
切換弁、受液器、膨張弁、第2切換弁、水熱交換器、第
1切換弁を経て上記圧縮機に戻る冷媒の循環流路である
冷房運転流路とを備えて、適宜いずれか一方の流路に切
換え可能に形成したヒートポンプにおいて、液分離器を
上記暖房運転流路の空気熱交換器の出口部分に設けて、
液分離器の下部を空気熱交換器の入口部分に連通させる
とともに、この液分離器に、内部の液面レベルを検出可
能に液面センサを取付る一方、この液面センサからの信
号に基いて、この検出した液面レベルを一定範囲内に入
るように上記膨張弁の開度を調節する制御手段を設けて
形成した。
A heating operation flow path which is a circulation flow path for refrigerant returning to the compressor via an expansion valve, a second switching valve, an air heat exchanger, and a first switching valve, and a heating operation flow path from the compressor to the first switching valve and air heat exchange. vessel, second
A switching valve, a liquid receiver, an expansion valve, a second switching valve, a water heat exchanger, a cooling operation flow path which is a circulation flow path for the refrigerant returning to the compressor via the first switching valve, and any appropriate one. In the heat pump configured to be switchable to one of the channels, a liquid separator is provided at the outlet of the air heat exchanger in the heating operation channel,
The lower part of the liquid separator is connected to the inlet of the air heat exchanger, and a liquid level sensor is attached to this liquid separator so that the internal liquid level can be detected. A control means is provided to adjust the opening degree of the expansion valve so that the detected liquid level falls within a certain range.

(実施例) 次に、本発明の一実施例を図面にしたがって説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明に係るヒートポンプを示し、第2図に
示すヒートポンプとは空気熱交換器17の出入口部分と
膨張弁16、およびその制御系を除き他は実質的に同一
であり、互いに対応する部分には同一番号を付して説明
を省略する。
FIG. 1 shows a heat pump according to the present invention, which is substantially the same as the heat pump shown in FIG. 2 except for the inlet/outlet portion of the air heat exchanger 17, the expansion valve 16, and its control system. Corresponding parts are given the same numbers and explanations are omitted.

図示するように、本ヒートポンプでは、受液器15の出
口部分の膨張弁16を電動式のものとし、暖房運転流路
の空気熱交換器17の出口部分に液分離器1を設けると
ともに、空気熱交換器17の入口部分に開閉弁2を設け
て、液分離器lの下部の液溜り部分を空気熱交換器17
と開閉弁2との間の部分に連通させである。また、液分
離器1には、内部の液面レベルを検出可能に液面センサ
3を、第1切換弁12と水熱交換器13との間の部分に
はこの部分の冷媒の圧力、温度を検出可能に圧力温度セ
ンサ4を取付けるとともに、液面センサ3、あるいは圧
力温度センサ4からの信号を受けて膨張弁16の開度を
調節する制御手段5が設けである。
As shown in the figure, in this heat pump, the expansion valve 16 at the outlet of the liquid receiver 15 is electrically operated, and the liquid separator 1 is provided at the outlet of the air heat exchanger 17 in the heating operation flow path. An on-off valve 2 is provided at the inlet of the heat exchanger 17, and the liquid pool at the bottom of the liquid separator l is connected to the air heat exchanger 17.
and the opening/closing valve 2. In addition, a liquid level sensor 3 is installed in the liquid separator 1 so as to be able to detect the internal liquid level, and a liquid level sensor 3 is installed in the area between the first switching valve 12 and the water heat exchanger 13 to determine the pressure and temperature of the refrigerant in this area. A pressure/temperature sensor 4 is attached to detect the pressure and temperature, and a control means 5 is provided for adjusting the opening degree of the expansion valve 16 in response to a signal from the liquid level sensor 3 or the pressure/temperature sensor 4.

即ち、暖房運転時には、実線の矢印で示すように、第2
図に示す装置と同様に、圧縮機11から出た高圧の冷媒
ガスは熱交換器13で温水に熱を与えて液化し、受液器
15に入る。受液器15から出た高圧の冷媒液は膨張弁
16で減圧され、フラッシュガス状態となって配管内を
上昇して行き、液分離器lで気液分離され、冷媒液だけ
が空気熱交換器17内の熱交換コイル18の下から入る
That is, during heating operation, the second
Similar to the device shown in the figure, the high-pressure refrigerant gas discharged from the compressor 11 is liquefied by applying heat to hot water in the heat exchanger 13, and then enters the liquid receiver 15. The high-pressure refrigerant liquid discharged from the liquid receiver 15 is depressurized by the expansion valve 16, becomes a flash gas, and rises in the piping, and is separated into gas and liquid by the liquid separator 1, and only the refrigerant liquid undergoes air heat exchange. It enters from below the heat exchange coil 18 in the vessel 17.

そして、熱交換コイル18に入った冷媒液は外部の空気
から奪熱して蒸発し、液分離器lの上部に入って気液分
離された冷媒ガスと一緒になり、ここから冷媒ガスは圧
縮機11に吸込まれ、以下上記同様のサイクルを繰返す
。     ゛そして、液面センサ3の信号を制御手段
5に入力して、液面レベルが一定の範囲内に入るように
制御手段5により膨張弁16の開度を調節している。
Then, the refrigerant liquid that has entered the heat exchange coil 18 absorbs heat from the outside air and evaporates, enters the upper part of the liquid separator l and is combined with the gas-liquid separated refrigerant gas, from which the refrigerant gas is sent to the compressor. 11, and the same cycle as above is repeated. Then, the signal from the liquid level sensor 3 is input to the control means 5, and the opening degree of the expansion valve 16 is adjusted by the control means 5 so that the liquid level falls within a certain range.

一方、第1図中破線の矢印で示す流れによる冷房運転時
では、圧力温度センサ4の信号を制御手段5に入力し、
このセンサ部分での過熱度が一定になるように上記同様
制御手段5により膨張弁16の開度を調節している。
On the other hand, during cooling operation using the flow indicated by the broken line arrow in FIG.
Similarly to the above, the opening degree of the expansion valve 16 is adjusted by the control means 5 so that the degree of superheating at this sensor portion is constant.

また、液分離器l内の冷媒液は開閉弁2を開とすること
で受液器15に保有されるようになっている。
Further, the refrigerant liquid in the liquid separator 1 is held in the liquid receiver 15 by opening the on-off valve 2.

(効果) 以上の説明より明らかなように、本発明によれば、液分
離器を暖房運転流路の空気熱交換器の出口部分に設けて
、液分離器の下部を空気熱交換器の入口部分に連通させ
るとともに、この液分離器に、内部の液面レベルを検出
可能に液面センサを取付る一方、この液面センサからの
信号に基いて、この検出した液面レベルを一定範囲内に
入るように上記膨張弁の開度を調節する制御手段を設け
て形成しである。
(Effects) As is clear from the above description, according to the present invention, the liquid separator is provided at the outlet of the air heat exchanger in the heating operation flow path, and the lower part of the liquid separator is connected to the inlet of the air heat exchanger. At the same time, a liquid level sensor is attached to this liquid separator so that the internal liquid level can be detected, and based on the signal from this liquid level sensor, the detected liquid level is kept within a certain range. A control means is provided for adjusting the opening degree of the expansion valve so that the expansion valve is opened.

このため、液分離器内の液面高さが一定範囲内に保たれ
、空気熱交換器への送液量の制御の応答性は従来の圧力
温度検出方法による場合よりも速くなり、熱交換コイル
内の未蒸発の冷媒液が流れようとしても、液分離器で回
収されるので液バツク現象を防止することが可能となる
For this reason, the liquid level height in the liquid separator is maintained within a certain range, and the responsiveness of controlling the amount of liquid sent to the air heat exchanger is faster than when using the conventional pressure and temperature detection method. Even if unevaporated refrigerant liquid in the coil attempts to flow, it is collected by the liquid separator, making it possible to prevent liquid back-up.

また、流路が多数に分岐した熱交換コイルへは冷媒液の
単相流で入るため、特殊なディストリビュータを使わな
くても均等分配が可能になり、かつ熱交換器の性能を向
上させることが可能になるという効果を奏する。
In addition, since the refrigerant liquid enters the heat exchange coil, which has many branched flow paths, in a single-phase flow, it is possible to distribute the refrigerant evenly without using a special distributor, and the performance of the heat exchanger can be improved. This has the effect of making it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るヒートポンプの冷媒・制御系統図
、第2図は従来のヒートポンプの冷媒・制御系統図であ
る。 l・・・液分離器、3・・・液面センサ、5・・・制御
手段、11・・・圧縮機、12・・・第1切換弁、13
・・・水熱交換器、14・・・第2切換弁、15・・・
受液器、16・・・膨張弁、17・・・空気熱交換器。 特 許 出 願 人  株式会社神戸製鋼所代 理 人
 弁理士  青山 葆 はか1名第1図 第2図
FIG. 1 is a refrigerant/control system diagram of a heat pump according to the present invention, and FIG. 2 is a refrigerant/control system diagram of a conventional heat pump. l...Liquid separator, 3...Liquid level sensor, 5...Control means, 11...Compressor, 12...First switching valve, 13
...Water heat exchanger, 14...Second switching valve, 15...
Liquid receiver, 16... expansion valve, 17... air heat exchanger. Patent Applicant Kobe Steel Co., Ltd. Agent Patent Attorney Haka Aoyama 1 person Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機から第1切換弁、水熱交換器、第2切換弁
、受液器、膨張弁、第2切換弁、空気熱交換器、第1切
換弁を経て上記圧縮機に戻る冷媒の循環流路である暖房
運転流路と、上記圧縮機から上記第1切換弁、空気熱交
換器、第2切換弁、受液器、膨張弁、第2切換弁、水熱
交換器、第1切換弁を経て上記圧縮機に戻る冷媒の循環
流路である冷房運転流路とを備え、適宜いずれか一方の
流路に切換え可能に形成したヒートポンプにおいて、液
分離器を上記暖房運転流路の空気熱交換器の出口部分に
設けて、液分離器の下部を空気熱交換器の入口部分に連
通させるとともに、この液分離器に、内部の液面レベル
を検出可能に液面センサを取付る一方、この液面センサ
からの信号に基いて、この検出した液面レベルを一定範
囲内に入るように上記膨張弁の開度を調節する制御手段
を設けたことを特徴とするヒートポンプ。
(1) Refrigerant returns from the compressor to the compressor via the first switching valve, water heat exchanger, second switching valve, liquid receiver, expansion valve, second switching valve, air heat exchanger, and first switching valve. a heating operation flow path which is a circulation flow path from the compressor to the first switching valve, an air heat exchanger, a second switching valve, a liquid receiver, an expansion valve, a second switching valve, a water heat exchanger, and a second switching valve. In the heat pump, the liquid separator is connected to the cooling operation flow path, which is a circulation flow path for refrigerant returning to the compressor via a switching valve, and is configured to be able to switch to either one of the flow paths as appropriate. The liquid separator is installed at the outlet of the air heat exchanger to communicate the lower part of the liquid separator with the inlet of the air heat exchanger, and a liquid level sensor is attached to the liquid separator to detect the internal liquid level. and a control means for adjusting the opening degree of the expansion valve based on a signal from the liquid level sensor so that the detected liquid level falls within a certain range.
JP8392188A 1988-04-04 1988-04-04 Heat pump Pending JPH01256770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8392188A JPH01256770A (en) 1988-04-04 1988-04-04 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8392188A JPH01256770A (en) 1988-04-04 1988-04-04 Heat pump

Publications (1)

Publication Number Publication Date
JPH01256770A true JPH01256770A (en) 1989-10-13

Family

ID=13816068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8392188A Pending JPH01256770A (en) 1988-04-04 1988-04-04 Heat pump

Country Status (1)

Country Link
JP (1) JPH01256770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398520A (en) * 2013-07-12 2013-11-20 广东美的暖通设备有限公司 Air conditioning system and method for detecting liquid level of air-liquid separator of air conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398520A (en) * 2013-07-12 2013-11-20 广东美的暖通设备有限公司 Air conditioning system and method for detecting liquid level of air-liquid separator of air conditioning system
CN103398520B (en) * 2013-07-12 2016-04-06 广东美的暖通设备有限公司 The liquid-level detecting method of air-conditioning system and gas-liquid separator thereof

Similar Documents

Publication Publication Date Title
JPH0257875A (en) Operation controller for air conditioner
EP3101372B1 (en) Freezing unit
EP0445368B1 (en) Cooling and heating concurrent operation type of multiple refrigeration cycle
KR101923770B1 (en) Engine drive type air conditioner
KR20210093560A (en) Air Conditioner System for Simultaneous Cooling, Heating and hot water supplying and Control Method of the Same
JPH01256770A (en) Heat pump
JP2000304373A (en) Engine heat pump
JP3356485B2 (en) Multi-room air conditioner
JPH0651756U (en) Cooling system
JPH0534578B2 (en)
JPH06159843A (en) Multiple room type air conditioner
JP3448680B2 (en) Absorption air conditioner
JPH0682113A (en) Multi-room air-conditioning apparatus
JPH0257874A (en) Operation controller for heat recovery type air conditioner
JPH0733095Y2 (en) Accumulator oil return device
JPH0828975A (en) Turbo refrigerator
JPH06341719A (en) Operation controller for air conditioner
KR102261862B1 (en) Air Conditioner System for Simultaneous Cooling, Heating and hot water supplying and Control Method of the Same
JP2712835B2 (en) Control method of multi-room air conditioner
JP3285395B2 (en) Refrigeration cycle
EP4310416A1 (en) Hybrid multi-air conditioning system
JPH04222354A (en) Operation controller for refrigerating equipment
JPH0476334A (en) Cooling device and cooling/heating device
JPH04353369A (en) Air conditioner
JPH05280808A (en) Heat pump system