JPH01256175A - Complementary two-dimensional electron gas field-effect transistor - Google Patents
Complementary two-dimensional electron gas field-effect transistorInfo
- Publication number
- JPH01256175A JPH01256175A JP8319688A JP8319688A JPH01256175A JP H01256175 A JPH01256175 A JP H01256175A JP 8319688 A JP8319688 A JP 8319688A JP 8319688 A JP8319688 A JP 8319688A JP H01256175 A JPH01256175 A JP H01256175A
- Authority
- JP
- Japan
- Prior art keywords
- channel
- hemt
- layer
- complementary
- inas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000295 complement effect Effects 0.000 title claims abstract description 18
- 230000005533 two-dimensional electron gas Effects 0.000 title claims description 11
- 230000005669 field effect Effects 0.000 title claims description 10
- 229910005542 GaSb Inorganic materials 0.000 claims abstract description 12
- 229910000673 Indium arsenide Inorganic materials 0.000 claims abstract description 12
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 230000005525 hole transport Effects 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 13
- 239000000758 substrate Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7782—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0605—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/201—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
- H01L29/205—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ヘテロ構造を有する相補型2次元電子ガス電
界効果トランジスタ、特にその材料に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a complementary two-dimensional electron gas field effect transistor having a heterostructure, and in particular to materials thereof.
従来の2次元電子ガストランジスタとしては一3t−M
OSFETやAlGaAsとGaAsを用いたHEMT
(高電子移動度トランジスタ)・MESFETなどがあ
る。これらを用い、低消費電力を実現するためには相補
型構造にする必要があり、Siでは0MO3が実現され
ている。しかし、Siでは電子の走行スピードが小さい
ために、トランジスタのスイッチング速度が遅くなって
いた。そこで、より速いスイッチング速度を実現するた
めに、2次元電子ガストランジスタの中で最も速いAl
GaAsとGaAsを用いたHEMTが提案され(三相
:ジャパニーズ・ジャーナル・オン・アプライド・フィ
ジクス、第x9.@ (1980年)P、225)、期
待どうりの高速性が実現された。HEMT材料として従
来考えられていたものには、上記の他にInGaAsと
InGaAsを用いたものもあり、さらに速い電子のス
ピードを利用しようというものである。As a conventional two-dimensional electron gas transistor, 13t-M
HEMT using OSFET, AlGaAs and GaAs
(high electron mobility transistor), MESFET, etc. In order to realize low power consumption using these, it is necessary to have a complementary structure, and 0MO3 has been realized in Si. However, since the traveling speed of electrons in Si is low, the switching speed of the transistor is slow. Therefore, in order to achieve faster switching speed, we decided to use Al, which is the fastest among the two-dimensional electron gas transistors.
A HEMT using GaAs and GaAs was proposed (three-phase: Japanese Journal on Applied Physics, No. In addition to the above-mentioned HEMT materials, there are also those using InGaAs and InGaAs, which are intended to utilize even faster electron speeds.
HEMTに関しては、その電子の移動度が太きいために
、nチャネルのみを使って高速な集積回路が作られてい
る。第2図に従来のGaAsを用いたnチャネル)IE
MTの構造を示す、このnチャネルHEMTは、GaA
sを用いた基板23と、GaAsを用いたnチャネル層
22と、n−AsGaAsを用いたゲートjW21と、
ソース24と、ゲート25と、ドレイン26とにより構
成されている。As for HEMTs, high-speed integrated circuits are fabricated using only n-channels because of their high electron mobility. Figure 2 shows a conventional n-channel IE using GaAs.
This n-channel HEMT, which shows the structure of MT, is made of GaA
A substrate 23 using s, an n channel layer 22 using GaAs, a gate jW21 using n-AsGaAs,
It is composed of a source 24, a gate 25, and a drain 26.
しかし集積度が大きくなるに従い、低消費電力型の相補
型が要求されるようになると、T(E M Tのpチャ
ネル(p−HEMT)を実現する必要がある。第3図に
、pチャネルOE M Tの構造の一例を示す、このp
チャネルHEMTは、GaAsを用いた基板33と、G
aAsを用いたpチャネル層32と、p AlGaAs
を用いたゲート層31と、ソース34と、ゲート35と
、ドレイン36とにより構成されている。However, as the degree of integration increases, and a complementary type with low power consumption is required, it is necessary to realize a p-channel (p-HEMT) of T(EMT). This p shows an example of the structure of OE M T.
The channel HEMT includes a substrate 33 made of GaAs and a substrate 33 made of GaAs.
p channel layer 32 using aAs and p AlGaAs
The gate layer 31 includes a source 34, a gate 35, and a drain 36.
しかしpチャネルHEMTを実現する際に起こる問題点
として、GaAsやI nGaAsではホールの有効質
量が大きく、そのスピードが小さいことである。そのた
めに、p型HEMTのスイッチングスピードは遅く、n
型HEMTの1/10程度となる。このp−)(EMT
を用いて相補型のHEMT (CHEMT)を実現する
と、スイッチングスピードは、遅い方のp−HEMTで
決まるために、GaAs系のCHEMTは、かなり低速
のものとなる。However, a problem that arises when realizing a p-channel HEMT is that the effective mass of holes in GaAs and InGaAs is large and their speed is low. Therefore, the switching speed of p-type HEMT is slow, and n
It is about 1/10 of type HEMT. This p-)(EMT
When a complementary HEMT (CHEMT) is realized using p-HEMT, the switching speed is determined by the slower p-HEMT, so the GaAs-based CHEMT becomes considerably slow.
従来の材料を用いたHEMTで低消費電力回路である相
補型を実現する際に起こる問題点として、スイッチング
スピードがpチャネルのHEMTで制限されるために、
遅いことが挙げられる。A problem that occurs when implementing a complementary type low power consumption circuit with HEMTs using conventional materials is that the switching speed is limited by p-channel HEMTs.
One of the reasons is that it is slow.
本発明の目的は、このような欠点を除き、より速い、か
つ低消費電力型である相補型2次元電子ガス電界効果ト
ランジスタを提供することにある。An object of the present invention is to eliminate such drawbacks and provide a complementary two-dimensional electron gas field effect transistor that is faster and consumes less power.
本発明は、nチャネルトランジスタとnチャネルトラン
ジスタとを有する相補型2次元電子ガス電界効果トラン
ジスタにおいて、
前記nチャネルトランジスタは、A (l zG a
r−xsbより成る電子供給層と、InAsより成る電
子走行層とを有し、
前記nチャネルトランジスタは、A I XG’ a
r−xsbより成るホール供給層と、Garbより成る
ホール走行層とを有することを特徴とする。The present invention provides a complementary two-dimensional electron gas field effect transistor having an n-channel transistor and an n-channel transistor, wherein the n-channel transistor has A (l zG a
The n-channel transistor has an electron supply layer made of r-xsb and an electron transit layer made of InAs, and the n-channel transistor has A I
It is characterized by having a hole supply layer made of r-xsb and a hole transit layer made of Garb.
相補型2次元電子ガス電界効果トランジスタd材料とし
て、本発明によるものを用いた場合、nチャネルHEM
Tとしては、A ItXG a I−xS bを電子供
給層とし、InAsを電子走行層とする。When the material according to the present invention is used as a complementary two-dimensional electron gas field effect transistor d material, an n-channel HEM
For T, A ItXG a I-xS b is used as an electron supply layer, and InAs is used as an electron transport layer.
Aj、Ga+−,5bJiJにドナー(Te)をドープ
しておけば(nAsとAI!XGa1−XSbの界面の
InAs側に電子が誘起され、nチャネルが形成される
。InAs中の電子はGaAsに比べ移動度が4倍程度
あるために、高速のnチャネルHEMTが形成される。If Aj, Ga+-, 5bJiJ is doped with a donor (Te), electrons are induced on the InAs side of the interface between nAs and AI! Since the mobility is about four times that of the conventional one, a high-speed n-channel HEMT can be formed.
pチャネルHEMTとしては、AlxQa、−、Sbを
ホール供給層とし、GaSbをホールの走行層とする。In the p-channel HEMT, AlxQa,-,Sb is used as a hole supply layer, and GaSb is used as a hole transport layer.
Al、1Ga1−XSb店にアクセプター(Be)をド
ープしておけばGaSbとA I XG a +−*S
bの界面のQa3b側にホールが誘起され、pチャネ
ルが形成される。GaSb中のホールの移動度はQa、
6.sに比べて3〜4倍程度大きいために、高速のpチ
ャネルHE M Tが形成される。If acceptor (Be) is doped into Al, 1Ga1-XSb store, GaSb and A I XG a +-*S
Holes are induced on the Qa3b side of the interface b, and a p channel is formed. The mobility of holes in GaSb is Qa,
6. Since it is about 3 to 4 times larger than s, a high-speed p-channel HEMT is formed.
これらのnチャネル及びPチャネルのHEMTを用いて
低消費電力が可能な相補型のHEMTを作製すれば、G
aAs系に比較しても数倍のスピードが期待できる。ま
た、HEMTにとって重要な点は、電子走行層に散乱体
が非常に少ないことであるが、本発明のA 1zG a
t−xs b、 I n A S 。If a complementary HEMT with low power consumption is created using these n-channel and P-channel HEMTs, G
It can be expected to be several times faster than the aAs system. In addition, an important point for HEMT is that there are very few scatterers in the electron transport layer, but the A 1zG a of the present invention
t-xs b, I n A S .
GaSbは、格子定数が0.6%程度の違いしかないた
めに、格子欠陥が極めて少ないものが形成できる。従っ
て、トランジスタの各層をGaSb基板またはInA3
基板上にすべて形成することが可能となる。GaSb has a difference in lattice constant of only about 0.6%, so it can be formed with extremely few lattice defects. Therefore, each layer of the transistor is formed on a GaSb substrate or an InA3 substrate.
It becomes possible to form everything on the substrate.
第1図に、本発明による相補型2次元電子ガス電界効果
トランジスタの層構造の一例を示す。その製造方法を述
べながら構成を説明する。FIG. 1 shows an example of the layer structure of a complementary two-dimensional electron gas field effect transistor according to the present invention. The configuration will be explained while describing its manufacturing method.
基板7としては、GaSbまたはInAsを用いる。そ
の上に絶縁層6としてAn!、Ga、−、Sb(y=1
〜0.3)を3000人程度成長し、その後、pチャネ
ル層5としてGaSbを1000人、ゲート層4として
BeドープA I XG a l−X5 bを200人
。As the substrate 7, GaSb or InAs is used. An! , Ga, -, Sb (y=1
~0.3) was grown for about 3,000 layers, and then 1,000 layers of GaSb were grown as the p-channel layer 5, and 200 layers of Be-doped AIXGal-X5b were formed as the gate layer 4.
絶縁層3としてA I!、G a +−ys b O’
= 1〜0.3)を1000人、nチャネル層2とし
てInAsを1000人、ゲートNlとしてTeドープ
AIXGaI−xSb(x=1〜0.3)を200人、
順に分子線エピタキシャル法などにより成長する。A I! as the insulating layer 3! , G a +−ys b O'
= 1 to 0.3) for 1000 people, InAs as the n-channel layer 2 for 1000 people, Te-doped AIXGaI-xSb (x = 1 to 0.3) as the gate Nl for 200 people,
The layers are grown sequentially by molecular beam epitaxial method or the like.
次に、pチャネルI(E M Tを作る部分を、エツチ
ングによってゲート層1.nチャネル層2.絶縁N3を
落とすことにより形成する。Next, a portion for forming a p-channel I (EMT) is formed by removing the gate layer 1, n-channel layer 2, and insulation N3 by etching.
通常のHEMTの製造方法によって、ゲート層1および
nチャネル層2を用いてnチャネルHEMTを作成し、
ゲート層4およびpチャネル層5を用いてpチャネルH
EMTを作成する。なお図中、8はソースを、9はゲー
トを、10はドレインを示している。An n-channel HEMT is created using a gate layer 1 and an n-channel layer 2 by a normal HEMT manufacturing method,
p channel H using gate layer 4 and p channel layer 5
Create an EMT. In the figure, 8 indicates a source, 9 indicates a gate, and 10 indicates a drain.
最後に、ゲート9を配線で結び、ドレイン10とソース
8間を配線することにより相補型のHEMTが作成でき
る。Finally, by connecting the gate 9 with wiring and wiring between the drain 10 and source 8, a complementary HEMT can be created.
以上の実施例では、nチャネルHEMTが上側に、pチ
ャネルHEMTが下側に形成しているが・上下を逆にし
てもよいことは勿論である。In the above embodiments, the n-channel HEMT is formed on the upper side and the p-channel HEMT is formed on the lower side; however, it goes without saying that the top and bottom may be reversed.
以上説明したように、本発明による相補型電界効果トラ
ンジスタでは、pチャネルHEMTに対してはホール移
動度の大きなGaSbを−nnチャネルHEMT対して
は電子移動度の大きなInAsを用いているために、従
来の相補型HEMTに比べ数倍のスイッチング速度が得
られる。As explained above, in the complementary field effect transistor according to the present invention, GaSb with high hole mobility is used for the p-channel HEMT, and InAs with high electron mobility is used for the -nn channel HEMT. A switching speed several times faster than conventional complementary HEMTs can be obtained.
第1図は、本発明の相補型の2次元電子ガス電界効果ト
ランジスタの一実施例の層構造を示す図、第2図は、従
来のGaAsを用いたnチャネルHE M 70層構造
を示す図、
第3図は、従来のGaAsを用いたpチャネルHEMT
O層構造を示す図である。
1 ・ ・ ・ゲー)N (n−A ItxG a l
−X5 b)2・・・nチャネル層(InAS)
3・・・絶縁層(A j! yC; a +−yS b
)4 ・ ・ ・ゲート層 (p −A lxG a
+−xs b)5・・・pチャネル層(QaSb)
6・・・絶縁IJ (A j! 、G a +−yS
b )7・・・基板(GarbまたはInAs)8・・
・ソース
9・・・ゲート
10・・・ドレイン
代理人 弁理士 岩 佐 義 幸
9ケート
第1図FIG. 1 is a diagram showing a layer structure of an embodiment of a complementary two-dimensional electron gas field effect transistor of the present invention, and FIG. 2 is a diagram showing a conventional n-channel HE M 70 layer structure using GaAs. , Figure 3 shows a conventional p-channel HEMT using GaAs.
It is a figure showing an O layer structure. 1 ・ ・ ・Ge)N (n-A ItxG a l
-X5 b) 2...n channel layer (InAS) 3...insulating layer (A j! yC; a + -yS b)
)4 ・ ・ Gate layer (p −A lxG a
+-xs b) 5...p channel layer (QaSb) 6... insulation IJ (A j!, G a +-yS
b) 7... Substrate (Garb or InAs) 8...
・Source 9...Gate 10...Drain agent Patent attorney Yoshiyuki Iwasa 9 Kate Figure 1
Claims (1)
タとを有する相補型2次元電子ガス電界効果トランジス
タにおいて、 前記nチャネルトランジスタは、Al_xGa_1_−
_xSbより成る電子供給層と、InAsより成る電子
走行層とを有し、 前記pチャネルトランジスタは、Al_xGa_1_−
_xSbより成るホール供給層と、GaSbより成るホ
ール走行層とを有することを特徴とする相補型2次元電
子ガス電界効果トランジスタ。(1) In a complementary two-dimensional electron gas field effect transistor having an n-channel transistor and a p-channel transistor, the n-channel transistor is Al_xGa_1_-
The p-channel transistor has an electron supply layer made of _xSb and an electron transit layer made of InAs, and the p-channel transistor has an electron supply layer made of _xSb and an electron transit layer made of InAs.
A complementary two-dimensional electron gas field effect transistor characterized by having a hole supply layer made of _xSb and a hole transport layer made of GaSb.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8319688A JPH01256175A (en) | 1988-04-06 | 1988-04-06 | Complementary two-dimensional electron gas field-effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8319688A JPH01256175A (en) | 1988-04-06 | 1988-04-06 | Complementary two-dimensional electron gas field-effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01256175A true JPH01256175A (en) | 1989-10-12 |
Family
ID=13795573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8319688A Pending JPH01256175A (en) | 1988-04-06 | 1988-04-06 | Complementary two-dimensional electron gas field-effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01256175A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0448981A2 (en) * | 1990-03-06 | 1991-10-02 | Fujitsu Limited | High electron mobility transistor |
US5302840A (en) * | 1991-06-20 | 1994-04-12 | Fujitsu Limited | HEMT type semiconductor device having two semiconductor well layers |
JPH06267993A (en) * | 1993-03-12 | 1994-09-22 | Nec Corp | Quantum wire structure |
US5940695A (en) * | 1996-10-11 | 1999-08-17 | Trw Inc. | Gallium antimonide complementary HFET |
WO2024116732A1 (en) * | 2022-11-30 | 2024-06-06 | 株式会社ジャパンディスプレイ | Semiconductor element |
-
1988
- 1988-04-06 JP JP8319688A patent/JPH01256175A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0448981A2 (en) * | 1990-03-06 | 1991-10-02 | Fujitsu Limited | High electron mobility transistor |
US5144378A (en) * | 1990-03-06 | 1992-09-01 | Fujitsu Limited | High electron mobility transistor |
US5302840A (en) * | 1991-06-20 | 1994-04-12 | Fujitsu Limited | HEMT type semiconductor device having two semiconductor well layers |
JPH06267993A (en) * | 1993-03-12 | 1994-09-22 | Nec Corp | Quantum wire structure |
US5940695A (en) * | 1996-10-11 | 1999-08-17 | Trw Inc. | Gallium antimonide complementary HFET |
US6054729A (en) * | 1996-10-11 | 2000-04-25 | Trw Inc. | Gallium antimonide complementary HFET |
US6384432B1 (en) | 1996-10-11 | 2002-05-07 | Trw Inc. | Gallium antimonide complementary HFET |
WO2024116732A1 (en) * | 2022-11-30 | 2024-06-06 | 株式会社ジャパンディスプレイ | Semiconductor element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2994227B2 (en) | Layer structure for CMOS transistor using strained Si / SiGe heterostructure layer | |
US5986287A (en) | Semiconductor structure for a transistor | |
CN101300663B (en) | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication | |
JP3323544B2 (en) | Semiconductor device | |
US4830980A (en) | Making complementary integrated p-MODFET and n-MODFET | |
US5234848A (en) | Method for fabricating lateral resonant tunneling transistor with heterojunction barriers | |
US20020030227A1 (en) | Strained-silicon diffused metal oxide semiconductor field effect transistors | |
JPH033366A (en) | Field-effect transistor and forming method thereof | |
US4732870A (en) | Method of making complementary field effect transistors | |
US20160380049A1 (en) | Compound finfet device including oxidized iii-v fin isolator | |
JPH01256175A (en) | Complementary two-dimensional electron gas field-effect transistor | |
Daniels et al. | Quantum-well p-channel AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors with very high transconductance | |
JPH01175265A (en) | Field-effect transistor and its manufacture | |
US4636824A (en) | Voltage-controlled type semiconductor switching device | |
Kiehl et al. | Heterojunction FETs in III–V compounds | |
Kiehl et al. | p-channel quantum-well heterostructure MI/sup 3/SFET | |
JPH05251691A (en) | Field effect transistor with hetero construction using germanium | |
JP2611358B2 (en) | Semiconductor device | |
JPS63308966A (en) | Semiconductor device | |
Moselund et al. | III-V heterojunction nanowire tunnel FETs monolithically integrated on silicon | |
JP2754944B2 (en) | Method for manufacturing two-dimensional electron gas field effect transistor | |
JP3006792B2 (en) | Heterostructure field effect transistor | |
JPH0513462A (en) | Compound semiconductor structure | |
JPS6410671A (en) | Compound semiconductor field effect transistor | |
JPS6215862A (en) | Semiconductor device |