JPH01256541A - Plasma treatment apparatus - Google Patents

Plasma treatment apparatus

Info

Publication number
JPH01256541A
JPH01256541A JP63083076A JP8307688A JPH01256541A JP H01256541 A JPH01256541 A JP H01256541A JP 63083076 A JP63083076 A JP 63083076A JP 8307688 A JP8307688 A JP 8307688A JP H01256541 A JPH01256541 A JP H01256541A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
plasma
grounded
grounded electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63083076A
Other languages
Japanese (ja)
Other versions
JPH0518330B2 (en
Inventor
Yoshikazu Kondo
義和 近藤
Yukio Tsuda
津田 由紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP63083076A priority Critical patent/JPH01256541A/en
Priority to US07/214,179 priority patent/US4968918A/en
Priority to DE3887933T priority patent/DE3887933T2/en
Priority to EP88110707A priority patent/EP0298420B1/en
Priority to KR1019880008345A priority patent/KR950001541B1/en
Publication of JPH01256541A publication Critical patent/JPH01256541A/en
Publication of JPH0518330B2 publication Critical patent/JPH0518330B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To suppress unnecessary plasma discharge near the electrodes as much as possible, by radially arranging ungrounded electrodes connected to a power supply provided at the center. CONSTITUTION:A power supply part 1 supported by an insulated bearing part 3 is provided at the center of a group of ungrounded electrodes 4 arranged in a vacuum vessel A which is provided with a gas inlet hole 11 and a gas discharge hole 12 and can withstand a pressure difference between the outside and inside pressures of at least 1atm, and a plurality of the radially arranged electrodes 4 are supported by electrode connecting members 2 extending from said part 1. The supply part 1 is electrically connected to the electrodes 4, and flat grounded electrodes 5 are provided in positions opposed to and in parallel with both surfaces of the electrode 4. A winding roller 10 is driven by an electric motor 16, and a cloth 8 wound around a supply roller 9 is supplied through rollers 6 and 7 to the gap between the electrode 5 and the electrode 4, subjected to plasma treatment and wound around a roller 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、長尺物体の連続的プラズマ処理装置に関する
。更に詳しくは、膜、フィルム、シート、布、繊維等の
長尺物体、特に平面状あるいは比較的厚さが小さく、幅
の大きい長尺被処理物(以下処理布帛ということがある
)のプラズマ処理を連続的に行なうための装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a continuous plasma processing apparatus for elongated objects. More specifically, plasma treatment of long objects such as membranes, films, sheets, cloth, fibers, etc., especially long objects that are flat or relatively thin and wide (hereinafter sometimes referred to as treated fabrics). This invention relates to a device for continuously performing

(従来の技術) プラズマ処理装置、特に平面状シート状物や長尺物のプ
ラズマ処理装置としては、従来数多くの提案がなされて
いる。例えば、特公昭6O−IL149号、同60−3
1,939号各公報には、大面積の一対の対向電極の間
に布帛を通して処理するプラズマ処理装置が提案されて
おり、また特開昭60−134,061号、同61−2
28.028号、特公昭60−59.251号、同61
−36.862号各公報には、複数個の非接地電極を円
筒状接地電極の周りに配設したプラズマ処理装置が提案
されている。さらに特公昭60−11,150号、同6
0−54.428号各公報には、多層化平行平板電極を
有するプラズマ処理装置の提案がある。
(Prior Art) Many proposals have been made in the past regarding plasma processing apparatuses, particularly plasma processing apparatuses for flat sheet-like objects and long objects. For example, Special Publication No. 6O-IL149, No. 60-3
No. 1,939 each proposes a plasma processing apparatus in which a cloth is passed between a pair of opposing electrodes with a large area, and Japanese Patent Laid-Open Nos. 60-134,061 and 61-2
No. 28.028, Special Publication No. 60-59.251, No. 61
No. 36.862 each proposes a plasma processing apparatus in which a plurality of non-grounded electrodes are arranged around a cylindrical grounded electrode. Furthermore, Special Publication No. 11,150 of 1980, 6
No. 0-54.428 each proposes a plasma processing apparatus having multilayered parallel plate electrodes.

(本発明が解決しようとする課題) しかし乍ら、上記特公昭60−11.149号、同60
−31.939号各公報の提案は、大面積の電極面にお
ける処理程度の局部的バラツキによる不均一処理や、電
極の上下、左右空間にプラズマ放電が発生することによ
る処理効率の低下等の問題がある。また前記特開昭60
−134.061号公報その他の提案においては、電極
の処理面積を余り大きくすることができず、また非接地
電極周りでの放電ロスが避けられない。前記特公昭60
−11,150号、同60−54.428号各公報の提
案では、多層化した各電極上で高周波等の位相にズレを
生じ、電極間で相互干渉して、安定した運転および品質
を得る上に問題がある。
(Problem to be solved by the present invention) However,
-31.939 The proposals in each publication have problems such as non-uniform treatment due to local variations in the degree of treatment on a large electrode surface, and a decrease in treatment efficiency due to plasma discharge occurring above, below, and on the left and right sides of the electrode. There is. Also, the aforementioned Unexamined Patent Application Publication No. 1986
In the proposals of Publication No. 134.061 and others, the processing area of the electrode cannot be made very large, and discharge loss around the non-grounded electrode cannot be avoided. Said Special Public Service 1986
-11,150 and No. 60-54.428 propose that the phases of high-frequency waves, etc., are shifted on each multilayered electrode, and mutual interference occurs between the electrodes, resulting in stable operation and quality. There is a problem above.

このように従来公知のプラズマ処理装置の、いずれにも
運転の安定性、品質の均一性、および投入電力に対する
処理効率のすべてを充分満足し得るものはない。
As described above, none of the conventionally known plasma processing apparatuses can fully satisfy all of the requirements of operational stability, quality uniformity, and processing efficiency relative to input power.

本発明者等は、これら従来提案された装置の欠点を解消
すべ(、真空容器とその中に配設された平面状処理表面
を有する複数個の非接地電極と該非接地電極処理表面に
対向して設けられた接地電極とよりなり、被処理物を上
記非接地電極と接地電極との間に通すための案内手段を
具備したプラズマ処理装置を嚢に特願昭62−33,4
42号として提案した。この提案になる装置は従来公知
の装置に付帯する種々の技術的課題の多くを解決するこ
とに成功したが、引続き研究を重ねた結果、装置のコン
パクト化、処理効率の向上等の面において尚改良の必要
を見出し、本発明を完成するに至った。
The present inventors aimed to eliminate the drawbacks of these conventionally proposed devices (i.e., a vacuum container, a plurality of non-grounded electrodes each having a planar treated surface disposed therein, and facing the non-grounded electrode treated surface). Patent Application No. 1982-33, April 1982, a plasma processing apparatus is equipped with a plasma processing apparatus comprising a ground electrode provided with a ground electrode and a guide means for passing the object to be processed between the non-ground electrode and the ground electrode.
I proposed it as No. 42. This proposed device succeeded in solving many of the various technical problems associated with conventionally known devices, but as a result of continued research, we found that there were still improvements in terms of making the device more compact and improving processing efficiency. They discovered the need for improvement and completed the present invention.

本発明の目的とするところは、複数個の電極を有しなが
ら、各電極間でプラズマの相互干渉が発生せず、かつ電
極周辺部の不用有害なプラズマ放電を極力抑えたプラズ
マ処理装置を提供するにある。また別の目的は、より安
定した運転ができ、かつ高品位で均一な被処理物をより
効率よく製造できる装置を提供するにある。
An object of the present invention is to provide a plasma processing apparatus that has a plurality of electrodes, but does not cause mutual interference of plasma between the electrodes, and suppresses unnecessary and harmful plasma discharge around the electrodes as much as possible. There is something to do. Another object is to provide an apparatus that can operate more stably and more efficiently produce high-quality and uniform workpieces.

(課題を解決するための手段) 本発明は、真空容器とその中に配設された平面状処理表
面を有する複数個の非接地電極と該非接地電極処理表面
に対向して設けられた接地電極とよりなり、被処理物を
上記非接地電極と接地電極との間に通すための案内手段
を具備したプラズマ処理装置において、上記非接地電極
群の中央部に電力導入部を配置し、かつ該電力導入部と
それぞれ連結した前記非接地電極を放射状に配設したこ
とを特徴とするプラズマ処理装置である。
(Means for Solving the Problems) The present invention includes a vacuum container, a plurality of non-grounded electrodes having a planar treated surface disposed therein, and a grounded electrode provided opposite to the non-grounded electrode treated surface. Therefore, in a plasma processing apparatus equipped with a guide means for passing the object to be processed between the non-grounded electrode and the grounded electrode, a power introduction part is disposed in the center of the non-grounded electrode group, and the The plasma processing apparatus is characterized in that the non-grounded electrodes each connected to a power introduction part are arranged radially.

本発明で適用される被処理物としては膜、フィルム、シ
ートおよび布あるいは繊維、糸等の長尺状、平面状ある
いは比較的厚さが薄い物であれば特に限定されない。
The objects to be treated to be applied in the present invention are not particularly limited as long as they are long, flat, or relatively thin, such as membranes, films, sheets, cloth, fibers, and threads.

以下添付図面に示す実施態様について本発明を詳述する
The present invention will be described in detail below with reference to embodiments shown in the accompanying drawings.

第1図は本発明装置の一興体例を示す概要正面図、第2
図はその概要側面図、第3図は本発明装置の別の具体例
を示す概要正面図、また第4図は第3図の要部をなすプ
ラズマ処理室の概要正面図である。
Fig. 1 is a schematic front view showing an example of the device of the present invention;
The figure is a schematic side view thereof, FIG. 3 is a schematic front view showing another specific example of the apparatus of the present invention, and FIG. 4 is a schematic front view of a plasma processing chamber forming the main part of FIG.

第1図および第2図において、真空容器A中には、非接
地電極4群の中心に電力導入部lが位置し、該電力導入
部より延びる複数個の電極連結部材2は、放射状に配置
された複数個の非接地電極4を支持するとともに電力導
入部1と各非接地電極とを電気的に接続する。電力導入
部1は、絶縁軸受部3により真空容器に電気的に絶縁し
て支承されるとともに、高周波電源からの端子15とカ
ップリングされる。非接地電極4は平面状処理表面を有
し、表裏両面のなす角度は特に限定されないが、後述の
案内手段によって案内される走行処理布帛を電極面に平
行となし易い適宜な角度とする。
In FIGS. 1 and 2, a power introduction part l is located in the center of four groups of non-grounded electrodes in a vacuum container A, and a plurality of electrode connecting members 2 extending from the power introduction part are arranged radially. It supports the plurality of non-grounded electrodes 4 and electrically connects the power introduction part 1 and each non-grounded electrode. The power introduction part 1 is electrically insulated and supported by the vacuum container by an insulating bearing part 3, and is coupled to a terminal 15 from a high frequency power source. The non-grounded electrode 4 has a planar treated surface, and the angle formed by both the front and back surfaces is not particularly limited, but is set to an appropriate angle that allows the traveling treated fabric to be guided by the guide means described later to be easily parallel to the electrode surface.

電極連結部材2と非接地電極4とは必ずしも同軸上にあ
るを要しない。しかしながら、電極連結部材2から各非
接地電極4までの電気抵抗および距離を等しくすること
が電力配分のバランスという点で好ましい。
The electrode connecting member 2 and the non-grounded electrode 4 do not necessarily need to be coaxial. However, it is preferable to equalize the electrical resistance and distance from the electrode connecting member 2 to each non-grounded electrode 4 in terms of balance of power distribution.

放射状配置において、隣り合った非接地電極間のなす角
度はすべて等しくなくてもよいが、等角度放射状である
ことが最も好ましい。
In a radial arrangement, the angles between adjacent ungrounded electrodes need not all be equal, but it is most preferred that they be equiangular radially.

平面状接地電極5は、非接地電極4の両面に、それぞれ
対向して装設される。接地電極5と非接地電極4とは互
いに平行に、等距離はなれて設置する方が好ましい。電
極間距離は、入力エネルギー、電極形状、真空度、処理
速度およびプラズマエツチングか、プラズマ重合か、プ
ラズマCVDか、という処理方法により異なるが、−射
的に真空度が小さく、入力エネルギーが小さい場合は狭
くする方がよく、通常10 cra以下、好ましくは5
cmである。例えば酸素プラズマの場合で真空度がlm
mHg程度では、0.5〜3cIIl程度が効果的であ
る。非接地電極4および接地電極5の材質は導電性の高
い金属、例えばアルミニウム、銅、鉄、ステンレス鋼お
よびそれらの各種金属メツキ物などが好ましい。形状と
しては平板、パンチング板あるいはメツシュ(金1ii
)等使用できるが、入力電力が0.1 W/cm”以上
では、孔、凹凸のない平板が好ましい。
Planar ground electrodes 5 are provided on both sides of non-ground electrode 4, facing each other. It is preferable that the ground electrode 5 and the non-ground electrode 4 are installed parallel to each other and separated from each other by an equal distance. The distance between the electrodes varies depending on the input energy, electrode shape, degree of vacuum, processing speed, and processing method such as plasma etching, plasma polymerization, or plasma CVD, but - when the degree of vacuum is low and the input energy is small It is better to make it narrower, usually less than 10 cra, preferably 5
cm. For example, in the case of oxygen plasma, the degree of vacuum is lm
At about mHg, about 0.5 to 3 cIIl is effective. The materials of the non-grounded electrode 4 and the grounded electrode 5 are preferably highly conductive metals, such as aluminum, copper, iron, stainless steel, and various metal platings thereof. The shape can be flat plate, punched plate or mesh (gold 1ii).
) can be used, but if the input power is 0.1 W/cm" or more, a flat plate without holes or irregularities is preferable.

非接地電極4および接地電極5は内部に温調用媒体の通
路を設けて温調可能、殊に冷却可能にすることが好まし
い。媒体としては流動性のあるものならばすべて使用し
うるが、電気的に絶縁物である純水、有機溶媒や各種熱
交換用のガス、蒸気が好ましい。また温調装置あるいは
冷却装置としては、冷媒の通った蛇管あるいはジャケッ
トを電極に設置するのが好ましい。非接地電極を温調す
ることにより、各種プラズマ処理(例えばプラズマ重合
、プラズマCVD、プラズマエツチング等)に応じた最
も適切な温度に基板温度を設定できる。
It is preferable that the non-grounded electrode 4 and the grounded electrode 5 have a passage for a temperature regulating medium therein to enable temperature regulation, particularly cooling. Any medium can be used as long as it has fluidity, but pure water, which is an electrical insulator, organic solvents, various heat exchange gases, and steam are preferred. Further, as a temperature control device or a cooling device, it is preferable to install a coiled pipe or a jacket through which a refrigerant passes through the electrodes. By controlling the temperature of the non-grounded electrode, the substrate temperature can be set to the most appropriate temperature according to various plasma treatments (eg, plasma polymerization, plasma CVD, plasma etching, etc.).

こうして非接地電極の温度を任意に設定できることと、
それによって処理試料を非接地電極上に接触できること
により長時間にわたって安定な処理が可能となる。真空
容器Aは更に処理布帛の供給ローラー9と、電動機16
などによって駆動される巻取りローラーIOとを放射状
電極対間の空間に具える。供給ローラー9と巻取りロー
ラー10とは電動機16の連結機構を適宜双方間で反転
駆動可能となすことにより、リバーシブルとすることは
好ましいことである。
In this way, the temperature of the non-grounded electrode can be set arbitrarily, and
As a result, the processing sample can be brought into contact with the non-grounded electrode, allowing stable processing over a long period of time. The vacuum container A further includes a treated fabric supply roller 9 and an electric motor 16.
A take-up roller IO driven by, etc. is provided in the space between the radial electrode pair. It is preferable that the supply roller 9 and the take-up roller 10 be made reversible by making the coupling mechanism of the electric motor 16 capable of driving the rollers in reverse as appropriate.

真空容器A内にはまた、供給ローラー9から供給される
布帛8を接地電極と非接地電極との間の空隙へ順次導き
、巻取りローラー10へ巻取るための案内手段、例えば
ガイドバー、ガイドローラー等6.7が、各電極基部お
よび先端部近傍の適宜な位置に配設される。これら案内
手段は固定ロール、従動ロール、駆動ロールあるいはそ
れらの組合せを布帛の目付け、走行速度、テンション等
の条件により適宜に用いることができ、処理布帛が非接
地電極または接地電極面に極力近接し、好ましくは摺接
して走行し得るよう調整して配設することがよい。
Inside the vacuum container A, there is also a guide means, such as a guide bar, a guide, for sequentially guiding the fabric 8 supplied from the supply roller 9 into the gap between the grounded electrode and the non-grounded electrode and winding it onto the winding roller 10. Rollers etc. 6.7 are arranged at appropriate positions near the base and tip of each electrode. As these guide means, fixed rolls, driven rolls, drive rolls, or a combination thereof can be used as appropriate depending on conditions such as fabric weight, running speed, tension, etc., and the treated fabric is kept as close as possible to the non-grounded electrode or the grounded electrode surface. , it is preferable to adjust and arrange them so that they can travel in sliding contact.

処理布帛をプラズマ空間を走行させるためのローラー6
.7の材質は、処理布帛に比べてエツチング性の小さい
、耐熱性にすぐれた、例えば金属、セラミック、金属コ
ーティングセラミックあるいはNBR、シリコーン等の
ゴムコーティング等がよい。またローラーは接地されて
いる方がよい。
Roller 6 for running the treated fabric through the plasma space
.. The material 7 is preferably a metal, ceramic, metal-coated ceramic, or rubber coating such as NBR or silicone, which has less etching property than the treated fabric and has excellent heat resistance. It is also better for the rollers to be grounded.

ローラーの表面は、処理布帛のスリップを防止する為に
、鏡面加工のものが好ましい。更に好ましくは、被処理
物の走行安定性、加熱防止の為に、シリコーンゴム、N
BRゴム、SBRゴム、フッ素ゴム等、ゴムコーティン
グあるいはゴムチューブで被覆したものがよい。
The surface of the roller is preferably mirror-finished to prevent the treated fabric from slipping. More preferably, silicone rubber, N
It is preferable to use BR rubber, SBR rubber, fluororubber, etc. coated with a rubber coating or a rubber tube.

真空容器内の非接地電極、接地電極、処理布帛案内手段
、電力導入部等の主要構成部材は、フレーム13に支承
されるとともに、接地電極を相互に結んだカバー14に
より被覆されて一体となり、ガイドレール17を走行し
て真空容器に装脱される。
Main components such as a non-grounded electrode, a grounded electrode, a treated fabric guide means, and a power introduction part in the vacuum container are supported by a frame 13, and are covered with a cover 14 that connects the grounded electrodes to each other, so that they are integrated. It travels along the guide rail 17 and is loaded into and removed from the vacuum container.

カバー14の材質は絶縁物でも導電性物質でもよいが、
好ましくは電極材料と同質のもの、例えばステンレス、
アルミニウム、銅板等であり、更に好ましくは中央部に
プラズマ空間を監視できる透視窓を有するのがよい。透
視窓の材質は、透視可能ならば有機物でも無機物でもよ
いが、耐プラズマ性、耐熱性にすぐれた無機質、例えば
ガラス、無機結晶等がよい。またカバーは接地されてい
る方がよく、この場合カバーと非接地電極4の間隔は、
プラズマの安定性、均一性の点で、接地電極と非接地電
極の間隔より大きい方がよい。
The material of the cover 14 may be an insulating material or a conductive material.
Preferably the same material as the electrode material, such as stainless steel,
It is made of aluminum, copper plate, etc., and more preferably has a see-through window in the center for monitoring the plasma space. The material for the see-through window may be organic or inorganic as long as it can be seen through, but inorganic materials with excellent plasma resistance and heat resistance, such as glass and inorganic crystals, are preferable. Also, it is better that the cover is grounded, and in this case, the distance between the cover and the non-grounded electrode 4 is
In terms of plasma stability and uniformity, it is better that the distance be larger than the distance between the grounded electrode and the non-grounded electrode.

真空容器は、内外圧差少なくとも1気圧に耐えるもので
あればその形状・寸法は特に限定されないが、ガス導入
孔11と真空ポンプに通ずる排気孔12とを具え、上記
主要構成部材等の内容物を装脱するための開閉装置を有
し、好ましくは内容物モニタリング用の透視窓を具備す
る。ガス導入孔11のガス吹出し口の形状は、細長いス
リット状が小孔を多数有するものが、またガス吹出し口
は電極の全幅に亘って存在することが導入ガスと分解ガ
スの比率にムラがなくなり、安定した処理効果が得られ
好ましい。ガス導入配管の材質は、プラスチック等有機
物も使用しうるが、長期に亘り安定して使用するために
は、化学的に安定で耐プラズマ性が高く、高温に耐える
金属、例えばステンレス管、鋼管、アルミニウム管ある
いはガラス管等が好ましい。
The shape and dimensions of the vacuum container are not particularly limited as long as it can withstand an internal and external pressure difference of at least 1 atmosphere, but it is equipped with a gas introduction hole 11 and an exhaust hole 12 that communicates with a vacuum pump, so that the contents such as the above-mentioned main components can be kept inside the vacuum container. It has an opening/closing device for loading and unloading, and is preferably equipped with a see-through window for monitoring the contents. The shape of the gas outlet of the gas introduction hole 11 should be a long and narrow slit with many small holes, and the gas outlet should be present over the entire width of the electrode so that the ratio of the introduced gas to the decomposed gas is even. , which is preferable because a stable treatment effect can be obtained. Although organic materials such as plastic can be used for the gas introduction piping, in order to use it stably over a long period of time, metals that are chemically stable, have high plasma resistance, and can withstand high temperatures, such as stainless steel pipes, steel pipes, etc. An aluminum tube or a glass tube is preferable.

第3図および第4図に示した具体例においては、真空容
器Aと通路18.19を介してそれぞれ連通された真空
容器B、Cを別途設け、真空容器A内には電挽を配設し
、真空容器B、C内に処理布帛供給ローラー9と巻取り
ローラー10とを個別に収納する。このようにして供給
ローラー9と巻取りローラー10の各占有空間を真空容
器Aの外部に設けることによって真空容器A内に配設す
る電極の数を増加し、プラズマ処理能力を増大させるこ
とができる。第3図および第4図の例にあっては、第1
図に示した例よりも2倍の電極が設けられ、従ってプラ
ズマ処理能力は倍増する。真空容器Bの布帛は供給ロー
ラー9から、ガイドローラー20で走行径路を規制され
、通路18を通って真空容器Aへ入り、電極間隙を通過
した後、通路■9よりガイドローラー21に案内されて
巻取りローラー10に巻取られる。
In the specific example shown in FIGS. 3 and 4, vacuum containers B and C are separately provided, which communicate with vacuum container A through passages 18 and 19, respectively, and an electric grinder is provided in vacuum container A. Then, the treated fabric supply roller 9 and the winding roller 10 are individually housed in the vacuum containers B and C. In this way, by providing the spaces occupied by the supply roller 9 and the take-up roller 10 outside the vacuum vessel A, the number of electrodes disposed inside the vacuum vessel A can be increased, and the plasma processing capacity can be increased. . In the examples of Figures 3 and 4, the first
Twice as many electrodes are provided as in the illustrated example, thus doubling the plasma processing capacity. The fabric in the vacuum container B starts from the supply roller 9, has its running path regulated by the guide roller 20, enters the vacuum container A through the passage 18, passes through the electrode gap, and is guided by the guide roller 21 from the passage 9. It is wound up on a winding roller 10.

真空容器B、Cは合体して単一の容器となし、布帛供給
ローラー9と巻取りローラー10とを−・緒に収容し、
真空容器と1個の通路で連通させることも出来る。
The vacuum containers B and C are combined into a single container, and the fabric supply roller 9 and take-up roller 10 are housed together,
It is also possible to communicate with the vacuum container through one passage.

(作 用) プラズマ用の電力の導入は、電力導入部1により集中的
に行なう。各非接地電極4へは電力導入部lより電極連
結部材2を通じて電力の導入を行なう。又、電源は電力
導入部が1ケ所であるために、単一の電源を使用でき複
数個の電源を使った時の各電源間の発振周波数等のズレ
による高周波の相互干渉、プラズマのアンバランスは殆
どなくなる。
(Function) Electric power for plasma is introduced intensively through the power introduction section 1. Electric power is introduced into each non-grounded electrode 4 through the electrode connecting member 2 from the power introduction part l. In addition, since the power supply has only one power introduction part, a single power supply can be used, and when multiple power supplies are used, mutual interference of high frequencies due to differences in oscillation frequency, etc. between each power supply, and plasma imbalance occur. almost disappears.

非接地電極4には、プラズマ発生用の50Hz。The non-grounded electrode 4 has a frequency of 50 Hz for plasma generation.

60Hzの商業用周波数、キロヘルツの低周波数および
メガヘルツからギガヘルツ領域の高周波数の電力を導入
して、接地電極との間で低温ガスプラズマを発生させる
Power at a commercial frequency of 60 Hz, a low frequency of kilohertz, and a high frequency in the megahertz to gigahertz range is introduced to generate a cold gas plasma with a ground electrode.

低温ガスプラズマの安定した発生のためには、@ K 
Hzから数百KHzの低周波あるいは高周波が好ましい
が、13.56 MHzの高周波が処理効率、処理コス
ト等の点で特に好ましい。又、低周波あるいは高周波の
入力エネルギーは電極形状、電極間距離、真空度、処理
速度等によって変化するが、通常単位面積当り0.01
W/ cm2以上、好ましくは0.2〜LOW / c
m”、更に好ましくは0.1〜IW/cm2である。
For stable generation of low temperature gas plasma, @K
A low frequency or high frequency from Hz to several hundred KHz is preferable, and a high frequency of 13.56 MHz is particularly preferable in terms of processing efficiency, processing cost, etc. In addition, the input energy of low frequency or high frequency varies depending on the electrode shape, distance between electrodes, degree of vacuum, processing speed, etc., but it is usually 0.01 per unit area.
W/cm2 or more, preferably 0.2~LOW/c
m", more preferably 0.1 to IW/cm2.

低温ガスプラズマを発生させるガスとしては、酸素、窒
素、アルゴン、ヘリウム、水素等の非重合性ガスやメタ
ン、エタン、プロパン、ブタンあるいはベンゼン、アク
リル酸、スチレン等の重合性有機モノモーガスを用いる
ことが出来、目的に応じて選択する。
As the gas for generating low-temperature gas plasma, non-polymerizable gases such as oxygen, nitrogen, argon, helium, and hydrogen, and polymerizable organic monomer gases such as methane, ethane, propane, butane, benzene, acrylic acid, and styrene can be used. Choose according to your purpose.

ポリエステル繊維等のプラズマエツチングには、酸素、
空気、窒素、アルゴン、水素、炭酸ガス、ヘリウムやC
Fa 、CFzCfi□、CFClz。
For plasma etching of polyester fibers, etc., oxygen,
Air, nitrogen, argon, hydrogen, carbon dioxide, helium and C
Fa, CFzCfi□, CFClz.

CHF s等のハロゲン化炭化水素およびその誘導体の
単独あるいは混合ガスが使用できる。
Single or mixed gases of halogenated hydrocarbons and their derivatives such as CHF s can be used.

プラズマ空間の真空度は、低温ガスプラズマが安定して
発生する領域、すなわち通常0.01〜10mn+Hg
、好ましくはQ、l 〜5n+mHg 、更に好ましく
は0.2〜lmmHgに調整する。真空度の調整は排気
速度と共にガスあるいはモノマーガスの導入により行な
う事が出来るが、目的とする処理を好ましく行なう為に
は、導入ガスの調整による。
The degree of vacuum in the plasma space is a region where low-temperature gas plasma is stably generated, that is, usually 0.01 to 10 mn+Hg.
, preferably adjusted to Q, l - 5n+mHg, more preferably 0.2 - lmmHg. The degree of vacuum can be adjusted by adjusting the pumping speed and introducing gas or monomer gas, but in order to perform the desired treatment preferably, the amount of gas introduced is adjusted.

ガスの導入は、ガス導入管を通じて、被処理物の処理面
側に吹き出すことが好ましい。このことにより、被処理
物の処理面には常に新しい導入ガスが接触し、さらにプ
ラズマ処理により発生した分解ガスは、効率的にプラズ
マ空間より排出される。導入ガスの分解ガスに対する比
は少なくとも1、好ましくは2以上、更に好ましくは4
以上である。プラズマ処理の効率化および異種反応の防
止には導入ガスをいかに効率よくプラズマ化し被処理物
表面に当てるかおよび分解ガスをいかに効率よく被処理
物表面より除去・排出するかに太きく影響される。接地
電極相互間を結んだカバー14は導入ガスおよび分解ガ
スを効率よく置換する作用をなす。
The gas is preferably introduced through a gas introduction pipe and blown out toward the processing surface of the object to be processed. As a result, the newly introduced gas always comes into contact with the processing surface of the object to be processed, and the decomposed gas generated by the plasma processing is efficiently discharged from the plasma space. The ratio of introduced gas to cracked gas is at least 1, preferably 2 or more, more preferably 4.
That's all. Increasing the efficiency of plasma processing and preventing foreign reactions is greatly influenced by how efficiently the introduced gas is turned into plasma and applied to the surface of the object to be treated, and how efficiently decomposed gas is removed and discharged from the surface of the object to be treated. . The cover 14 connecting the ground electrodes functions to efficiently replace introduced gas and decomposed gas.

本発明において処理布帛8は接地電極5と非接地電極4
の間、好ましくは接地電極あるいは非接地電極表面の近
傍に、更に好ましくは接地電掘あるいは非接地電極の表
面に接触させ、特に好ましくは非接地電極表面に接触さ
せる。被処理物を非接地電極に接触させた場合、プラズ
マエツチング。
In the present invention, the treated fabric 8 has a ground electrode 5 and a non-ground electrode 4.
During the contact, the electrode is preferably brought into contact with a surface of a grounded electrode or a non-grounded electrode, more preferably with a surface of a grounded electrode or a non-grounded electrode, and particularly preferably with a surface of a non-grounded electrode. Plasma etching occurs when the workpiece is brought into contact with a non-grounded electrode.

効果が大きくなるがこれは次のような理由と思われる。The effect is greater, and this is thought to be due to the following reasons.

プラズマ特に低周波および高周波電位の印加による低温
プラズマにおいては、プラズマ空間にセルフバイアスが
発生するが、そのセルフバイアスの生成領域では質量の
大きなイオンの運動エネルギーが極めて大きく、従って
その空間で処理することによって極めて処理速度、処理
効果を増大させ得る。
In plasma, particularly in low-temperature plasma caused by the application of low-frequency and high-frequency potentials, a self-bias is generated in the plasma space, but in the region where the self-bias is generated, the kinetic energy of large-mass ions is extremely large, so it is difficult to process them in that space. This can significantly increase processing speed and processing effectiveness.

被処理物を連続的に処理することも、走行、ストップ処
理の繰り返しも可能である。
It is possible to process the object continuously or to repeat running and stopping processes.

本発明装置の好適な実施態様を整理して、以下に記す。Preferred embodiments of the device of the present invention are summarized and described below.

(イ)接地電極表面が平面状である請求項記載の装置。(a) The device according to claim 1, wherein the surface of the ground electrode is planar.

(ロ)非接地電極表面と接地電極表面が等距離に対向す
る請求項記載の装置。
(b) The device according to claim 1, wherein the non-grounded electrode surface and the grounded electrode surface face each other at an equal distance.

(ハ)非接地電極表面及び/又は接地電極表面が温調可
能である請求項記載の装置。
(c) The device according to claim 1, wherein the temperature of the non-grounded electrode surface and/or the grounded electrode surface is adjustable.

(ニ)被処理物が非接地電極の表面に接触するよう案内
手段を配設する請求項記載の装置。
(d) The apparatus according to claim 1, further comprising a guiding means so that the object to be processed comes into contact with the surface of the non-grounded electrode.

(ホ)被処理物が接地電極の表面に接触するよう案内手
段を配設する請求項記載の装置。
(e) The apparatus according to claim 1, further comprising a guiding means so that the object to be processed comes into contact with the surface of the ground electrode.

(発明の効果) 本発明によるプラズマ処理装置では、電力導入部から非
接地電極までの距離を等しくとることが出来るために、
複数個の非接地電極に各々同一位相の電力を導入するこ
とが出来るようになった。
(Effects of the Invention) In the plasma processing apparatus according to the present invention, since the distance from the power introduction part to the non-grounded electrode can be made equal,
It is now possible to introduce power of the same phase to multiple non-grounded electrodes.

又、各電極への電力導入部を統一出来たために単一の電
源で済むようになった。従って、従来の多層化電極を有
するプラズマ処理装置に見られた複数の電極間でのプラ
ズマの相互干渉および複数の電源間での相互干渉が防止
でき、安定した運転、安定した品質が得られるようにな
った。
Also, since the power introduction portions for each electrode could be unified, a single power source was required. Therefore, it is possible to prevent mutual interference of plasma between multiple electrodes and mutual interference between multiple power supplies, which was observed in conventional plasma processing equipment with multilayered electrodes, and to obtain stable operation and stable quality. Became.

又、非接地電極周囲の空間が従来のものよりずっと狭く
なっておりこの部分での不用なプラズマ放電が低減でき
、投入電力がより効率的に使用されるようになった。
In addition, the space around the non-grounded electrode is much narrower than in the conventional case, which reduces unnecessary plasma discharge in this area and allows input power to be used more efficiently.

以上述べたように、本発明装置により従来の装置に比べ
て大幅なコストダウン、高品質、高安定なプラズマ処理
装置およびプラズマ処理物が堤供出来る。
As described above, the apparatus of the present invention can provide a plasma processing apparatus and plasma-treated products with significantly lower costs, higher quality, and higher stability than conventional apparatuses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一具体例を示す概要正面図、 第2図はその概要側面図、 第3図は本発明装置の別の具体例を示す概要正面図、 また第4図は第3図の要部をなすプラズマ処理室の概要
正面図である。 A、B、C・・・真空容器   1・・・電力導入部2
・・・電極連結部材   3・・・絶縁軸受部4・・・
非接地電極    5・・・接地電極6.7・・・案内
手段    8・・・布帛9・・・供給ローラー   
IO・・・巻取りローラー11・・・ガス導入孔   
 12・・・排気孔I3・・・フレーム     I4
・・・カバー15・・・端子       16・・・
電動機17・・・ガイドレール   1B、 19・・
・通路20.21 ・・・ガイドローラー
FIG. 1 is a schematic front view showing one specific example of the device of the present invention, FIG. 2 is a schematic side view thereof, FIG. 3 is a schematic front view showing another specific example of the device of the present invention, and FIG. FIG. 4 is a schematic front view of a plasma processing chamber that forms the main part of FIG. 3; A, B, C...Vacuum container 1...Power introduction part 2
...Electrode connecting member 3...Insulated bearing part 4...
Non-grounded electrode 5... Grounded electrode 6.7... Guide means 8... Fabric 9... Supply roller
IO... Winding roller 11... Gas introduction hole
12...Exhaust hole I3...Frame I4
...Cover 15...Terminal 16...
Electric motor 17... Guide rail 1B, 19...
・Passage 20.21 ・・・Guide roller

Claims (1)

【特許請求の範囲】[Claims] 1、真空容器とその中に配設された平面状処理表面を有
する複数個の非接地電極と該非接地電極処理表面に対向
して設けられた接地電極とよりなり、被処理物を上記非
接地電極と接地電極との間に通すための案内手段を具備
したプラズマ処理装置において、上記非接地電極群の中
央部に電力導入部を配置し、かつ該電力導入部とそれぞ
れ連結した前記非接地電極を放射状に配設したことを特
徴とするプラズマ処理装置。
1. Consisting of a vacuum container, a plurality of non-grounded electrodes disposed therein having a planar processing surface, and a grounded electrode provided opposite to the non-grounded electrode processing surface, the object to be processed is In a plasma processing apparatus equipped with a guide means for passing between an electrode and a grounded electrode, a power introduction part is disposed in the center of the group of non-grounded electrodes, and the non-grounded electrodes are respectively connected to the power introduction part. A plasma processing apparatus characterized in that the following are arranged in a radial manner.
JP63083076A 1987-07-06 1988-04-06 Plasma treatment apparatus Granted JPH01256541A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63083076A JPH01256541A (en) 1988-04-06 1988-04-06 Plasma treatment apparatus
US07/214,179 US4968918A (en) 1987-07-06 1988-07-01 Apparatus for plasma treatment
DE3887933T DE3887933T2 (en) 1987-07-06 1988-07-05 Plasma processing device.
EP88110707A EP0298420B1 (en) 1987-07-06 1988-07-05 Apparatus for plasma treatment
KR1019880008345A KR950001541B1 (en) 1987-07-06 1988-07-06 Apparatus for plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63083076A JPH01256541A (en) 1988-04-06 1988-04-06 Plasma treatment apparatus

Publications (2)

Publication Number Publication Date
JPH01256541A true JPH01256541A (en) 1989-10-13
JPH0518330B2 JPH0518330B2 (en) 1993-03-11

Family

ID=13792085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63083076A Granted JPH01256541A (en) 1987-07-06 1988-04-06 Plasma treatment apparatus

Country Status (1)

Country Link
JP (1) JPH01256541A (en)

Also Published As

Publication number Publication date
JPH0518330B2 (en) 1993-03-11

Similar Documents

Publication Publication Date Title
US5300189A (en) Plasma surface treatment method and apparatus
EP2590802B1 (en) Method and device for atmospheric pressure plasma treatment
US5627435A (en) Hollow cathode array and method of cleaning sheet stock therewith
US6312524B1 (en) Plasma CVD apparatus
US4968918A (en) Apparatus for plasma treatment
EP1360748B1 (en) Multi-mode treater with internal air cooling system
UA75613C2 (en) Method for plasma treatment of current-conducting materials
JP4630874B2 (en) Atmospheric pressure large area glow plasma generator
US7214413B2 (en) Method and device for generating an activated gas curtain for surface treatment
KR100723019B1 (en) Plasma generator
JP2002253952A (en) Method and apparatus for treating surface with plasma
JPH01256541A (en) Plasma treatment apparatus
JP2538978B2 (en) Plasma processing device
JPH01256543A (en) Plasma treatment apparatus
JPH01283362A (en) Plasma treatment apparatus
JPH01283360A (en) Plasma treatment apparatus
JPH01283361A (en) Plasma treatment apparatus
JPH029442A (en) Plasma treater
JPH029441A (en) Plasma treater
JPH02103206A (en) Plasma treatment-polymerization unit
JPH037209B2 (en)
JP2646457B2 (en) Plasma processing-ion plating processing equipment
JP4288696B2 (en) Surface treatment apparatus and surface treatment method
JPH02115363A (en) Plasma treatment-vacuum deposition device
JPH0758027A (en) Plasma cvd apparatus