JPH0518330B2 - - Google Patents

Info

Publication number
JPH0518330B2
JPH0518330B2 JP8307688A JP8307688A JPH0518330B2 JP H0518330 B2 JPH0518330 B2 JP H0518330B2 JP 8307688 A JP8307688 A JP 8307688A JP 8307688 A JP8307688 A JP 8307688A JP H0518330 B2 JPH0518330 B2 JP H0518330B2
Authority
JP
Japan
Prior art keywords
electrode
plasma
grounded
grounded electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8307688A
Other languages
Japanese (ja)
Other versions
JPH01256541A (en
Inventor
Yoshikazu Kondo
Yukio Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP63083076A priority Critical patent/JPH01256541A/en
Priority to US07/214,179 priority patent/US4968918A/en
Priority to DE3887933T priority patent/DE3887933T2/en
Priority to EP88110707A priority patent/EP0298420B1/en
Priority to KR1019880008345A priority patent/KR950001541B1/en
Publication of JPH01256541A publication Critical patent/JPH01256541A/en
Publication of JPH0518330B2 publication Critical patent/JPH0518330B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、長尺物体の連続的プラズマ処理装置
に関する。更に詳しくは、膜、フイルム、シート
布、繊維等の長尺物体、特に平面状あるいは比較
的厚さが小さく、幅の大きい長尺被処理物(以下
処理布帛ということがある)のプラズマ処理を連
続的に行なうための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a continuous plasma processing apparatus for elongated objects. More specifically, plasma treatment of long objects such as membranes, films, sheet cloths, fibers, etc., especially long objects that are flat or relatively thin and wide (hereinafter sometimes referred to as treated fabrics). It relates to a device for continuous operation.

(従来の技術) プラズマ処理装置、特に平面状シート状物や長
尺物のプラズマ処理装置としては、従来数多くの
提案がなされている。例えば、特公昭60−11149
号、同60−31939号各公報には、大面積の一対の
対向電極の間に布帛を通して処理するプラズマ処
理装置が提案されており、また特開昭60−134061
号、同61−228028号、特公昭60−59251号、同61
−36862号各公報には、複数個の非接地電極を円
筒状接地電極の周りに配設したプラズマ処理装置
が提案されている。さらに特公昭60−11150号、
同60−54428号各公報には、多層化平行平板電極
を有するプラズマ処理装置の提案がある。
(Prior Art) Many proposals have been made in the past regarding plasma processing apparatuses, particularly plasma processing apparatuses for flat sheet-like objects and long objects. For example, Tokuko Sho 60-11149
No. 60-31939 proposes a plasma processing apparatus in which a cloth is passed between a pair of opposing electrodes with a large area, and Japanese Patent Application Laid-Open No. 60-134061
No. 61-228028, Special Publication No. 60-59251, No. 61
JP-A-36862 proposes a plasma processing apparatus in which a plurality of non-grounded electrodes are arranged around a cylindrical grounded electrode. Furthermore, Special Publication No. 60-11150,
No. 60-54428 each proposes a plasma processing apparatus having multilayered parallel plate electrodes.

(本発明が解決しようとする課題) しかし乍ら、上記特公昭60−11149号、同60−
31939号各公報の提案は、大面積の電極面におけ
る処理程度の局部的バラツキによる不均一処理
や、電極の上下、左右空間にプラズマ放電が発生
することによる処理効率の低下等の問題がある。
また前記特開昭60−134061号公報その他の提案に
おいては、電極の処理面積を余り大きくすること
ができず、また非接地電極周りでの放電ロスが避
けられない。前記特公昭60−11150号、同60−
54428号各公報の提案では、多層化した各電極上
で高周波等の位相にズレを生じ、電極間で相互干
渉して、安定した運転および品質を得る上に問題
がある。
(Problem to be solved by the present invention) However, the above-mentioned Japanese Patent Publication No. 11149/1983, No. 60-
The proposals in each publication of No. 31939 have problems such as non-uniform treatment due to local variations in the degree of treatment on a large-area electrode surface, and a decrease in treatment efficiency due to plasma discharge occurring above, below, left and right of the electrode.
In addition, in the above-mentioned Japanese Patent Application Laid-Open No. 60-134061 and other proposals, the processing area of the electrode cannot be made very large, and discharge loss around the non-grounded electrode cannot be avoided. Said Special Publication No. 11150, No. 60-
In the proposals of each publication of No. 54428, there is a problem in obtaining stable operation and quality due to phase shift of high frequency waves etc. on each multilayered electrode and mutual interference between the electrodes.

このように従来公知のプラズマ処理装置の、い
ずれにも運転の安定性、品質の均一性、および投
入電力に対する処理効率のすべてを充分満足し得
るものはない。
As described above, none of the conventionally known plasma processing apparatuses can fully satisfy all of the requirements of operational stability, quality uniformity, and processing efficiency relative to input power.

本発明者等は、これら従来提案された装置の欠
点を解消すべく、真空容器とその中に配設された
平面状処理表面を有する複数個の非接地電極と該
非接地電極処理表面に対向して設けられた接地電
極とよりなり、被処理物を上記非接地電極と接地
電極との間に通すための案内手段を具備したプラ
ズマ処理装置を曩に特願昭62−33442号として提
案した。この提案になる装置は従来公知の装置に
付帯する種々の技術的課題の多くを解決すること
に成功したが、引続き研究を重ねた結果、装置の
コンパクト化、処理効率の向上等の面において尚
改良の必要を見出し、本発明を完成するに至つ
た。
In order to eliminate the drawbacks of these conventionally proposed devices, the present inventors have developed a vacuum container, a plurality of non-grounded electrodes each having a planar treated surface disposed therein, and a plurality of non-grounded electrodes facing the non-grounded electrode treated surface. Japanese Patent Application No. 62-33442 proposed a plasma processing apparatus comprising a grounded electrode provided with a ground electrode and guide means for passing the object to be processed between the non-grounded electrode and the grounded electrode. This proposed device succeeded in solving many of the various technical problems associated with conventionally known devices, but as a result of continued research, we found that there were still improvements in terms of making the device more compact and improving processing efficiency. They discovered the need for improvement and completed the present invention.

本発明の目的とするところは、複数個の電極を
有しながら、各電極間でプラズマの相互干渉が発
生せず、かつ電極周辺部の不用有害なプラズマ放
電を極力抑えたプラズマ処理装置を提供するにあ
る。また別の目的は、より安定した運転ができ、
かつ高品位で均一な被処理物をより効率よく製造
できる装置を提供するにある。
An object of the present invention is to provide a plasma processing apparatus that has a plurality of electrodes, but does not cause mutual interference of plasma between the electrodes, and suppresses unnecessary and harmful plasma discharge around the electrodes as much as possible. There is something to do. Another purpose is to enable more stable driving,
Another object of the present invention is to provide an apparatus that can more efficiently produce high-quality and uniform workpieces.

(課題を解決するための手段) 本発明は、真空容器とその中に配設された平面
状処理表面を有する複数個の非接地電極と該非接
地電極処理表面に対向して設けられた接地電極と
よりなり、被処理物を上記非接地電極と接地電極
との間に通すための案内手段を具備したプラズマ
処理装置において、上記非接地電極群の中央部に
電力導入部を配置し、かつ該電力導入部とそれぞ
れ連結した前記非接地電極を放射状に配設したこ
とを特徴とするプラズマ処理装置である。
(Means for Solving the Problems) The present invention includes a vacuum container, a plurality of non-grounded electrodes having a planar treated surface disposed therein, and a grounded electrode provided opposite to the non-grounded electrode treated surface. Therefore, in a plasma processing apparatus equipped with a guide means for passing the object to be processed between the non-grounded electrode and the grounded electrode, a power introduction part is disposed in the center of the non-grounded electrode group, and the The plasma processing apparatus is characterized in that the non-grounded electrodes each connected to a power introduction part are arranged radially.

本発明で適用される被処理物としては膜、フイ
ルム、シートおよび布あるいは繊維、糸等の長尺
状、平面状あるいは比較的厚さが薄い物であれば
特に限定されない。
The objects to be treated to be applied in the present invention are not particularly limited as long as they are long, flat, or relatively thin, such as membranes, films, sheets, cloth, fibers, and threads.

以下添付図面に示す実施態様について本発明を
詳述する。
The present invention will be described in detail below with reference to embodiments shown in the accompanying drawings.

第1図は本発明装置の一具体例を示す概要正面
図、第2図はその概要側面図、第3図は本発明装
置の別の具体例を示す概要正面図、また第4図は
第3図の要部をなすプラズマ処理室の概要正面図
である。
FIG. 1 is a schematic front view showing one specific example of the device of the present invention, FIG. 2 is a schematic side view thereof, FIG. 3 is a schematic front view showing another specific example of the device of the present invention, and FIG. FIG. 4 is a schematic front view of a plasma processing chamber that forms the main part of FIG. 3;

第1図および第2図において、真空容器A中に
は、非接地電極4群の中心に電力導入部1が位置
し、該電力導入部より延びる複数個の電極連結部
材2は、放射状に配置された複数個の非接地電極
4を支持するとともに電力導入部1と各非接地電
極とを電気的に接続する。電力導入部1は、絶縁
軸受部3により真空容器に電気的に絶縁して支承
されるとともに、高周波電源からの端子15とカ
ツプリングされる。非接地電極4は平面状処理表
面を有し、表裏両面のなす角度は特に限定されな
いが、後述の案内手段によつて案内される走行処
理布帛を電極面に平行となし易い適宜な角度とす
る。電極連結部材2と非接地電極4とは必ずしも
同軸上にあるを要しない。しかしながら、電極連
結部材2から各非接地電極4までの電気抵抗およ
び距離を等しくすることが電力配分のバランスと
いう点で好ましい。
In FIGS. 1 and 2, a power introduction part 1 is located in the center of four groups of non-grounded electrodes in a vacuum vessel A, and a plurality of electrode connecting members 2 extending from the power introduction part are arranged radially. It supports the plurality of non-grounded electrodes 4 and electrically connects the power introduction part 1 and each non-grounded electrode. The power introduction part 1 is electrically insulated and supported by the vacuum container by an insulating bearing part 3, and is coupled with a terminal 15 from a high frequency power source. The non-grounded electrode 4 has a planar treated surface, and the angle formed by both the front and back surfaces is not particularly limited, but it is set to an appropriate angle so that the traveling treated fabric guided by the guide means described later can be easily parallel to the electrode surface. . The electrode connecting member 2 and the non-grounded electrode 4 do not necessarily need to be coaxial. However, it is preferable to equalize the electrical resistance and distance from the electrode connecting member 2 to each non-grounded electrode 4 in terms of balance of power distribution.

放射状配置において、隣り合つた非接地電極間
のなす角度はすべて等しくなくてもよいが、等角
度放射状であることが最も好ましい。
In a radial arrangement, the angles between adjacent ungrounded electrodes need not all be equal, but it is most preferred that they be equiangular radially.

平面状接地電極5は、非接地電極4の両面に、
それぞれ対向して装設される。接地電極5と非接
地電極4とは互いに平行に、等距離はなれて設置
する方が好ましい。電極間距離は、入力エネルギ
ー、電極形状、真空度、処理速度およびプラズマ
エツチングか、プラズマ重合か、プラズマCVD
か、という処理方法により異なるが、一般的に真
空度が小さく、入力エネルギーが小さい場合は狭
くする方がよく、通常10cm以下、好ましくは5cm
である。例えば酸素プラズマの場合で真空度が1
mmHg程度では、0.5〜3cm程度が効果的である。
非接地電極4および接地電極5の材質は導電性の
高い金属、例えばアルミニウム、銅、鉄、ステン
レス鋼およびそれらの各種金属メツキ物などが好
ましい。形状としては平板、パンチング板あるい
はメツシユ(金網)等使用できるが、入力電力が
0.1W/cm2以上では、孔、凹凸のない平板が好ま
しい。
The planar ground electrode 5 is provided on both sides of the non-ground electrode 4.
They are installed facing each other. It is preferable that the ground electrode 5 and the non-ground electrode 4 are installed parallel to each other and separated from each other by an equal distance. The distance between electrodes depends on input energy, electrode shape, degree of vacuum, processing speed, plasma etching, plasma polymerization, plasma CVD.
It depends on the processing method, but in general, if the degree of vacuum is small and the input energy is small, it is better to make it narrower, usually less than 10 cm, preferably 5 cm.
It is. For example, in the case of oxygen plasma, the degree of vacuum is 1
At about mmHg, about 0.5 to 3 cm is effective.
The materials of the non-grounded electrode 4 and the grounded electrode 5 are preferably highly conductive metals, such as aluminum, copper, iron, stainless steel, and various metal platings thereof. The shape can be a flat plate, punched plate, or mesh (wire mesh), but the input power is limited.
At 0.1 W/cm 2 or more, a flat plate without holes or irregularities is preferable.

非接地電極4および接地電極5は内部に温調用
媒体の通路を設けて温調可能、殊に冷却可能にす
ることが好ましい。媒体としては流動性のあるも
のならばすべて使用しうるが、電気的に絶縁物で
ある純水、有機溶媒や各種熱交換用のガス、蒸気
が好ましい。また温調装置あるいは冷却装置とし
ては、冷媒の通つた蛇管あるいはジヤケツトを電
極に設置するのが好ましい。非接地電極を温調す
ることにより、各種プラズマ処理(例えばプラズ
マ重合、プラズマCVD、プラズマエツチング等)
に応じた最も適切な温度に基板温度を設定でき
る。こうして非接地電極の温度を任意に設定でき
ることと、それによつて処理試料を非接地電極上
に接触できることにより長時間にわたつて安定な
処理が可能となる。真空容器Aは更に処理布帛の
供給ローラー9と、電動機16などによつて駆動
される巻取りローラー10とを放射状電極対間の
空間に具える。供給ローラー9と巻取りローラー
10とは電動機16の連結機構を適宜双方間で反
転駆動可能となすことにより、リバーシブルとす
ることは好ましいことである。
It is preferable that the non-grounded electrode 4 and the grounded electrode 5 have a passage for a temperature regulating medium therein to enable temperature regulation, particularly cooling. Any medium can be used as long as it has fluidity, but pure water, which is an electrical insulator, organic solvents, various heat exchange gases, and steam are preferred. Further, as a temperature control device or a cooling device, it is preferable to install a coiled pipe or jacket through which a refrigerant passes through the electrodes. Various plasma treatments (e.g. plasma polymerization, plasma CVD, plasma etching, etc.) can be performed by controlling the temperature of the non-grounded electrode.
The substrate temperature can be set to the most appropriate temperature according to the In this way, the temperature of the non-grounded electrode can be set arbitrarily, and the sample to be processed can thereby be brought into contact with the non-grounded electrode, allowing stable processing over a long period of time. The vacuum vessel A further includes a supply roller 9 for the treated fabric and a take-up roller 10 driven by an electric motor 16 or the like in the space between the radial electrode pairs. It is preferable that the supply roller 9 and the take-up roller 10 be made reversible by making the coupling mechanism of the electric motor 16 capable of driving the rollers in reverse as appropriate.

真空容器A内にはまた、供給ローラー9から供
給される布帛8を接地電極と非接地電極との間に
空隙へ順次導き、巻取りローラー10へ巻取るた
めの案内手段、例えばガイドバー、ガイドローラ
ー等6,7が、各電極基部および先端部近傍の適
宜な位置に配設される。これら案内手段は固定ロ
ール、従動ロール、駆動ロールあるいはそれらの
組合せを布帛の目付け、走行速度、テンシヨン等
の条件により適宜に用いることができ、処理布帛
が非接地電極または接地電極面に極力近接し、好
ましくは摺接して走行し得るよう調整して配設す
ることがよい。
Inside the vacuum container A, there is also a guide means, such as a guide bar, a guide, for sequentially guiding the fabric 8 supplied from the supply roller 9 into the gap between the grounded electrode and the non-grounded electrode and winding it onto the winding roller 10. Rollers 6 and 7 are arranged at appropriate positions near the base and tip of each electrode. As these guide means, fixed rolls, driven rolls, drive rolls, or a combination thereof can be used as appropriate depending on conditions such as fabric weight, running speed, tension, etc., and the treated fabric is kept as close to the non-grounded electrode or the grounded electrode surface as possible. , it is preferable to adjust and arrange them so that they can travel in sliding contact.

処理布帛をプラズマ空間を走行させるためのロ
ーラー6,7の材質は、処理布帛に比べてエツチ
ング性の小さい、耐熱性にすぐれた、例えば金
属、セラミツク、金属コーテイングセラミツクあ
るいはNBR、シリコーン等のゴムコーテイング
等がよい。またローラーは接地されている方がよ
い。ローラーの表面は、処理布帛のスリツプを防
止する為に、鏡面加工のものが好ましい。更に好
ましくは、被処理物の走行安定性、加熱防止の為
に、シリコーンゴム、NBRゴム、SBRゴム、フ
ツ素ゴム等、ゴムコーテイングあるいはゴムチユ
ーブで被覆したものがよい。
The material of the rollers 6 and 7 for running the treated fabric through the plasma space may be metal, ceramic, metal-coated ceramic, or rubber coating such as NBR or silicone, which has less etching property than the treated fabric and has excellent heat resistance. etc. is good. It is also better for the rollers to be grounded. The surface of the roller is preferably mirror-finished in order to prevent the treated fabric from slipping. More preferably, it is coated with a rubber coating or a rubber tube, such as silicone rubber, NBR rubber, SBR rubber, or fluorine rubber, in order to provide running stability for the object to be processed and to prevent heating.

真空容器内の非接地電極、接地電極、処理布帛
案内手段、電力導入部等の主要構成部材は、フレ
ーム13に支承されるとともに、接地電極を相互
に結んだカバー14により被覆されて一体とな
り、ガイドレール17を走行して真空容器に装脱
される。
Main components such as a non-grounded electrode, a grounded electrode, a treated fabric guide means, and a power introduction part in the vacuum container are supported by a frame 13, and are covered with a cover 14 that connects the grounded electrodes to each other, so that they are integrated. It travels along the guide rail 17 and is loaded into and removed from the vacuum container.

カバー14の材質は絶縁物でも導電性物質でも
よいが、好ましくは電極材料と同質のもの、例え
ばステンレス、アルミニウム、銅板等であり、更
に好ましくは中央部にプラズマ空間を監視できる
透視窓を有するのがよい。透視窓の材質は、透視
可能ならば有機物でも無機物でもよいが、耐プラ
ズマ性、耐熱性にすぐれた無機質、例えばガラ
ス、無機結晶等がよい。またカバーは接地されて
いる方がよく、この場合カバーと非接地電極4の
間隔は、プラズマの安定性、均一性の点で、接地
電極と非接地電極の間隔より大きい方がよい。
The material of the cover 14 may be an insulating material or a conductive material, but it is preferably made of the same material as the electrode material, such as stainless steel, aluminum, copper plate, etc., and more preferably has a see-through window in the center for monitoring the plasma space. Good. The material for the see-through window may be organic or inorganic as long as it can be seen through, but inorganic materials with excellent plasma resistance and heat resistance, such as glass and inorganic crystals, are preferable. Further, it is better that the cover is grounded, and in this case, the distance between the cover and the non-grounded electrode 4 is preferably larger than the distance between the grounded electrode and the non-grounded electrode in terms of plasma stability and uniformity.

真空容器は、内外圧差少なくとも1気圧に耐え
るものであればその形状・寸法は特に限定されな
いが、ガス導入孔11と真空ポンプに通ずる排気
孔12とを具え、上記主要構成部材等の内容物を
装脱するための開閉装置を有し、好ましくは内容
物モニタリング用の透視窓を具備する。ガス導入
孔11のガス吹出し口の形状は、細長いスリツト
状か小孔を多数有するものが、またガス吹出し口
は電極の全幅に亘つて存在することが導入ガスと
分解ガスの比率にムラがなくなり、安定した処理
効果が得られ好ましい。ガス導入配管の材質は、
プラスチツク等有機物も使用しうるが、長期に亘
り安定して使用するためには、化学的に安定で耐
プラズマ性が高く、高温に耐える金属、例えばス
テンレス管、銅管、アルミニウム管あるいはガラ
ス管等が好ましい。
The shape and dimensions of the vacuum container are not particularly limited as long as it can withstand an internal and external pressure difference of at least 1 atmosphere, but it is equipped with a gas introduction hole 11 and an exhaust hole 12 that communicates with a vacuum pump, so that the contents such as the above-mentioned main components can be kept inside the vacuum container. It has an opening/closing device for loading and unloading, and is preferably equipped with a see-through window for monitoring the contents. The shape of the gas outlet of the gas introduction hole 11 should be an elongated slit or have many small holes, and the gas outlet should be present over the entire width of the electrode to ensure an even ratio of the introduced gas to the decomposed gas. , which is preferable because a stable treatment effect can be obtained. The material of the gas introduction piping is
Organic materials such as plastics can be used, but for long-term stable use, metals that are chemically stable, have high plasma resistance, and can withstand high temperatures, such as stainless steel pipes, copper pipes, aluminum pipes, or glass pipes, etc. is preferred.

第3図および第4図に示した具体例において
は、真空容器Aと通路18,19を介してそれぞ
れ連通された真空容器B,Cを別途設け、真空容
器A内には電極を配設し、真空容器B,C内に処
理布帛供給ローラー9と巻取りローラー10とを
個別に収納する。このようにして供給ローラー9
と巻取りローラー10の各占有空間を真空容器A
の外部に設けることによつて真空容器A内に配設
する電極の数を増加し、プラズマ処理能力を増大
させることができる。第3図および第4図の例に
あつては、第1図に示した例よりも2倍の電極が
設けられ、従つてプラズマ処理能力は倍増する。
真空容器Bの布帛は供給ローラー9から、ガイド
ローラー20で走行径路を規制され、通路18を
通つて真空容器Aへ入り、電極間隙を通過した
後、通路19よりガイドローラー21に案内され
て巻取りローラー10に巻取られる。
In the specific example shown in FIGS. 3 and 4, vacuum vessels B and C are separately provided which communicate with vacuum vessel A through passages 18 and 19, respectively, and electrodes are disposed within vacuum vessel A. , a treated fabric supply roller 9 and a take-up roller 10 are individually housed in vacuum containers B and C. In this way, the supply roller 9
and the respective occupied spaces of the winding roller 10 are placed in a vacuum container A.
By providing the electrodes outside the vacuum vessel A, the number of electrodes disposed inside the vacuum vessel A can be increased and the plasma processing capacity can be increased. In the examples of FIGS. 3 and 4, twice as many electrodes are provided as in the example shown in FIG. 1, and therefore the plasma processing capacity is doubled.
The fabric in the vacuum container B starts from the supply roller 9, has its running path regulated by the guide roller 20, enters the vacuum container A through the passage 18, passes through the electrode gap, and then is guided by the guide roller 21 through the passage 19 and wound. It is wound up on a take-up roller 10.

真空容器B,Cは合体して単一の容器となし、
布帛供給ローラー9と巻取りローラー10とを一
緒に収容し、真空容器と1個の通路で連通させる
ことも出来る。
Vacuum containers B and C are combined into a single container,
The fabric supply roller 9 and take-up roller 10 can also be housed together and communicated with the vacuum vessel through one passage.

(作用) プラズマ用の電力の導入は、電力導入部1によ
り集中的に行なう。各非接地電極4へは電力導入
部1より電極連結部材2を通じて電力の導入を行
なう。又、電源は電力導入部が1ケ所であるため
に、単一の電源を使用でき複数個の電源を使つた
時の各電源間の発振周波数等のズレによる高周波
の相互干渉、プラズマのアンバランスは殆どなく
なる。
(Function) Electric power for plasma is introduced intensively through the power introduction section 1. Electric power is introduced into each non-grounded electrode 4 from the power introduction section 1 through the electrode connecting member 2. In addition, since the power supply has only one power introduction part, a single power supply can be used, and when multiple power supplies are used, mutual interference of high frequencies due to differences in oscillation frequency, etc. between each power supply, and plasma imbalance occur. almost disappears.

非接地電極4には、プラズマ発生用の50Hz、60
Hzの商業用周波数、キロヘルツの低周波数および
メガヘルツからギガヘルツ領域の高周波数の電力
を導入して、接地電極との間で低温ガスプラズマ
を発生させる。
The non-grounded electrode 4 has 50Hz and 60Hz for plasma generation.
Power at commercial frequencies in Hz, low frequencies in kilohertz, and high frequencies in the megahertz to gigahertz range is introduced to generate a cold gas plasma between a ground electrode.

低温ガスプラズマの安定した発生のためには、
数KHzから数百KHzの低周波あるいは高周波が好
ましいが、13.56MHzの高周波が処理効率、処理
コスト等の点で特に好ましい。又、低周波あるい
は高周波の入力エネルギーは電極形状、電極間距
離、真空度、処理速度等によつて変化するが、通
常単位面積当り0.01W/cm2以上、好ましくは0.2
〜10W/cm2、更に好ましくは0.1〜1W/cm2であ
る。
For stable generation of low-temperature gas plasma,
A low frequency or high frequency of several KHz to several hundred KHz is preferable, and a high frequency of 13.56 MHz is particularly preferable in terms of processing efficiency, processing cost, etc. In addition, the input energy of low frequency or high frequency varies depending on the electrode shape, distance between electrodes, degree of vacuum, processing speed, etc., but is usually 0.01 W/cm 2 or more per unit area, preferably 0.2 W/cm 2 or more.
-10W/ cm2 , more preferably 0.1-1W/ cm2 .

低温ガスプラズマを発生させるガスとしては、
酸素、窒素、アルゴン、ヘリウム、水素等の非重
合性ガスやメタン、エタン、プロパン、ブタンあ
るいはベンゼン、アクリル酸、スチレン等の重合
性有機モノマーガスを用いることが出来、目的に
応じて選択する。
Gases that generate low-temperature gas plasma include:
Non-polymerizable gases such as oxygen, nitrogen, argon, helium, and hydrogen, and polymerizable organic monomer gases such as methane, ethane, propane, butane, benzene, acrylic acid, and styrene can be used, and are selected depending on the purpose.

ポリエステル繊維等のプラズマエツチングに
は、酸素、空気、窒素、アルゴン、水素、炭酸ガ
ス、ヘリウムやCF4、CF2Cl2、CFCl3、CHF3
のハロゲン化炭化水素およびその誘導体の単独あ
るいは混合ガスが使用できる。
For plasma etching of polyester fibers, etc., oxygen, air, nitrogen, argon, hydrogen, carbon dioxide gas, helium, halogenated hydrocarbons such as CF 4 , CF 2 Cl 2 , CFCl 3 , CHF 3 and their derivatives, either alone or in combination, are used. Gas can be used.

プラズマ空間の真空度は、低温ガスプラズマが
安定して発生する領域、すなわち通常0.001〜10
mmHg、好ましくは0.1〜5mmHg、更に好ましく
は0.2〜1mmHgに調整する。真空度の調整は排気
速度と共にガスあるいはモノマーガスの導入によ
り行なう事が出来るが、目的とする処理を好まし
く行なう為には、導入ガスの調整による。
The degree of vacuum in the plasma space is in the region where low-temperature gas plasma is stably generated, that is, usually 0.001 to 10
Adjust to mmHg, preferably 0.1 to 5 mmHg, more preferably 0.2 to 1 mmHg. The degree of vacuum can be adjusted by adjusting the pumping speed and introducing gas or monomer gas, but in order to perform the desired treatment preferably, the amount of gas introduced is adjusted.

ガスの導入は、ガス導入管を通じて、被処理物
の処理面側に吹き出すことが好ましい。このこと
により、被処理物の処理面には常に新しい導入ガ
スが接触し、さらにプラズマ処理により発生した
分解ガスは、効率的にプラズマ空間より排出され
る。導入ガスの分解ガスに対する比は少なくとも
1、好ましくは2以上、更に好ましくは4以上で
ある。プラズマ処理の効率化および異種反応の防
止には導入ガスをいかに効率よくプラズマ化し被
処理物表面に当てるかおよび分解ガスをいかに効
率よく被処理物表面より除去・排出するかに大き
く影響される。接地電極相互間を結んだカバー1
4は導入ガスおよび分解ガスを効率よく置換する
作用をなす。
The gas is preferably introduced through a gas introduction pipe and blown out toward the processing surface of the object to be processed. As a result, the newly introduced gas always comes into contact with the processing surface of the object to be processed, and furthermore, the decomposed gas generated by plasma processing is efficiently discharged from the plasma space. The ratio of introduced gas to decomposed gas is at least 1, preferably 2 or more, more preferably 4 or more. Increasing the efficiency of plasma processing and preventing heterogeneous reactions are greatly influenced by how efficiently the introduced gas is turned into plasma and applied to the surface of the object to be treated, and how efficiently the decomposed gas is removed and discharged from the surface of the object to be treated. Cover 1 connecting ground electrodes
4 serves to efficiently replace the introduced gas and decomposed gas.

本発明において処理布帛8は接地電極5と非接
地電極4の間、好ましくは接地電極あるいは非接
地電極表面の近傍に、更に好ましくは接地電極あ
るいは非接地電極の表面に接触させ、特に好まし
くは非接地電極表面に接触させる。被処理物を非
接地電極に接触させた場合、プラズマエツチング
効果が大きくなるがこれは次のような理由と思わ
れる。
In the present invention, the treated fabric 8 is brought into contact between the grounded electrode 5 and the non-grounded electrode 4, preferably in the vicinity of the surface of the grounded electrode or the non-grounded electrode, more preferably in contact with the surface of the grounded electrode or the non-grounded electrode, and particularly preferably in the vicinity of the surface of the grounded or non-grounded electrode. Contact the ground electrode surface. When the object to be processed is brought into contact with a non-grounded electrode, the plasma etching effect increases, and this seems to be due to the following reasons.

プラズマ特に低周波および高周波電位の印加に
よる低温プラズマにおいては、プラズマ空間にセ
ルフバイアスが発生するが、そのセルフバイアス
の生成領域では質量の大きなイオンの運動エネル
ギーが極めて大きく、従つてその空間で処理する
ことによつて極めて処理速度、処理効果を増大さ
せ得る。
In plasma, especially in low-temperature plasma caused by the application of low-frequency and high-frequency potentials, a self-bias is generated in the plasma space, but in the region where the self-bias is generated, the kinetic energy of large-mass ions is extremely large, and therefore, the kinetic energy of ions with large mass is extremely large, and therefore the ions are processed in that space. As a result, processing speed and processing effectiveness can be greatly increased.

被処理物を連続的に処理することも、走行、ス
トツプ処理の繰り返しも可能である。
It is possible to process the object continuously or to repeat running and stopping processes.

本発明装置の好適な実施態様を整理して、以下
に記す。
Preferred embodiments of the device of the present invention are summarized and described below.

(イ) 接地電極表面が平面状である請求項記載の装
置。
(b) The device according to claim 1, wherein the surface of the ground electrode is planar.

(ロ) 非接地電極表面と接地電極表面が等距離に対
向する請求項記載の装置。
(b) The device according to claim 1, wherein the non-grounded electrode surface and the grounded electrode surface face each other at an equal distance.

(ハ) 非接地電極表面及び/又は接地電極表面が温
調可能である請求項記載の装置。
(c) The device according to claim 1, wherein the temperature of the non-grounded electrode surface and/or the grounded electrode surface is adjustable.

(ニ) 被処理物が非接地電極の表面に接触するよう
案内手段を配設する請求項記載の装置。
(d) The apparatus according to claim 1, further comprising guiding means so that the object to be treated comes into contact with the surface of the non-grounded electrode.

(ホ) 被処理物が接地電極の表面に接触するよう案
内手段を配設する請求項記載の装置。
(e) The apparatus according to claim 1, further comprising a guiding means so that the object to be treated comes into contact with the surface of the ground electrode.

(発明の効果) 本発明によるプラズマ処理装置では、電力導入
部から非接地電極までの距離を等しくとることが
出来るために、複数個の非接地電極に各々同一位
相の電力を導入することが出来るようになつた。
(Effects of the Invention) In the plasma processing apparatus according to the present invention, since the distances from the power introduction part to the non-grounded electrodes can be made equal, it is possible to introduce power of the same phase to each of the plurality of non-grounded electrodes. It became like that.

又、各電極への電力導入部を統一出来たために
単一の電源で済むようになつた。従つて、従来の
多層化電極を有するプラズマ処理装置に見られた
複数の電極間でのプラズマの相互干渉および複数
の電源間での相互干渉が防止でき、安定した運
転、安定した品質が得られるようになつた。
In addition, since the power introduction portions for each electrode could be unified, a single power source could be used. Therefore, it is possible to prevent mutual interference of plasma between multiple electrodes and mutual interference between multiple power supplies, which is seen in conventional plasma processing equipment with multilayered electrodes, and stable operation and stable quality can be achieved. It became like that.

又、非接地電極周囲の空間が従来のものよりず
つて狭くなつておりこの部分での不用なプラズマ
放電が低減でき、投入電力がより効率的に使用さ
れるようになつた。
In addition, the space around the non-grounded electrode is narrower than in the conventional case, making it possible to reduce unnecessary plasma discharge in this area, and making it possible to use input power more efficiently.

以上述べたように、本発明装置により従来の装
置に比べて大幅なコストダウン、高品質、高安定
なプラズマ処理装置およびプラズマ処理物が提供
出来る。
As described above, the apparatus of the present invention can provide plasma processing apparatuses and plasma-treated products that are significantly lower in cost, higher quality, and more stable than conventional apparatuses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一具体例を示す概要正面
図、第2図はその概要側面図、第3図は本発明装
置の別の具体例を示す概要正面図、また第4図は
第3図の要部をなすプラズマ処理室の概要正面図
である。 A,B,C…真空容器、1…電力導入部、2…
電極連結部材、3…絶縁軸受部、4…非接地電
極、5…接地電極、6,7…案内手段、8…布
帛、9…供給ローラー、10…巻取りローラー、
11…ガス導入孔、12…排気孔、13…フレー
ム、14…カバー、15…端子、16…電動機、
17…ガイドレール、18,19…通路、20,
21…ガイドローラー。
FIG. 1 is a schematic front view showing one specific example of the device of the present invention, FIG. 2 is a schematic side view thereof, FIG. 3 is a schematic front view showing another specific example of the device of the present invention, and FIG. FIG. 4 is a schematic front view of a plasma processing chamber that forms the main part of FIG. 3; A, B, C...Vacuum container, 1...Power introduction part, 2...
Electrode connecting member, 3... Insulated bearing part, 4... Ungrounded electrode, 5... Grounded electrode, 6, 7... Guide means, 8... Fabric, 9... Supply roller, 10... Winding roller,
11... Gas introduction hole, 12... Exhaust hole, 13... Frame, 14... Cover, 15... Terminal, 16... Electric motor,
17... Guide rail, 18, 19... Passage, 20,
21...Guide roller.

Claims (1)

【特許請求の範囲】[Claims] 1 真空容器とその中に配設された平面状処理表
面を有する複数個の非接地電極と該非接地電極処
理表面に対向して設けられた接地電極とよりな
り、被処理物を上記非接地電極と接地電極との間
に通すための案内手段を具備したプラズマ処理装
置において、上記非接地電極群の中央部に電力導
入部を配置し、かつ該電力導入部とそれぞれ連結
した前記非接地電極を放射状に配設したことを特
徴とするプラズマ処理装置。
1 Consists of a vacuum container, a plurality of non-grounded electrodes disposed therein having a planar processing surface, and a grounded electrode provided opposite to the non-grounded electrode processing surface, and the object to be processed is connected to the non-grounded electrode. In the plasma processing apparatus equipped with a guide means for passing between the ground electrode and the ground electrode, a power introduction part is disposed in the center of the non-ground electrode group, and the non-ground electrodes each connected to the power introduction part are arranged in the center of the non-ground electrode group. A plasma processing apparatus characterized by being arranged in a radial manner.
JP63083076A 1987-07-06 1988-04-06 Plasma treatment apparatus Granted JPH01256541A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63083076A JPH01256541A (en) 1988-04-06 1988-04-06 Plasma treatment apparatus
US07/214,179 US4968918A (en) 1987-07-06 1988-07-01 Apparatus for plasma treatment
DE3887933T DE3887933T2 (en) 1987-07-06 1988-07-05 Plasma processing device.
EP88110707A EP0298420B1 (en) 1987-07-06 1988-07-05 Apparatus for plasma treatment
KR1019880008345A KR950001541B1 (en) 1987-07-06 1988-07-06 Apparatus for plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63083076A JPH01256541A (en) 1988-04-06 1988-04-06 Plasma treatment apparatus

Publications (2)

Publication Number Publication Date
JPH01256541A JPH01256541A (en) 1989-10-13
JPH0518330B2 true JPH0518330B2 (en) 1993-03-11

Family

ID=13792085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63083076A Granted JPH01256541A (en) 1987-07-06 1988-04-06 Plasma treatment apparatus

Country Status (1)

Country Link
JP (1) JPH01256541A (en)

Also Published As

Publication number Publication date
JPH01256541A (en) 1989-10-13

Similar Documents

Publication Publication Date Title
KR100502124B1 (en) A process and apparatus for depositing a carbon-rich coating on a moving substrate
US5300189A (en) Plasma surface treatment method and apparatus
TWI498443B (en) Winding vacuum processing unit
US6312524B1 (en) Plasma CVD apparatus
US8800485B2 (en) Large area, atmospheric pressure plasma for downstream processing
US5627435A (en) Hollow cathode array and method of cleaning sheet stock therewith
US5888594A (en) Process for depositing a carbon-rich coating on a moving substrate
US4968918A (en) Apparatus for plasma treatment
WO2012004175A1 (en) Method and device for atmospheric pressure plasma treatment
EP1360748B1 (en) Multi-mode treater with internal air cooling system
JPH0518330B2 (en)
JP2538978B2 (en) Plasma processing device
JPH0518331B2 (en)
JPH0663101B2 (en) Plasma processing device
JPH01283362A (en) Plasma treatment apparatus
JPH01283361A (en) Plasma treatment apparatus
JPH029441A (en) Plasma treater
JPH029442A (en) Plasma treater
JPH037209B2 (en)
JPH0352937A (en) Continuous plasma-treating device
JP2646457B2 (en) Plasma processing-ion plating processing equipment
JPH0630877Y2 (en) Plasma processing device
JPS6327536A (en) Apparatus for low-temperature plasma treatment of sheet
KR100368052B1 (en) Continous polymerizing apparatus using plasma
JPH01165630A (en) Discharge treatment method