JPH01256543A - Plasma treatment apparatus - Google Patents

Plasma treatment apparatus

Info

Publication number
JPH01256543A
JPH01256543A JP63083078A JP8307888A JPH01256543A JP H01256543 A JPH01256543 A JP H01256543A JP 63083078 A JP63083078 A JP 63083078A JP 8307888 A JP8307888 A JP 8307888A JP H01256543 A JPH01256543 A JP H01256543A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
grounded
grounded electrode
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63083078A
Other languages
Japanese (ja)
Other versions
JPH0518331B2 (en
Inventor
Yoshikazu Kondo
義和 近藤
Yukio Tsuda
津田 由紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP63083078A priority Critical patent/JPH01256543A/en
Priority to US07/214,179 priority patent/US4968918A/en
Priority to DE3887933T priority patent/DE3887933T2/en
Priority to EP88110707A priority patent/EP0298420B1/en
Priority to KR1019880008345A priority patent/KR950001541B1/en
Publication of JPH01256543A publication Critical patent/JPH01256543A/en
Publication of JPH0518331B2 publication Critical patent/JPH0518331B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To suppress unnecessary plasma discharge near the electrodes as much as possible, by radially arranging ungrounded electrodes connected to a power supply part provided at the center. CONSTITUTION:A power supply part 1 is provided at the center of a plurality of ungrounded electrodes 4 in a vacuum vessel A which can withstand a pressure difference between the inside and outside pressures of at least 1atm, and the radially extending electrodes 4 are supported by a plurality of electrode supporting members 2 extending from the supply part 1. The supply part 1 is electrically connected to each electrode 4 and grounded electrodes 5 are arranged in positions equally distant from both surfaces of this electrode 4. A cloth 8 in a vacuum vessel B is supplied from a supply roller 9 through a guide roller 21 and a path 17 to the vessel A, subjected to plasma treatment by passing it through the gap between the electrodes 4 and 5 through guide rollers 6 and 7, led to a vacuum vessel C through a guide roller 22 and wound around a winding roller 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、長尺物体の連続的プラズマ処理装置に関する
。更に詳しくは、膜、フィルム、シート、布、繊維等の
長尺物体、特に平面状あるいは比較的厚さが小さく、幅
の大きい長尺被処理物(以下処理布帛ということがある
)のプラズマ処理を連続的に行うための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a continuous plasma processing apparatus for elongated objects. More specifically, plasma treatment of long objects such as membranes, films, sheets, cloth, fibers, etc., especially long objects that are flat or relatively thin and wide (hereinafter sometimes referred to as treated fabrics). The present invention relates to a device for continuously performing

(従来の技術) プラズマ処理装置、特に平面シート状物や長尺物のプラ
ズマ処理装置としては、従来多くの提案がなされている
。例えば、特公昭60−11149号、同60−319
39公報公報には、大面積の一対の対向電極の間に布帛
を通して処理するプラズマ処理装置が提案されており、
また特開昭60−134061号、同61−22802
8号、特公昭60−59251号、同61−36862
公報公報には、複数個の非接地電極を円筒状接地電極の
周りに配設したプラズマ処理装置が提案されている。さ
らに特公昭60−11150号、同60−54428号
各公報には、多層化平行平板電極を有するプラズマ処理
装置の提案がある。
(Prior Art) Many proposals have been made in the past regarding plasma processing apparatuses, particularly plasma processing apparatuses for flat sheet-like objects and long objects. For example, Special Publication No. 60-11149, No. 60-319
Publication No. 39 proposes a plasma processing apparatus in which a cloth is passed between a pair of opposing electrodes with a large area.
Also, JP-A-60-134061, JP-A No. 61-22802
No. 8, Special Publication No. 60-59251, No. 61-36862
The publication proposes a plasma processing apparatus in which a plurality of non-grounded electrodes are arranged around a cylindrical grounded electrode. Further, Japanese Patent Publications Nos. 11150/1980 and 54428/1987 propose a plasma processing apparatus having multilayered parallel plate electrodes.

(発明が解決しようとする課題) しかし乍ら、上記特公昭60−11149号、同60−
31939公報公報の提案は、大面積の電極面における
処理程度の局部的バラツキによる不均一処理や、電極の
上下・左右空間にプラズマ放電が発生することによる処
理効率の低下等の問題がある。また前記特開昭60−1
34061号公報その他の提案においては、電極の処理
面積を余り大きくすることができず、また非接地電極周
りでの放電ロスが避けられない。前記特公昭60−11
150号、同60−54428公報公報の提案では、多
層化した各電極1−で高周波等の位相にズレを生じ、電
極間で相互干渉して、安定した運転及び品質を得る上に
問題がある。
(Problem to be solved by the invention) However, the above-mentioned Japanese Patent Publication No. 11149/1983, 60-
The proposal in Publication No. 31939 has problems such as non-uniform treatment due to local variations in the degree of treatment on a large electrode surface and a decrease in treatment efficiency due to plasma discharge occurring above, below, left and right of the electrode. Also, the above-mentioned Unexamined Patent Publication No. 60-1
In the proposals of Publication No. 34061 and others, the processing area of the electrode cannot be made very large, and discharge loss around the non-grounded electrode cannot be avoided. Said Special Public Service 1986-11
In the proposal of No. 150 and Publication No. 60-54428, there is a problem in obtaining stable operation and quality due to the phase shift of high frequencies etc. occurring in each multilayered electrode 1- and mutual interference between the electrodes. .

このように従来公知のプラズマ処理装置のいずれにも運
転の安全性、品質の均一性、および投入電力に対する処
理効率のすべてを充分満足し得るものはない。
As described above, none of the conventionally known plasma processing apparatuses can fully satisfy all of the requirements of operational safety, quality uniformity, and processing efficiency relative to input power.

本発明者等は、これら従来提案された装置の欠点を解消
すべく、真空容器とその中に配設され被処理物の走行方
向に関して膨出した曲面状処理表面を有する複数個の非
接地電極と該非接地電極処理表面に対向して設けられた
接地電極とよりなり、被処理物を上記非接地電極と接地
電極との間に通すだめの案内手段を具備したプラズマ処
理装置を嚢に特願昭61−171464号として提案し
た。
In order to eliminate the drawbacks of these conventionally proposed devices, the present inventors have developed a vacuum container and a plurality of non-grounded electrodes disposed therein, each having a curved processing surface that bulges with respect to the running direction of the object to be processed. and a grounding electrode provided opposite to the surface of the non-grounded electrode to be treated, the plasma processing apparatus comprising a guide means for passing the object to be processed between the non-grounded electrode and the grounded electrode. It was proposed as No. 61-171464.

この提案になる装置は従来公知の装置に両帯する種々の
技術的課題の多くを解決することに成功したが、引続き
研究を重ねた結果、装置のコンパクト化、処理効率の向
を等の面において尚改良の必要を見出し、本発明を完成
するに至った。
Although this proposed device succeeded in solving many of the various technical problems faced by conventionally known devices, as a result of continued research, improvements were made in terms of making the device more compact and improving processing efficiency. However, the present inventors found a need for further improvement and completed the present invention.

本発明の目的とするところは、複数個の電極を有しなが
ら、各電極間でプラズマの相互干渉が発生せず、かつ電
極周辺部での不用有害なプラズマ放電を極力抑えたプラ
ズマ処理装置を提供するにある。また別の目的は、より
安定した運転ができ、かつ高品位で均一な処理物をより
効率よく製造できる装置を提供するにある。
An object of the present invention is to provide a plasma processing apparatus which has a plurality of electrodes, but which does not cause mutual interference of plasma between the electrodes and which suppresses unnecessary and harmful plasma discharges around the electrodes as much as possible. It is on offer. Another object of the present invention is to provide an apparatus that can operate more stably and produce high quality and uniform processed products more efficiently.

(課題を解決するだめの手段) 本発明は真空容器とその中に配設され被処理物の走行方
向に関して膨出した曲面状処理表面を有する複数個の非
接地電極と該非接地電極処理表面に対向して設けられた
接地電極とよりなり、被処理物を上記非接地電極と接地
電極との間に通すための案内手段を具備したプラズマ処
理装置において、上記非接地電極群の中央部に電力導入
部を配置し、かつ該電力導入部とそれぞれ連結した前記
非接地電極を放射状に配設したことを特徴とするプラズ
マ処理装置である。
(Means for Solving the Problems) The present invention provides a vacuum container, a plurality of non-grounded electrodes disposed in the vacuum container, each having a curved processed surface that bulges with respect to the traveling direction of an object to be processed, and In a plasma processing apparatus comprising grounded electrodes disposed opposite to each other and equipped with a guiding means for passing the object to be processed between the non-grounded electrode and the grounded electrode, electric power is supplied to the center of the non-grounded electrode group. The plasma processing apparatus is characterized in that an introduction section is arranged, and the non-grounded electrodes connected to the power introduction section are arranged radially.

本発明で適用される被処理物としては膜、フィルム、シ
ートおよび布或いは繊維、糸等の長尺状、平面状或いは
比較的厚さが薄い物であれば特に限定されない。
The objects to be treated to be applied in the present invention are not particularly limited as long as they are long, flat, or relatively thin, such as membranes, films, sheets, cloth, fibers, and threads.

以下添付図面に示す実施態様について本発明を詳述する
The present invention will be described in detail below with reference to embodiments shown in the accompanying drawings.

第1図は本発明の一具体例を示す一部省略概要正面図、
第2図はその概要側面図、第3図は本発明装置の要部を
なすプラズマ処理室の概要正面図である。
FIG. 1 is a partially omitted schematic front view showing a specific example of the present invention;
FIG. 2 is a schematic side view thereof, and FIG. 3 is a schematic front view of a plasma processing chamber which constitutes a main part of the apparatus of the present invention.

第1図および第2図において、真空容器は横型円筒形容
器A、  B、 Cの3部分よりなり、容器A。
In FIGS. 1 and 2, the vacuum container consists of three horizontal cylindrical containers A, B, and C; container A;

Bと容器A、 Cとは通路17.18によってそれぞれ
互いに連通ずる。容器Aはプラズマ処理室、容器B、 
Cはそれぞれ処理布帛8の供給ローラー9と巻取ローラ
ー10とを別個に収容する。容器B、 Cは合体して単
一の容器となし供給ローラー9と巻取ローラー10とを
共に収容することもでき、また、1個の容器Aの中にす
べてを収納して容器B、 Cを省略することも簡単な設
計変更によって可能である。
B and containers A and C communicate with each other by passages 17 and 18, respectively. Container A is a plasma processing chamber, Container B is
C separately accommodates a supply roller 9 and a take-up roller 10 for the treated fabric 8, respectively. Containers B and C can be combined into a single container that contains both the blank supply roller 9 and the take-up roller 10, or all can be housed in one container A and containers B and C can be combined. It is also possible to omit it with a simple design change.

容器への細部を説明する第3図において、非接地電極4
群の略々中心に電力導入部1が位置し、該電力導入部よ
り延びる複数個の電極連結部材2は、放射状に配置され
た複数個の非接地電極4を支持するとともに電力導入部
1と各非接地電極とを電気的に接続する。電力導入部1
は、絶縁軸受部3により真空容器に電気的に絶縁して支
承されるとともに、高周波電源からの端子15とカップ
リングされる。電極連結部材2と非接地電極4とは必ず
しも同軸上にあるを要しない。しかしながら、電極連結
部材2から各非接地電極4までの電気抵抗および距離を
等しくすることが電力配分のバランスという点で好まし
い。
In Figure 3, which describes the details to the container, the non-grounded electrode 4
A power introduction part 1 is located approximately at the center of the group, and a plurality of electrode connecting members 2 extending from the power introduction part support a plurality of non-grounded electrodes 4 arranged radially and connect the power introduction part 1 and the plurality of electrode connecting members 2. Electrically connect each non-grounded electrode. Power introduction part 1
is electrically insulated and supported by the vacuum container by an insulated bearing portion 3, and is coupled to a terminal 15 from a high frequency power source. The electrode connecting member 2 and the non-grounded electrode 4 do not necessarily need to be coaxial. However, it is preferable to equalize the electrical resistance and distance from the electrode connecting member 2 to each non-grounded electrode 4 in terms of balance of power distribution.

隣り合った非接地電極の周方向へ延びる軸のなす角度は
すべて等しくなくてもよいが、等角度放射状であること
が最も好ましい。
Although the angles formed by the circumferentially extending axes of adjacent non-grounded electrodes do not have to be equal, it is most preferable that they be equiangular radial.

非接地電極4は第3図に示すように処理布帛を効率よく
安定してその表面に接触させるために、処理布帛の走行
方向に関して膨出した処理表面を有する形状となす。膨
出曲面の曲率、形状は電極の長さや前後のガイドローラ
ーの径および処理布帛の変形のし易さや、作用張力によ
って適宜に選定する必要があるが、電極長に対して中央
部の高さはl/100以上であれば充分であり、175
0以上であれば更に好ましい。処理布帛の案内手段であ
るガイドローラー6.7は、被処理物を非接地電極によ
りよく接触させる位置に設ける。
As shown in FIG. 3, the non-grounded electrode 4 is shaped to have a treated surface that bulges in the running direction of the treated fabric in order to bring the treated fabric into efficient and stable contact with its surface. The curvature and shape of the bulging surface must be selected appropriately depending on the length of the electrode, the diameter of the front and rear guide rollers, the ease of deformation of the treated fabric, and the applied tension. It is sufficient if it is 1/100 or more, and 175
It is more preferable if it is 0 or more. A guide roller 6.7, which is a guide means for the treated fabric, is provided at a position that brings the object to be treated into better contact with the non-grounded electrode.

非接地電極4に対向する接地電極5は棒状でも平板状で
もよいが、好ましくは非接地電極の膨出面に対応する凹
曲面を有し、更に好ましくは同じ曲率の凹面を有する。
The ground electrode 5 facing the non-ground electrode 4 may have a rod shape or a flat plate shape, but preferably has a concave curved surface corresponding to the bulged surface of the non-ground electrode, and more preferably has a concave surface with the same curvature.

これによって、プラズマ放電の電極間での均一性が向上
し処理物の品質の均一性向上が可能となる。
This improves the uniformity of plasma discharge between the electrodes, making it possible to improve the uniformity of the quality of the processed material.

接地電極と非接地電極の配置は、真空容器の中心付近か
ら周囲へ延びる放射状に配置することが好ましい。
The grounded electrode and the non-grounded electrode are preferably arranged in a radial pattern extending from near the center of the vacuum container to the periphery.

接地電極5と非接地電極4とは互いに等しい面間隔を以
て設置することが好ましい。
It is preferable that the ground electrode 5 and the non-ground electrode 4 are installed with equal surface spacing.

面間距離は、入力エネルギー、電極形状、真空度、処理
速度およびプラズマエツチングか、プラズマ重合か、プ
ラズマCVDか、という処理方法により異なるが、−船
釣に真空度が小さく、人力エネルギーが小さい場合は狭
くする方がよく、通常10c+a以下、好ましくは5c
mである。例えば酸素プラズマの場合で真空度がl m
mHg程度では、0.5〜3cffi程度が効果的であ
る。非接地電極4ふよび接地電極5の材質は導電性の高
い金属、例えばアルミ゛ニウム、銅、鐵、ステンレス鋼
、およびそれらの各種金属メツキ物などが好ましい。形
状としては平板、パンチング板或いはメツシュ(金網)
等が使用できるが、入力電力がQ、1w/ca+2以上
では孔、凹凸のない平板が好ましい。
The distance between surfaces varies depending on the input energy, electrode shape, degree of vacuum, processing speed, and processing method such as plasma etching, plasma polymerization, or plasma CVD. It is better to make it narrower, usually less than 10c+a, preferably 5c
It is m. For example, in the case of oxygen plasma, the degree of vacuum is l m
At about mHg, about 0.5 to 3 cffi is effective. The materials of the non-grounded electrode 4 and the grounded electrode 5 are preferably highly conductive metals, such as aluminum, copper, iron, stainless steel, and various metal platings thereof. Shape: flat plate, punched plate, or mesh (wire mesh)
However, if the input power is Q, 1w/ca+2 or more, a flat plate without holes or irregularities is preferable.

非接地電極4および接地電極5は内部に温調用媒体の通
路を設けて温調可能、殊に冷却可能にすることが好まし
い。媒体としては流動性のあるものならばすべて使用し
うるが、電気的に絶縁物である純水、有機溶媒や各種熱
交換用のガス、蒸気が好ましい。また温調装置或いは冷
却装置としては、冷媒通路19.20を経て冷媒の通っ
た蛇管或いはジャケットを電極に設置するのが好ましい
。電極を温調することにより、各種プラズマ処理(例え
ばプラズマ重合、プラズマCVO、プラズマエツチング
等)に応じた最も適切な温度に基板温度を設定できる。
It is preferable that the non-grounded electrode 4 and the grounded electrode 5 have a passage for a temperature regulating medium therein to enable temperature regulation, particularly cooling. Any medium can be used as long as it has fluidity, but pure water, which is an electrical insulator, organic solvents, various heat exchange gases, and steam are preferred. Further, as a temperature control device or a cooling device, it is preferable to install a serpentine pipe or a jacket through which a refrigerant passes through the refrigerant passages 19 and 20 on the electrodes. By controlling the temperature of the electrode, the substrate temperature can be set to the most appropriate temperature according to various plasma treatments (eg, plasma polymerization, plasma CVO, plasma etching, etc.).

こうして非接地電極の温度を任意に設定できることと、
それによって処理布帛を非接地電極上に接触可能とする
ことにより長時間にわたって安定な処理が可能となる。
In this way, the temperature of the non-grounded electrode can be set arbitrarily, and
This allows the treated fabric to come into contact with the non-grounded electrode, allowing stable treatment over a long period of time.

真空容器Bは処理布帛の供給ローラー9を、又真空容器
Cは電動機16などによって駆動される巻取りローラー
lOを収容する。供給ローラー9と巻取りローラー10
とは電動機16の連結機構を適宜双方間で反転駆動可能
となすことにより、リバーシブルとすることは好ましい
ことである。
Vacuum container B accommodates a supply roller 9 for the treated fabric, and vacuum container C accommodates a take-up roller IO driven by an electric motor 16 or the like. Supply roller 9 and take-up roller 10
Therefore, it is preferable to make the coupling mechanism of the electric motor 16 reversible by making it possible to drive the coupling mechanism between the two as appropriate.

真空容器A内に、これらの供給ローラー9と巻取りロー
ラー10とを収納し得るよう真空容器Aの形状構造を適
宜設計することは容易である。
It is easy to appropriately design the shape and structure of the vacuum container A so that the supply roller 9 and the take-up roller 10 can be accommodated in the vacuum container A.

真空容器A内にはまた、供給ローラー9から供給される
処理布帛8を接地電極と非接地電極との間の空隙へ順次
導き、巻取ローラーlOへ巻取るための案内手段、例え
ばガイドバー、ガイドローラー等6.7が、各電極基部
ふよび先端部近傍の適宜な位置に配設される。これら案
内手段は固定ロール、従動ロール、駆動ロールあるいは
それらの組合せを布帛の目付け、走行速度、テンション
等の条件により適宜に用いることができ、処理布帛が非
接地電極面に摺接して走行し得るよう調整して配設する
Inside the vacuum container A, there is also a guiding means, such as a guide bar, for sequentially guiding the treated fabric 8 fed from the supply roller 9 into the gap between the grounded electrode and the non-grounded electrode and winding it onto the winding roller IO. Guide rollers 6.7 are arranged at appropriate positions near the base and tip of each electrode. As these guide means, fixed rolls, driven rolls, drive rolls, or a combination thereof can be used as appropriate depending on conditions such as fabric weight, running speed, tension, etc., and the treated fabric can run in sliding contact with the non-grounded electrode surface. Adjust and arrange accordingly.

処理布帛をプラズマ空間を走行させるためのローラー6
.7の材質は、処理布帛に比べてエツチング性の小さい
、耐熱性にすぐれた、例えば金属、セラミック、金属コ
ーティングセラミック或いはNBR,シリコーン等のゴ
ムコーティング等がよい。またローラーは接地されてい
る方がよい。ローラーの表面は、処理布帛のスリップを
防止するために、鏡面加工のものが好ましい。更に好ま
しくは被処理物の走行安定性、加熱防止のために、シリ
コーンゴム、SBRゴム、SBRゴム、フッ素ゴム等、
ゴムコーティング或いはゴムチューブで被覆したものが
よい。
Roller 6 for running the treated fabric through the plasma space
.. The material 7 is preferably a metal, ceramic, metal-coated ceramic, or rubber coating such as NBR or silicone, which has less etching property than the treated fabric and has excellent heat resistance. It is also better for the rollers to be grounded. The surface of the roller is preferably mirror-finished in order to prevent the treated fabric from slipping. More preferably, silicone rubber, SBR rubber, SBR rubber, fluororubber, etc. are used for running stability of the treated object and prevention of heating.
It is best to use a rubber coating or a rubber tube.

真空容器内の非接地電極、接地電極、処理布帛案内手段
、電力導入部等の主要構成部材は、フレーム13に支承
されるとともに、接地電極を相互に結んだカバー14に
より被覆されて一体となり、ガイドレール23上を走行
して真空容器に装脱される。
Main components such as a non-grounded electrode, a grounded electrode, a treated fabric guide means, and a power introduction part in the vacuum container are supported by a frame 13, and are covered with a cover 14 that connects the grounded electrodes to each other, so that they are integrated. It travels on the guide rail 23 and is loaded and unloaded into the vacuum container.

カバー14の材質は絶縁物でも導電性物質でもよいが、
好ましくは電極材料と同質のもの、例えばステンレス、
アルミニウム、銅板等であり、更に好ましくは中央部に
プラズマ空間を監視できる透視窓を有するのがよい。透
視窓の材質は、透視可能ならば有機物でも無機物でもよ
いが、耐プラズマ性、耐熱性にすぐれた無機質、例えば
ガラス、無機結晶等がよい。またカバーは接地されてい
る方がよく、この場合カバーと非接地電極の間隔は、プ
ラズマの安定性、均一性の点で、接地電極と非接地電極
の間隔より大きい方がよい。
The material of the cover 14 may be an insulating material or a conductive material.
Preferably the same material as the electrode material, such as stainless steel,
It is made of aluminum, copper plate, etc., and more preferably has a see-through window in the center for monitoring the plasma space. The material for the see-through window may be organic or inorganic as long as it can be seen through, but inorganic materials with excellent plasma resistance and heat resistance, such as glass and inorganic crystals, are preferable. Further, it is preferable that the cover be grounded, and in this case, the distance between the cover and the non-grounded electrode is preferably larger than the distance between the grounded electrode and the non-grounded electrode in terms of plasma stability and uniformity.

真空容器は、内外圧差少なくとも1気圧に耐えるもので
あれば、その形状、寸法は特に限定されないが、ガス導
入孔11と真空ポンプに通ずる排気孔12とを具え、上
記主要構成部材等の内容物を装脱するための開閉装置を
有し、好ましくは内容物モニタリング用の透視窓を具備
する。
The shape and dimensions of the vacuum container are not particularly limited as long as they can withstand an internal and external pressure difference of at least 1 atmosphere. It has an opening/closing device for loading and unloading, and is preferably equipped with a see-through window for monitoring the contents.

ガス導入孔11のガス吹出し口の形状は、細長いスリッ
ト状か小孔を多数有するものが、またガス吹出し口は電
極の全幅に亘って存在することが導入ガスと分解ガスの
比率にムラがなくなり、安定した処理効果が得られ好ま
しい。ガス導入配管の材質は、プラスチック等有機物も
使用しろるが、長期゛に亘り安定して使用するためには
、化学的に安定で耐プラズマ性が高く、高温に耐える金
属、例えばステンレス管、鋼管、アルミニウム管或いは
ガラス管等が好ましい。
The shape of the gas outlet of the gas introduction hole 11 should be an elongated slit or have many small holes, and the gas outlet should be present over the entire width of the electrode to ensure an even ratio of the introduced gas to the decomposed gas. , which is preferable because a stable treatment effect can be obtained. Organic materials such as plastic may be used for the gas introduction piping, but for long-term stable use, metals that are chemically stable, have high plasma resistance, and can withstand high temperatures, such as stainless steel pipes and steel pipes, are recommended. , an aluminum tube, a glass tube, etc. are preferable.

(作 用) 本発明装置の図示の例にあっては、真空容器B内の布帛
は供給ローラー9から、ガイドローラー21で走行径路
を規制され、通路18を通って真空容器Aへ入り、電極
間隙を通過した後、再び通路19よりガイドローラー2
2に案内されて巻取りローラー10に巻取られる。
(Function) In the illustrated example of the apparatus of the present invention, the fabric in the vacuum container B starts from the supply roller 9, has its travel path regulated by the guide roller 21, enters the vacuum container A through the passage 18, and enters the vacuum container A, where it enters the vacuum container A from the supply roller 9. After passing through the gap, the guide roller 2 is removed from the passage 19 again.
2 and is wound up on a winding roller 10.

本発明において、処理布帛8は非接地電極近傍に生成し
ているプラズマシース内部、好ましくは非接地電極から
5mm以内を走行し、更に好ましくは非接地電極に接触
させる。従来の方法では、被処理物は接地電極上或いは
非接地電極と接地電極の中間に浮かせて走行させていた
ために、処理速度や効果が十分でなく、ある程度充分な
効果を出すためには、大きな処理装置を必要とした。ま
た、本発明では非接地電極形状が処理布帛の走行方向に
関して膨出した処理面をもっており、被処理物の非接地
電極への接触効果は非常に高い。このため、小出力、短
時間で頗る均一な処理が可能となる。
In the present invention, the treated fabric 8 travels inside the plasma sheath generated near the non-grounded electrode, preferably within 5 mm from the non-grounded electrode, and more preferably comes into contact with the non-grounded electrode. In the conventional method, the object to be processed was moved floating on the grounded electrode or between the non-grounded electrode and the grounded electrode, so the processing speed and effect were insufficient, and in order to achieve a certain degree of effect, it was necessary to Required processing equipment. Furthermore, in the present invention, the non-grounded electrode shape has a treated surface that bulges in the running direction of the treated fabric, and the effect of contacting the object to be treated with the non-grounded electrode is very high. Therefore, extremely uniform processing can be performed with low output and in a short time.

本発明の被処理物をプラズマシース内、好ましくは非接
地電極に接触させておく効果の理由は判明しないが、非
接地電極にマイナスのセルフバイアスが発生し、プラズ
マ中のプラス荷電粒子が加速されて被処理物に衝突する
ためと推測される。
The reason for the effect of keeping the object to be processed in the present invention in contact with the plasma sheath, preferably with an ungrounded electrode, is not clear, but a negative self-bias is generated in the ungrounded electrode, accelerating positively charged particles in the plasma. It is presumed that this is because the particles collide with the object to be processed.

プラズマ用の電力の導入は電力導入部lにより集中的に
行う。各非接地電極4へは電力導入部1より電極連結部
材2を通じて電力の導入を行う。
Electric power for plasma is introduced centrally through the power introduction section l. Electric power is introduced into each non-grounded electrode 4 from the power introduction section 1 through the electrode connection member 2.

又、電源は電力導入部が1ケ所であるために、単□−の
電源を使用でき複数個の電源を使った時の各電源間の発
振周波数等のズレによる高周波の相互干渉、プラズマの
アンバランスは殆どなくなる。
In addition, since the power supply has only one power introduction part, a single power supply can be used, and when multiple power supplies are used, mutual interference of high frequencies due to differences in oscillation frequency, etc. between each power supply, and plasma imbalance are avoided. Balance is almost gone.

非接地電極4には、プラズマ発生用の50 Hz。The non-grounded electrode 4 has a frequency of 50 Hz for plasma generation.

60 Hzの商業用周波数、キロヘルツの低周波数およ
びメガヘルツからギガヘルツ領域の高周波数の電力を導
入して、接地電極との間で低温ガスプラズマを発生させ
る。
Power at a commercial frequency of 60 Hz, a low frequency of kilohertz, and a high frequency in the megahertz to gigahertz range is introduced to generate a cold gas plasma with a ground electrode.

低温ガスプラズマの安定した発生のためには、数KHz
から数百KHzの低周波或いは高周波が好ましいが、1
3.56 MHzの高周波が処理効率、処理コスト等の
点で特に好ましい。また、低周波或いは高周波の人力エ
ネルギーは電極形状、電極間距離、真空度、処理速度等
によって変化するが、通常単位面積当り0.01 w/
cm’以上、好ましくは0.2〜IQ w/cm2、更
に好ましくはO,l〜l w/cm2である。
Several KHz is required for stable generation of low-temperature gas plasma.
A low frequency or high frequency from 1 to several hundred KHz is preferable, but 1
A high frequency of 3.56 MHz is particularly preferable in terms of processing efficiency, processing cost, and the like. In addition, low-frequency or high-frequency human power energy varies depending on the electrode shape, distance between electrodes, degree of vacuum, processing speed, etc., but is usually 0.01 w/unit area.
cm' or more, preferably 0.2 to IQ w/cm2, more preferably O,1 to lw/cm2.

低温ガスプラズマを発生させるガスとしては、酸素、窒
素、アルゴン、ヘリウム、水素等の非重合性ガスやメタ
ン、エタン、プロパン、ブタン或いはベンゼン、アクリ
ル酸、スチレン等の重合性有機モノマーガスを用いるこ
とができ、目的に応じて選択する。
As the gas for generating low-temperature gas plasma, non-polymerizable gases such as oxygen, nitrogen, argon, helium, and hydrogen, and polymerizable organic monomer gases such as methane, ethane, propane, butane, benzene, acrylic acid, and styrene may be used. You can choose according to your purpose.

ポリエステル繊維等のプラズマエツチングには、酸素、
空気、窒素、アルゴン、水素、炭酸ガス、ヘリウムやC
F、、 CF2Cl、、 CFCl3. CHF3等の
ハロゲン化炭化水素およびその誘導体の単独あるいは混
合ガスが使用できる。
For plasma etching of polyester fibers, etc., oxygen,
Air, nitrogen, argon, hydrogen, carbon dioxide, helium and C
F,, CF2Cl,, CFCl3. Single or mixed gases of halogenated hydrocarbons such as CHF3 and their derivatives can be used.

プラズマ空間の真空度は、低温ガスプラズマが安定して
発生する領域、すなわち通常0.旧〜10aunHg、
好ましくは0.1〜5 mm11g、更に好ましくは0
.2〜l +u+Hgに調整する。真空度の調整は排気
速度と共にガス或いはモノマーガスの導入により行うこ
とができるが、目的とする処理を好ましく行うだめには
、導入ガスの調整による方が好ましい。
The degree of vacuum in the plasma space is usually 0.0, which is the region where low-temperature gas plasma is stably generated. Old ~10aunHg,
Preferably 0.1-5 mm11g, more preferably 0
.. Adjust to 2~l +u+Hg. The degree of vacuum can be adjusted by adjusting the pumping speed and introducing a gas or monomer gas, but in order to perform the desired treatment preferably, it is preferable to adjust the introduced gas.

ガスの導入は、ガス導入管を通じて、被処理物の処理面
側に吹き出すことが好ましい。このことにより、被処理
物の処理面には常に新しい導入ガスが接触し、さらにプ
ラズマ処理により発生した分解ガスは、効率的にプラズ
マ空間より排出される。導入ガスの分解ガスに対する比
は少なくとも1、好ましくは2以上、更に好ましくは4
以上である。プラズマ処理の効率化右よび異種反応の防
止には導入ガスをいかに効率よくプラズマ化し、被処理
物表面に当てるか、および分解ガスをいかに効率よく被
処理物表面より除去、排出するかに大きく影響される。
The gas is preferably introduced through a gas introduction pipe and blown out toward the processing surface of the object to be processed. As a result, the newly introduced gas always comes into contact with the processing surface of the object to be processed, and the decomposed gas generated by the plasma processing is efficiently discharged from the plasma space. The ratio of introduced gas to cracked gas is at least 1, preferably 2 or more, more preferably 4.
That's all. Increasing the efficiency of plasma processing and preventing foreign reactions has a major impact on how efficiently the introduced gas is turned into plasma and applied to the surface of the object to be treated, and how efficiently decomposed gas is removed and discharged from the surface of the object to be treated. be done.

接地電極相互間を結んだカバー14゛は導入ガスおよび
分解ガスを効率よく置換する作用をなす。
The cover 14' connecting the ground electrodes functions to efficiently replace the introduced gas and decomposed gas.

本発明装置の好適な実施態様を整理して、以下に記す。Preferred embodiments of the device of the present invention are summarized and described below.

(1)  非接地電極表面が凹面状である請求項記載の
装置。
(1) The device according to claim 1, wherein the non-grounded electrode surface is concave.

(2)非接地電極表面と接地電極表面が等しい面間距離
をもって対向する請求項記載の装置。
(2) The device according to claim 1, wherein the non-grounded electrode surface and the grounded electrode surface face each other with an equal inter-plane distance.

(3)非接地電極表面および/または接地電極表面が温
調可能である請求項記載の装置。
(3) The device according to claim 1, wherein the temperature of the non-grounded electrode surface and/or the grounded electrode surface is adjustable.

(4)被処理物が非接地電極の表面に接触する請求項記
載の装置。
(4) The apparatus according to claim 1, wherein the object to be processed contacts the surface of the non-grounded electrode.

(発明の効果) 本発明にかかるプラズマ処理装置では、電力導入部から
非接地電極までの距離を等しくとることができるために
、複数個の非接地電極に各々同一位相の電力を導入する
ことができるようになった。
(Effects of the Invention) In the plasma processing apparatus according to the present invention, since the distances from the power introduction part to the non-grounded electrodes can be made equal, it is possible to introduce power of the same phase to each of the plurality of non-grounded electrodes. Now you can.

また、各電極への電力導入部を統一できたために、単一
の電源で済むようになった。従って、従来の多層化電極
を有するプラズマ処理装置に見られた複数の電極間での
プラズマの相互干渉および複数の電源間での相互干渉を
防止でき、安定した運転、安定した品質が得られるよう
になった。
Also, because the power introduction part for each electrode could be unified, a single power source was required. Therefore, it is possible to prevent mutual interference of plasma between multiple electrodes and mutual interference between multiple power supplies, which was observed in conventional plasma processing equipment with multilayered electrodes, and to obtain stable operation and stable quality. Became.

また、非接地電極周囲の空間が従来のものよりずっと狭
くなってあり、この部分での不用なプラズマ放電が低減
され、投入電力がより効率的に使用されるようになった
Additionally, the space around the ungrounded electrode is much narrower than in the past, reducing unnecessary plasma discharge in this area and making more efficient use of input power.

以上述べたように、本発明装置により、従来の装置に比
べて大幅なコストダウン、高品質、高安定なプラズマ処
理装置、および処理布帛を提供できる。
As described above, the apparatus of the present invention can provide a plasma processing apparatus and treated fabric that are significantly lower in cost, higher quality, and more stable than conventional apparatuses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一具体例を示す一部省略概要正・
面図、 第2図はその概要側面図、 第3図は本発明装置の要部をなすプラズマ処理室の概要
正面図である。 A、 B、 C・・・真空容器 1・・・電力導入部2
・・・電極連結部材   3・・・絶縁軸受部4・・・
非接地電極    5・・・接地電極6.7・・・案内
手段   8・・・処理布帛9・・・供給ローラー  
 10・・・巻取りローラー11・・・ガス導入孔  
  12・・・排気孔13・・・フレーム     1
4・・・カバー15・・・端子       16・・
・電動機17、18・t・通路 21、22・・・ガイドローラー 23・・・ガイドレール 特許出願人 鐘 紡 株 式 会 社 第2図
FIG. 1 is a partially omitted schematic diagram showing a specific example of the device of the present invention.
FIG. 2 is a schematic side view thereof, and FIG. 3 is a schematic front view of a plasma processing chamber that constitutes a main part of the apparatus of the present invention. A, B, C...Vacuum container 1...Power introduction part 2
...Electrode connecting member 3...Insulated bearing part 4...
Non-grounded electrode 5... Grounded electrode 6.7... Guide means 8... Treated fabric 9... Supply roller
10... Winding roller 11... Gas introduction hole
12...Exhaust hole 13...Frame 1
4...Cover 15...Terminal 16...
・Electric motors 17, 18・t・Passage 21, 22...Guide roller 23...Guide rail Patent applicant Kanebo Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、真空容器とその中に配設され被処理物の走行方向に
関して膨出した曲面状処理表面を有する複数個の非接地
電極と該非接地電極処理表面に対向して設けられた接地
電極とよりなり、被処理物を上記非接地電極と接地電極
との間に通すための案内手段を具備したプラズマ処理装
置において、上記非接地電極群の中央部に電力導入部を
配置し、かつ該電力導入部とそれぞれ連結した前記非接
地電極を放射状に配設したことを特徴とするプラズマ処
理装置。
1. A vacuum container, a plurality of non-grounded electrodes disposed therein and each having a curved processed surface that bulges with respect to the traveling direction of the object to be processed, and a grounded electrode provided opposite to the non-grounded electrode processed surface. In the plasma processing apparatus equipped with a guide means for passing the object to be processed between the non-grounded electrode and the grounded electrode, a power introduction part is disposed in the center of the non-grounded electrode group, and the power introduction part is arranged in the center of the non-grounded electrode group. A plasma processing apparatus characterized in that the non-grounded electrodes are arranged in a radial manner, each of which is connected to a corresponding part of the non-grounded electrode.
JP63083078A 1987-07-06 1988-04-06 Plasma treatment apparatus Granted JPH01256543A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63083078A JPH01256543A (en) 1988-04-06 1988-04-06 Plasma treatment apparatus
US07/214,179 US4968918A (en) 1987-07-06 1988-07-01 Apparatus for plasma treatment
DE3887933T DE3887933T2 (en) 1987-07-06 1988-07-05 Plasma processing device.
EP88110707A EP0298420B1 (en) 1987-07-06 1988-07-05 Apparatus for plasma treatment
KR1019880008345A KR950001541B1 (en) 1987-07-06 1988-07-06 Apparatus for plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63083078A JPH01256543A (en) 1988-04-06 1988-04-06 Plasma treatment apparatus

Publications (2)

Publication Number Publication Date
JPH01256543A true JPH01256543A (en) 1989-10-13
JPH0518331B2 JPH0518331B2 (en) 1993-03-11

Family

ID=13792143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63083078A Granted JPH01256543A (en) 1987-07-06 1988-04-06 Plasma treatment apparatus

Country Status (1)

Country Link
JP (1) JPH01256543A (en)

Also Published As

Publication number Publication date
JPH0518331B2 (en) 1993-03-11

Similar Documents

Publication Publication Date Title
RU2482219C2 (en) Vacuumised coiling device
US5627435A (en) Hollow cathode array and method of cleaning sheet stock therewith
EP1360748B1 (en) Multi-mode treater with internal air cooling system
US4968918A (en) Apparatus for plasma treatment
US7497922B2 (en) Plasma-assisted gas production
JP4630874B2 (en) Atmospheric pressure large area glow plasma generator
US7432470B2 (en) Surface cleaning and sterilization
JP4319263B2 (en) Annealing method of passing metal substrate
JPH01256543A (en) Plasma treatment apparatus
JP2538978B2 (en) Plasma processing device
JPH01283362A (en) Plasma treatment apparatus
JPH0518330B2 (en)
JPH01283361A (en) Plasma treatment apparatus
JPH01283360A (en) Plasma treatment apparatus
JPH08192044A (en) Continuous surface treatment of sheet and device therefor
JPH037209B2 (en)
JPH029441A (en) Plasma treater
JPH029442A (en) Plasma treater
JPH02103206A (en) Plasma treatment-polymerization unit
JP4009458B2 (en) Plasma CVD deposition system
JP2646457B2 (en) Plasma processing-ion plating processing equipment
JPS59183827A (en) Continuous plasma treating device
JPH0630877Y2 (en) Plasma processing device
CN114786320A (en) Plasma device based on infrared controllable discharge gap and application thereof
KR100368052B1 (en) Continous polymerizing apparatus using plasma