JPH0476334A - Cooling device and cooling/heating device - Google Patents
Cooling device and cooling/heating deviceInfo
- Publication number
- JPH0476334A JPH0476334A JP18843390A JP18843390A JPH0476334A JP H0476334 A JPH0476334 A JP H0476334A JP 18843390 A JP18843390 A JP 18843390A JP 18843390 A JP18843390 A JP 18843390A JP H0476334 A JPH0476334 A JP H0476334A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- gas
- refrigerant
- condenser
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 27
- 238000010438 heat treatment Methods 0.000 title abstract description 10
- 239000007788 liquid Substances 0.000 claims abstract description 142
- 239000003507 refrigerant Substances 0.000 claims abstract description 53
- 238000004378 air conditioning Methods 0.000 claims description 17
- 239000007791 liquid phase Substances 0.000 claims description 7
- 230000009471 action Effects 0.000 abstract description 9
- 238000001704 evaporation Methods 0.000 abstract description 3
- 230000006872 improvement Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract 1
- 238000000926 separation method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、冷房装置および冷暖房装置に係わり、特に、
気液相変化する冷媒を用いた冷房装置および冷暖房装置
に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling device and a heating and cooling device, and in particular,
The present invention relates to a cooling device and an air-conditioning device using a refrigerant that changes gas-liquid phase.
従来、フロン系冷媒のように気液相変化する冷媒を用い
た冷暖房装置としては、例えば、本出願人が先に出願し
た特開平2−57835号公報に開示されるものが知ら
れている。BACKGROUND ART Conventionally, as a heating and cooling apparatus using a refrigerant that undergoes a gas-liquid phase change, such as a fluorocarbon-based refrigerant, there is known, for example, the one disclosed in Japanese Patent Laid-Open No. 2-57835, which was previously filed by the present applicant.
第3図は、この公報に開示される冷暖房装置を示すもの
で、この冷暖房装置は、受液タンク11と、外部からの
冷、温熱源と熱交換する凝縮器兼蒸発器13と、室内空
気と熱交換する、少なくとも一台以上の室用蒸発器兼凝
縮器15と、所要の配管および冷暖切換弁と、これ等に
より熱サイクルを行なわせる液ポンプ17とを配設して
構成され、さらに、熱運搬手段としてフロン系冷媒が使
用されている。FIG. 3 shows the air conditioning system disclosed in this publication. It is configured by disposing at least one indoor evaporator/condenser 15 that exchanges heat with the indoor evaporator/condenser 15, necessary piping and cooling/heating switching valves, and a liquid pump 17 that performs a heat cycle using these. , Freon-based refrigerants are used as heat transport means.
以上のような冷暖房装置では、熱運搬手段としてフロン
系冷媒を循環使用するようにしたので、冷媒の搬送量が
少なくなり、動力が低減されるとともに、配管のサイズ
を縮小し、配設スペースを節約することが可能となる。In the above-mentioned air-conditioning equipment, a fluorocarbon-based refrigerant is circulated as a heat transport means, which reduces the amount of refrigerant transported, reduces power consumption, and reduces the size of piping to save installation space. It becomes possible to save money.
また、従来の液ポンプ方式では、冷房しか行なうことが
できないが、この冷暖房装置では、可逆サイクルのため
、冷、暖両用に利用でき、さらに、DHC熱源使用にも
適し、また、室内の負荷のアンバランスに対しても容易
に制御可能である。In addition, conventional liquid pump systems can only perform air conditioning, but this air conditioning system has a reversible cycle, so it can be used for both cooling and heating purposes.It is also suitable for use as a DHC heat source, and can reduce indoor loads. Unbalance can also be easily controlled.
そして、この冷暖房装置では、冷房時には、液ポンプ1
7が作動され、受液タンクll内の冷媒は、図に太線で
示すように、第1管路18を通り室用蒸発器兼凝縮器1
5に流入し、ここで蒸発作用を受は室内側の空気を冷房
し、この後、第2管路19を通って蒸゛発器兼凝縮器1
3に流入し、ここで凝縮作用を受け、第3管路20を通
って受液タンク11内に循環する。In this air-conditioning system, during cooling, the liquid pump 1
7 is activated, and the refrigerant in the liquid receiving tank 11 passes through the first pipe line 18 to the indoor evaporator/condenser 1, as shown by the thick line in the figure.
The air flows into the evaporator/condenser 1 through the second pipe line 19, where it receives the evaporative action and cools the indoor air.
3, where it is condensed and circulated through the third pipe line 20 into the liquid receiving tank 11.
しかしながら、このような従来の冷暖房装置では、冷房
時に、室用蒸発器兼凝縮器15の熱交換効率を向上する
ために、液ポンプ17により、室用蒸発器兼凝縮器15
に多量の液状の冷媒を供給すると、液状の冷媒の一部が
そのまま第2管路19に流入し、第2管路19内の冷媒
は、ガス分と液分とが混合した状態になり、この状態の
冷媒を凝縮器兼蒸発器13にそのまま導くと、凝縮器兼
蒸発器13における凝縮効率が極端に低下するという問
題があった。However, in such a conventional air conditioning system, in order to improve the heat exchange efficiency of the indoor evaporator/condenser 15 during cooling, the liquid pump 17 is used to increase the heat exchange efficiency of the indoor evaporator/condenser 15.
When a large amount of liquid refrigerant is supplied to the refrigerant, a part of the liquid refrigerant flows directly into the second pipe line 19, and the refrigerant in the second pipe line 19 becomes a mixture of gas and liquid parts. If the refrigerant in this state is directly led to the condenser/evaporator 13, there is a problem in that the condensation efficiency in the condenser/evaporator 13 is extremely reduced.
本発明は、上記のような問題を解決したもので、凝縮器
における凝縮効率を従来より大幅に向上することのでき
る冷房装置および冷暖房装置を提供することを目的とす
る。The present invention solves the above-mentioned problems, and aims to provide a cooling device and an air-conditioning device that can significantly improve the condensing efficiency of a condenser compared to the conventional one.
本発明にかかわる冷房装置は、気液相変化する冷媒を液
体状態で収容する受液クンクと、前記冷媒と室内空気と
を熱交換させる蒸発器と、前記冷媒と外部からの冷熱源
とを熱交換させる凝縮器と、前記受液タンクの出口側と
前記蒸発器の一例とを接続し液ポンプの介装される第1
管路と、前記蒸発器の他側と前記凝縮器の一側とを接続
する第2管路と、前記凝縮器の他側と受液タンクの入口
側とを接続する第3管路とを備えた冷房装置において、
前記第2管路に、第2管路内のガス分と液分との分離を
行ないガス分のみを凝縮器に導く気液分離装置を配置す
るとともに、この気液分離装置を、前記受液タンクの上
方に配置され、分断された前記第2管路の一対の分断端
部が上部のガス部に開口されるタンク本体と、このタン
ク本体の下部と受液タンクの上部のガス部とを接続する
ドレン管路と、このドレン管路に配置される制御弁と、
前記タンク本体内の冷媒の液位を測定する液面センサと
、この液面センサからの液位信号を入力し、この値に基
づいて液位が予め定められた値になるように前記制御弁
の開度を制御する制御手段とから構成してなるものであ
る。The cooling device according to the present invention includes a liquid receiver that stores a refrigerant in a liquid state that undergoes a gas-liquid phase change, an evaporator that exchanges heat between the refrigerant and indoor air, and a heat exchanger that exchanges heat between the refrigerant and an external cold source. a first condenser to be replaced; and a first condenser that connects the outlet side of the liquid receiving tank and the example of the evaporator and is equipped with a liquid pump.
a pipe line, a second pipe line connecting the other side of the evaporator and one side of the condenser, and a third pipe line connecting the other side of the condenser and the inlet side of the liquid receiving tank. In the cooling system equipped with
A gas-liquid separator is disposed in the second pipe line to separate gas and liquid in the second pipe line and guide only the gas content to the condenser, and this gas-liquid separator is connected to the liquid receiving liquid. a tank body disposed above the tank, in which a pair of divided ends of the second pipe line are opened to an upper gas part; a gas part in a lower part of the tank body and in an upper part of the liquid receiving tank; a drain pipe connecting the drain pipe, a control valve disposed in the drain pipe,
A liquid level sensor that measures the liquid level of the refrigerant in the tank body, and a liquid level signal from this liquid level sensor is input, and the control valve controls the liquid level to a predetermined value based on this value. and a control means for controlling the opening degree of the opening.
本発明の冷暖房装置は、気液相変化する冷媒を液体状態
で収容する受液タンクと、前記冷媒と室内空気とを熱交
換させる蒸発器と、前記冷媒と外部からの冷熱源とを熱
交換させる凝縮器と、前記受液タンクの出口側と前記蒸
発器の一側とを接続し液ポンプの介装される第1管路と
、前記蒸発器の他側と前記凝縮器の一側とを接続する第
2管路と、前記凝縮器の他側と受液タンクの入口側とを
接続する第3管路とを備えた冷房回路を有する冷暖房装
置において、前記第2管路に、第2管路内のガス分と液
分との分離を行ないガス分のみを凝縮器に導く気液分離
装置を配置するとともに、この気液分離装置を、前記受
液タンクの上方に配置され、分断された前記第2管路の
一対の分断端部が上部のガス部に開口されるタンク本体
と、このタンク本体の下部と受液クンクの上部のガス部
とを接続するドレン管路と、このドレン管路に配置され
る制御弁と、前記タンク本体内の冷媒の液位を測定する
液面センサと、この液面センサからの液位信号を入力し
、この値に基づいて液位が予め定められた値になるよう
に前記制御弁の開度を制御する制御手段とから構成して
なるものである。The air conditioning system of the present invention includes a liquid receiving tank that stores a refrigerant that undergoes a gas-liquid phase change in a liquid state, an evaporator that exchanges heat between the refrigerant and indoor air, and an external cooling source that exchanges heat with the refrigerant. a first conduit connecting the outlet side of the liquid receiving tank and one side of the evaporator and having a liquid pump interposed therein; and a third pipe line that connects the other side of the condenser and the inlet side of the liquid receiving tank, in which the second pipe line has a third pipe line connected to the liquid receiving tank. A gas-liquid separator that separates the gas and liquid in the two pipes and guides only the gas to the condenser is installed, and this gas-liquid separator is placed above the liquid receiving tank and separated. a tank body in which the pair of divided ends of the second pipe line are opened to the upper gas part; a drain pipe connecting the lower part of the tank body and the gas part in the upper part of the liquid receiving tank; A control valve arranged in this drain pipe, a liquid level sensor that measures the liquid level of the refrigerant in the tank body, and a liquid level signal from this liquid level sensor are input, and the liquid level is adjusted based on this value. and control means for controlling the opening degree of the control valve to a predetermined value.
本発明の冷房装置および冷暖房装置においては、冷房時
には、受液タンク内の冷媒は、第1管路を通り蒸発器に
流入し、ここで蒸発作用を受は室内側の空気を冷房し、
第2管路を通って凝縮器に流入し、ここで凝縮作用を受
け、この後、第3管路を通って受液タンク内に循環する
。In the air-conditioning device and the air-conditioning/heating device of the present invention, during cooling, the refrigerant in the liquid receiving tank flows into the evaporator through the first pipe, where it receives the evaporation action and cools the indoor air;
It enters the condenser through the second line, where it is subjected to condensation action, and is then circulated through the third line into the receiving tank.
そして、本発明では、第2管路に配置される気液分離装
置により、第2管路内のガス分と液分との分離が行なわ
れ、ガス分のみが凝縮器に導かれる。In the present invention, the gas-liquid separator disposed in the second pipe separates the gas and liquid in the second pipe, and only the gas is guided to the condenser.
すなわち、第2管路内のガス分と液分とを含んだ冷媒は
、蒸発器側の分断端部からタンク本体の上部に流出され
、軽いガス分のみが、凝縮器側の分断端部から凝縮器に
導かれ凝縮器において凝縮される。That is, the refrigerant containing gas and liquid in the second pipe flows out from the divided end on the evaporator side to the upper part of the tank body, and only the light gas component flows out from the divided end on the condenser side. It is led from the part to the condenser and condensed in the condenser.
一方、タンク本体内に流入した液分は、制御手段により
制御弁を開とすることにより、タンク本体の下部からド
レン管路を通り、受液タンクに導かれる。On the other hand, the liquid that has flowed into the tank body is guided from the lower part of the tank body to the liquid receiving tank through the drain pipe by opening the control valve by the control means.
以下、本発明の詳細を図面に示す実施例について説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, details of the present invention will be described with reference to embodiments shown in the drawings.
第1図は、本発明の冷房装置の一実施例を示すもので、
図において符号21は、例えば、フロン系冷媒のように
気液相変化する冷媒を液体状態で収容する受液タンクを
示している。FIG. 1 shows an embodiment of the cooling device of the present invention.
In the figure, the reference numeral 21 indicates a liquid receiving tank that stores a refrigerant that undergoes a gas-liquid phase change, such as a fluorocarbon refrigerant, in a liquid state.
符号23は、冷媒と室内空気とを熱交換させる複数台の
蒸発器(1台のみを図示)を示している。Reference numeral 23 indicates a plurality of evaporators (only one is shown) that exchange heat between the refrigerant and indoor air.
符号25は、冷媒と外部からの冷熱源とを熱交換させる
凝縮器を示しており、この凝縮器25には、外部から冷
水等の冷熱源を供給するための冷熱源供給配管27が挿
通されている。Reference numeral 25 indicates a condenser for exchanging heat between the refrigerant and a cold source from the outside, and a cold source supply pipe 27 for supplying a cold source such as cold water from the outside is inserted through the condenser 25. ing.
受液タンク21の出口側と蒸発器23の一側とを接続し
て第1管路29が形成されており、この第1管路29に
は、液ポンプ31が配置されている。A first pipe line 29 is formed by connecting the outlet side of the liquid receiving tank 21 and one side of the evaporator 23, and a liquid pump 31 is arranged in this first pipe line 29.
また、蒸発器23の他側と凝縮器25の一側とを接続し
て第2管路33が形成されている。Further, a second pipe line 33 is formed by connecting the other side of the evaporator 23 and one side of the condenser 25.
さらに、凝縮器25の他側と受液タンク21の入口側と
を接続して第3管路35が形成されている。Furthermore, a third pipe line 35 is formed by connecting the other side of the condenser 25 and the inlet side of the liquid receiving tank 21.
そして、この実施例では、第2管路33には、第2管路
33内のガス分と液分との分離を行ないガス分のみを凝
縮器25に導く気液分離装置37が配置されている。In this embodiment, a gas-liquid separator 37 is arranged in the second pipe line 33 to separate the gas and liquid parts in the second pipe line 33 and guide only the gas part to the condenser 25. There is.
この気液分離装置37は、受液タンク21の上方に配置
されるタンク本体39を有している。This gas-liquid separation device 37 has a tank body 39 disposed above the liquid receiving tank 21 .
このタンク本体39の上部のガス部には、分断された第
2管路33の一対の分断端部41,43が開口されてい
る。A pair of divided ends 41 and 43 of the divided second pipe line 33 are opened in the upper gas section of the tank body 39.
タンク本体39の下部と受液タンク21の上部のガス部
とを接続してドレン管路45が配置されており、このド
レン管路45には、制御弁47が配置されている。A drain pipe line 45 is arranged to connect the lower part of the tank body 39 and the upper gas section of the liquid receiving tank 21, and a control valve 47 is arranged in this drain pipe line 45.
一方、タンク本体390側方には、タンク本体39と同
一レベルで、液面計48が配置されており、この液面計
48には、タンク本体39内の冷媒の液位を出力する液
面センサ49が配置されている。On the other hand, a liquid level gauge 48 is arranged on the side of the tank body 390 at the same level as the tank body 39, and this liquid level gauge 48 has a liquid level gauge 48 that outputs the liquid level of the refrigerant in the tank body 39. A sensor 49 is arranged.
なお、図において符号50は、液面センサ49からの液
位信号を入力し、この値に基づいて液位が予め定められ
た、例えば、一定の値になるように、制御弁47の開度
を制御する制御装置を示している。In addition, in the figure, reference numeral 50 inputs a liquid level signal from the liquid level sensor 49, and based on this value, controls the opening degree of the control valve 47 so that the liquid level becomes a predetermined, for example, constant value. The control device that controls the is shown.
以上のように構成された冷房装置では、液ポンプ31が
作動されると、受液タンク21内の冷媒は、第1管路2
9を通り蒸発器23に流入し、ここで蒸発作用を受は室
内側の空気を冷房し、第2管路33を通って凝縮器25
に流入し、ここで凝縮作用を受け、この後、第3管路3
5を通って受液タンク21内に循環する。In the cooling device configured as described above, when the liquid pump 31 is operated, the refrigerant in the liquid receiving tank 21 is transferred to the first pipe line 2.
9, the air flows into the evaporator 23, where it receives an evaporative action, cools the indoor air, and flows through the second pipe line 33 to the condenser 25.
, where it is condensed, and then flows into the third pipe 3.
5 and circulates into the liquid receiving tank 21.
しかして、以上のように構成された冷房装置では、第2
管路33に、第2管路33内のガス分と液分との分離を
行ないガス分のみを凝縮器25に導く気液分離装置37
を配置するとともに、この気液分離装置37を、受液タ
ンク21の上方に配置され、分断された第2管路33の
一対の分断端部41,43が上部のガス部に開口される
タンク本体39と、このタンク本体39の下部と受液タ
ンク21の上部のガス部とを接続するドレン管路45と
、このドレン管路45に配置される制御弁47と、タン
ク本体39内の冷媒の液位を測定する液面センサ49と
、この液面センサ49からの液位信号を入力し、この値
に基づいてタンク本体39内の液位が予め定められた値
になるように制御弁47の開度を制御する制御装置50
とから構成したので、第2管路33内のガス分と液分と
を含んだ冷媒は、蒸発器23例の分断端部4工からタン
ク本体39の上部に流出され、軽いガス分のみが、凝縮
器25側の分断端部43から凝縮器25に導かれ凝縮器
25において凝縮され、一方、タンク本体39内に流入
した液分は、制御装置50により制御弁47を開とする
ことにより、タンク本体39の下部からドレン管路45
を通り、受液タンク21に導かれるため、凝縮器25に
供給される冷媒には、凝縮の不要な熱交換効率を低下さ
せる液状の冷媒が含まれることがなく、凝縮器25にお
ける凝縮効率を従来より大幅に向上することが可能とな
る。However, in the cooling device configured as above, the second
A gas-liquid separation device 37 is provided in the pipe 33 to separate the gas and liquid in the second pipe 33 and guide only the gas to the condenser 25.
At the same time, this gas-liquid separation device 37 is arranged above the liquid receiving tank 21, and the pair of divided ends 41 and 43 of the divided second pipe line 33 are opened to the upper gas section. A drain pipe 45 connecting the lower part of the tank main body 39 and the upper gas part of the liquid receiving tank 21, a control valve 47 disposed in the drain pipe 45, and a A liquid level sensor 49 that measures the liquid level of the refrigerant and a liquid level signal from this liquid level sensor 49 are input, and based on this value, the liquid level in the tank body 39 is controlled to a predetermined value. A control device 50 that controls the opening degree of the valve 47
Since the refrigerant containing the gas and liquid components in the second pipe line 33 flows out from the divided end portion 4 of the evaporator 23 to the upper part of the tank body 39, only the light gas component is discharged. is guided from the divided end 43 on the condenser 25 side to the condenser 25 and condensed in the condenser 25, while the liquid that has flowed into the tank body 39 is caused to open the control valve 47 by the control device 50. By this, the drain pipe line 45 is connected from the lower part of the tank body 39.
Since the refrigerant is guided to the liquid receiving tank 21 through It is possible to achieve a significant improvement over the conventional method.
第2図は、本発明の冷暖房装置の一実施例を示すもので
、この実施例では、室内には、蒸発器と凝縮器との機能
を備えた室用蒸発器兼凝縮器51が配置され、また、室
外には、冷媒と外部からの温熱源とを熱交換させる蒸発
器53が配置されている。FIG. 2 shows an embodiment of the air conditioning system of the present invention. In this embodiment, an indoor evaporator/condenser 51 having the functions of an evaporator and a condenser is arranged indoors. Also, an evaporator 53 is arranged outside the room to exchange heat between the refrigerant and a heat source from the outside.
この蒸発器53には、外部から温水等の温熱源を供給す
るための温熱源供給配管55が挿通されている。A heat source supply pipe 55 for supplying a heat source such as hot water from the outside is inserted into the evaporator 53 .
受液タンク21の出口側と蒸発器53の一側とを接続し
て第4管路57が形成されており、この第4管路57に
は、開閉弁59が配置されている。A fourth pipe line 57 is formed by connecting the outlet side of the liquid receiving tank 21 and one side of the evaporator 53, and an on-off valve 59 is disposed in the fourth pipe line 57.
また、蒸発器53の他側と室用蒸発器兼凝縮器51の他
側とを接続して第5管路61が形成されている。Further, a fifth pipe line 61 is formed by connecting the other side of the evaporator 53 and the other side of the indoor evaporator/condenser 51.
さらに、第1管路29の開閉弁63と室用蒸発器兼凝縮
器51との間から分岐して、受液タンク21の入口側に
接続する第6管路65が配置されており、この第6管路
65には、開閉弁67が配置されている。Furthermore, a sixth pipe line 65 is arranged which branches from between the on-off valve 63 of the first pipe line 29 and the indoor evaporator/condenser 51 and connects to the inlet side of the liquid receiving tank 21. An on-off valve 67 is arranged in the sixth conduit 65.
そして、第2管路33には、上述した実施例の気液分離
装置37と同一の気液分離装置が配置されている。In the second pipe line 33, a gas-liquid separation device that is the same as the gas-liquid separation device 37 of the above-described embodiment is arranged.
以上のように構成された冷暖房装置では、冷房は、室用
蒸発器兼凝縮器51を蒸発器として使用し、前述した実
施例とほぼ同様に行なわれる。In the air conditioning system configured as described above, cooling is performed in substantially the same manner as in the embodiment described above, using the room evaporator/condenser 51 as an evaporator.
一方、暖房は、液ポンプ31の作動により、受液タンク
21内の冷媒を、第4管路57を通り蒸発器53に流入
させ、ここで蒸発作用を受けた冷媒を、第5管路61を
通して室用蒸発器兼凝縮器51に流入させ、ここで凝縮
作用を受は室内側の空気を暖房した冷媒を、第6管路6
5を通して受液タンク21内に循環することにより行な
われる。On the other hand, for heating, the liquid pump 31 is operated to cause the refrigerant in the liquid receiving tank 21 to flow into the evaporator 53 through the fourth pipe line 57, and the refrigerant subjected to evaporation here is transferred to the fifth pipe line 61. The refrigerant that heats the indoor air is passed through the sixth pipe line 6 to flow into the indoor evaporator/condenser 51 where it undergoes a condensing action.
This is done by circulating the liquid through the liquid receiving tank 21 through the liquid receiving tank 21.
以上のように構成された冷暖房装置においても、冷房時
には、第1図に示した実施例とほぼ同様の効果を得るこ
とができる。Even in the air-conditioning device configured as described above, substantially the same effect as the embodiment shown in FIG. 1 can be obtained during cooling.
[発明の効果]
以上述べたように、本発明によれば、第2管路に、第2
管路内のガス分と液分との分離を行ないガス分のみを凝
縮器に導く気液分離装置を配置するとともに、この気液
分離装置を、受液タンクの上方に配置され、分断された
第2管路の一対の分断端部が上部のガス部に開口される
タンク本体と、このタンク本体の下部と受液タンクの上
部のガス部とを接続するドレン管路と、このドレン管路
に配置される制御弁と、タンク本体内の冷媒の液位を測
定する液面センサと、この液面センサからの液位信号を
入力し、この値に基づいて液位が予め定められた値にな
るように制御弁の開度を制御する制御手段とから構成し
たので、第2管路内のガス分と液分とを含んだ冷媒は、
蒸発器側の分断端部からタンク本体の上部に流出され、
軽いガス分のみが、凝縮器側の分断端部から凝縮器に導
かれ凝縮器において凝縮され、一方、タンク本体内に流
入した液分は、制御手段により制御弁を開とすることに
より、タンク本体の下部からドレン管路を通り、受液タ
ンクに導かれるため、凝縮器に供給される冷媒には、凝
縮の不要な熱交換効率を低下させる液状の冷媒が含まれ
ることがなく、凝縮器における凝縮効率を従来より大幅
に向上することができるという利点がある。[Effects of the Invention] As described above, according to the present invention, the second
A gas-liquid separator is installed that separates the gas and liquid in the pipeline and guides only the gas to the condenser.This gas-liquid separator is placed above the liquid receiving tank and A tank body in which a pair of divided ends of a second pipe are opened to an upper gas part, a drain pipe connecting a lower part of this tank main body and an upper gas part of a liquid receiving tank, and this drain pipe. A control valve placed in the channel, a liquid level sensor that measures the liquid level of the refrigerant in the tank body, and a liquid level signal from this liquid level sensor are input, and the liquid level is determined in advance based on this value. Since the refrigerant in the second pipe line includes a gas component and a liquid component,
It flows out from the divided end on the evaporator side to the top of the tank body,
Only the light gas component is led to the condenser from the divided end on the condenser side and condensed in the condenser, while the liquid component that has flowed into the tank body is controlled by opening the control valve by the control means. Since the refrigerant is led from the bottom of the tank body through the drain pipe to the liquid receiving tank, the refrigerant supplied to the condenser does not contain liquid refrigerant that reduces heat exchange efficiency and does not require condensation. There is an advantage that the condensation efficiency in the container can be significantly improved compared to the conventional method.
第1図は本発明の冷房装置の一実施例を示す配管系統図
である。
第2図は本発明の冷暖房装置の一実施例を示す配管系統
図である。
第3図は従来の冷暖房装置を示す配管系統図である。
〔主要な部分の符号の説明〕
21・・・受液タンク
23・・・蒸発器
25・・・凝縮器
29・・・第1管路
31・・・液ポンプ
33・・・第2管路
35・・・第3管路
39・・・タンク本体
41.43・・・分断端部
45・・・ドレン管路
47・・・制御弁
49・・・液面センサ
50・・・制御装置。
第1図FIG. 1 is a piping system diagram showing an embodiment of the cooling device of the present invention. FIG. 2 is a piping system diagram showing an embodiment of the air conditioning system of the present invention. FIG. 3 is a piping system diagram showing a conventional heating and cooling system. [Explanation of symbols of main parts] 21...Liquid receiving tank 23...Evaporator 25...Condenser 29...First pipe line 31...Liquid pump 33...Second pipe line 35... Third pipe line 39... Tank body 41.43... Divided end portion 45... Drain pipe line 47... Control valve 49... Liquid level sensor 50... Control device . Figure 1
Claims (2)
ンクと、前記冷媒と室内空気とを熱交換させる蒸発器と
、前記冷媒と外部からの冷熱源とを熱交換させる凝縮器
と、前記受液タンクの出口側と前記蒸発器の一側とを接
続し液ポンプの介装される第1管路と、前記蒸発器の他
側と前記凝縮器の一側とを接続する第2管路と、前記凝
縮器の他側と受液タンクの入口側とを接続する第3管路
とを備えた冷房装置において、前記第2管路に、第2管
路内のガス分と液分との分離を行ないガス分のみを凝縮
器に導く気液分離装置を配置するとともに、この気液分
離装置を、前記受液タンクの上方に配置され、分断され
た前記第2管路の一対の分断端部が上部のガス部に開口
されるタンク本体と、このタンク本体の下部と受液タン
クの上部のガス部とを接続するドレン管路と、このドレ
ン管路に配置される制御弁と、前記タンク本体内の冷媒
の液位を測定する液面センサと、この液面センサからの
液位信号を入力し、この値に基づいて液位が予め定めら
れた値になるように前記制御弁の開度を制御する制御手
段とから構成してなることを特徴とする冷房装置。(1) A liquid receiving tank that stores a refrigerant that changes gas-liquid phase in a liquid state, an evaporator that exchanges heat between the refrigerant and indoor air, and a condenser that exchanges heat between the refrigerant and an external cold source. , a first pipe line connecting the outlet side of the liquid receiving tank and one side of the evaporator and having a liquid pump interposed therein; and a first pipe line connecting the other side of the evaporator and one side of the condenser. In the cooling device comprising two pipes and a third pipe connecting the other side of the condenser and the inlet side of the liquid receiving tank, the second pipe is connected to the gas in the second pipe. A gas-liquid separator is disposed that separates the gas from the liquid and leads only the gas to the condenser, and this gas-liquid separator is disposed above the liquid receiving tank and connected to the separated second pipe A tank body with a pair of divided ends opening into the upper gas section, a drain pipe connecting the lower part of the tank main body and the upper gas part of the liquid receiving tank, and a drain pipe arranged in the drain pipe. A control valve, a liquid level sensor that measures the liquid level of the refrigerant in the tank body, and a liquid level signal from this liquid level sensor are input, and the liquid level is adjusted to a predetermined value based on this value. and a control means for controlling the opening degree of the control valve.
ンクと、前記冷媒と室内空気とを熱交換させる蒸発器と
、前記冷媒と外部からの冷熱源とを熱交換させる凝縮器
と、前記受液タンクの出口側と前記蒸発器の一側とを接
続し液ポンプの介装される第1管路と、前記蒸発器の他
側と前記凝縮器の一側とを接続する第2管路と、前記凝
縮器の他側と受液タンクの入口側とを接続する第3管路
とを備えた冷房回路を有する冷暖房装置において、前記
第2管路に、第2管路内のガス分と液分との分離を行な
いガス分のみを凝縮器に導く気液分離装置を配置すると
ともに、この気液分離装置を、前記受液タンクの上方に
配置され、分断された前記第2管路の一対の分断端部が
上部のガス部に開口されるタンク本体と、このタンク本
体の下部と受液タンクの上部のガス部とを接続するドレ
ン管路と、このドレン管路に配置される制御弁と、前記
タンク本体内の冷媒の液位を測定する液面センサと、こ
の液面センサからの液位信号を入力し、この値に基づい
て液位が予め定められた値になるように前記制御弁の開
度を制御する制御手段とから構成してなることを特徴と
する冷暖房装置。(2) A liquid receiving tank that stores a refrigerant that changes in gas-liquid phase in a liquid state, an evaporator that exchanges heat between the refrigerant and indoor air, and a condenser that exchanges heat between the refrigerant and an external cold source. , a first pipe line connecting the outlet side of the liquid receiving tank and one side of the evaporator and having a liquid pump interposed therein; and a first pipe line connecting the other side of the evaporator and one side of the condenser. In the air conditioning system, the air conditioning system has a cooling circuit including two pipes and a third pipe connecting the other side of the condenser and the inlet side of the liquid receiving tank. A gas-liquid separator is disposed that separates the gas component from the liquid component and guides only the gas component to the condenser, and the gas-liquid separator is disposed above the liquid receiving tank and A tank main body in which a pair of divided ends of two pipes are opened to an upper gas section, a drain pipe connecting a lower part of this tank main body and an upper gas section of a liquid receiving tank, and this drain pipe. A control valve disposed in the tank body, a liquid level sensor that measures the liquid level of the refrigerant in the tank body, and a liquid level signal from this liquid level sensor is input, and the liquid level is determined in advance based on this value. and a control means for controlling the opening degree of the control valve so that the opening degree of the control valve is adjusted to a certain value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18843390A JP2898369B2 (en) | 1990-07-16 | 1990-07-16 | Cooling and cooling systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18843390A JP2898369B2 (en) | 1990-07-16 | 1990-07-16 | Cooling and cooling systems |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0476334A true JPH0476334A (en) | 1992-03-11 |
JP2898369B2 JP2898369B2 (en) | 1999-05-31 |
Family
ID=16223591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18843390A Expired - Lifetime JP2898369B2 (en) | 1990-07-16 | 1990-07-16 | Cooling and cooling systems |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2898369B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0834613A (en) * | 1994-04-05 | 1996-02-06 | Natl Inst For Res In Inorg Mater | Production of high homogeneity and high purity yttrium-containing zirconia powder |
JP2012167833A (en) * | 2011-02-10 | 2012-09-06 | Ntt Facilities Inc | Secondary refrigerant air conditioning system and operation method of the same |
CN118231102A (en) * | 2024-05-23 | 2024-06-21 | 沈阳中科瑞达科技有限公司 | Automatic dehumidifying device for transformer gas and control method thereof |
-
1990
- 1990-07-16 JP JP18843390A patent/JP2898369B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0834613A (en) * | 1994-04-05 | 1996-02-06 | Natl Inst For Res In Inorg Mater | Production of high homogeneity and high purity yttrium-containing zirconia powder |
JP2012167833A (en) * | 2011-02-10 | 2012-09-06 | Ntt Facilities Inc | Secondary refrigerant air conditioning system and operation method of the same |
CN118231102A (en) * | 2024-05-23 | 2024-06-21 | 沈阳中科瑞达科技有限公司 | Automatic dehumidifying device for transformer gas and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2898369B2 (en) | 1999-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58115273A (en) | Heat-pump type water heater circuit | |
US6748762B2 (en) | Absorption-refrigerator | |
EP0322476B1 (en) | Air-cooled absorbtion-type water cooling and heating apparatus | |
JPH0886530A (en) | Absorption type water cooling and heating machine | |
JPH0476334A (en) | Cooling device and cooling/heating device | |
JPH0476335A (en) | Cooling device and cooling/heating device | |
JPH0486433A (en) | Cooling device and cooling/heating device | |
JP2940839B2 (en) | Air conditioning | |
JP2859717B2 (en) | Cooling and cooling systems | |
JP2940838B2 (en) | Air conditioning | |
JP2902068B2 (en) | Liquid receiving device for air conditioning | |
JP2854688B2 (en) | Air conditioning | |
JP2854689B2 (en) | Air conditioning | |
JPH0476331A (en) | Cooling and heating device | |
JPH0476392A (en) | Heat exchanger for air conditioning | |
JPH07849Y2 (en) | Air-cooled absorption chiller / heater | |
JPH0476332A (en) | Cooling device | |
JPH0476391A (en) | Liquid receiving device for air conditioning | |
JP2898370B2 (en) | Air conditioning | |
JPH0462343A (en) | Cooling and heating device | |
JPH0476333A (en) | Cooling and heating device | |
JPH04203861A (en) | Absorption type water cooling and/or heating device and operation thereof | |
JPH01219436A (en) | Air conditioning device in building | |
JP2996493B2 (en) | Cooling device | |
JP2804160B2 (en) | Heating system |