JPS63308966A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63308966A
JPS63308966A JP14559587A JP14559587A JPS63308966A JP S63308966 A JPS63308966 A JP S63308966A JP 14559587 A JP14559587 A JP 14559587A JP 14559587 A JP14559587 A JP 14559587A JP S63308966 A JPS63308966 A JP S63308966A
Authority
JP
Japan
Prior art keywords
silicon
layer
channel transistor
impurity
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14559587A
Other languages
Japanese (ja)
Inventor
Keitaro Fujimori
啓太郎 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14559587A priority Critical patent/JPS63308966A/en
Publication of JPS63308966A publication Critical patent/JPS63308966A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET

Abstract

PURPOSE:To form transistors of two kinds onto the same substrate by changing silicon and silicon-germanium mixed crystal layers in the vertical direction in the same composition and film thickness and making only impurity density to differ in structure under the gate electrodes of the P channel transistor and the N channel transistor. CONSTITUTION:A two-dimensional hole gas is formed near the interface between an silicon-germanium mixed crystal layer 4 in a P channel transistor and an silicon layer 5 non-doped with impurity and functions as a channel region in the silicon- germanium mixed crystal layer 4. The laminated structure of three layers of at least the silicon layer 5, non-doped with impurity, a P-type silicon layer 6 and a high resistance layer 7 is required for shaping the two-dimensional hole gas. The laminated structure of three layers of at least an silicon layer 18 non-doped with impurity an silicon-germanium mixed crystal layer 19 non-doped with impurity and an N-type silicon-germanium mixed crystal layer 20 is needed for forming a two-dimensional electron gas into an silicon layer near the interface between the silicon-germanium mixed crystal layer 19, non-doped with impurity, and the N-type silicon-germanium mixed crystal layer 20 in an N channel transistor. Accordingly, crystal growth for a P channel and an N channel need not be conducted separately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二次元状態に分布する高移動度のホール及び電
子の流れをゲートrr1極によって制御する相補型変調
ドーピングへテロ接合トランジスタの構造に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the structure of a complementary modulation doping heterojunction transistor in which the flow of high-mobility holes and electrons distributed in a two-dimensional state is controlled by a gate rr1 pole. .

〔従来の技術〕[Conventional technology]

変調ドーピング超格子構造は1970年、Esakiら
によって提案され、1978年、Dingieらによっ
て、G a A s / Aρx G a 、XAs系
でそれが実現された。その後、変調ドーピング単一へテ
ロ接合に於いても2次元電子ガス及び2次元ホールガス
の存在が確認されている。とくに、S i/Ge xS
 i+−x系では、電子移動度だけでな(、ホールの移
動度も大きいため、相補型トう/ジスタとして注目を集
めており、nチャネルトランジスタ(IEEE、  T
ransactjons   on   electr
on   devjces、   Vol   ED−
33,No、  5. 1986、P833)や、nチ
ャネルトランジスタ(IEEE、   Electro
n  diviceletters、  Vol、  
 EDL−7,NO,5,1986,P2O3)の試作
が行なわれている。相補型の2次元キャリアガスを用い
た素子に関しては、特許出願公開、昭−CiO−263
471等があった。
A modulated doping superlattice structure was proposed by Esaki et al. in 1970, and Dingie et al. realized it in 1978 in the GaAs/AρxGa,XAs system. After that, the existence of two-dimensional electron gas and two-dimensional hole gas was confirmed even in a modulation-doped single heterojunction. In particular, Si/Ge xS
In the i + -
ransactjons on electr
on devjces, Vol ED-
33, No, 5. 1986, P833) and n-channel transistors (IEEE, Electro
n diviceletters, Vol.
EDL-7, NO, 5, 1986, P2O3) is being prototyped. Regarding elements using complementary two-dimensional carrier gas, patent application publication, Sho-CiO-263
There was a 471st mag.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、変調ドーピングは結晶成長時に限り行なうこと
が可能であるために、同一基板上へp型とn型の変調ド
ーピングを行うためには、少なくとも20の結晶成長工
程が必要とされる。このことは、相補型トランジスタの
形成を困難にするばかりでなく、スループットが小さい
ヘテロエピタキシャル装置に大きな負担となる。さらに
、si/GexSit−X系では、GaAs/AρxG
a、−xAs系より、ホールの移動度が太き(できるに
もかかわらず、nチャネルトランジスタとnチャネルト
ランジスタの構造が異なりすぎているために、すなわち
、2次元電子ガスはシリコン層中に、2次元ホールガス
はシリコン−ゲルマニウム混晶層中へ存在させる必要上
、相補型のトランジスタを実現を困難なものとしている
However, since modulation doping can be performed only during crystal growth, at least 20 crystal growth steps are required to perform modulation doping of p-type and n-type on the same substrate. This not only makes it difficult to form complementary transistors, but also places a heavy burden on heteroepitaxial devices with low throughput. Furthermore, in the si/GexSit-X system, GaAs/AρxG
Although the hole mobility is higher than that of the a, -xAs system, because the structures of n-channel transistors and n-channel transistors are too different, in other words, the two-dimensional electron gas is The two-dimensional hole gas must exist in the silicon-germanium mixed crystal layer, making it difficult to realize a complementary transistor.

本発明はこのような問題点を解決するもので、その目的
とするところは、低消費電力でしかも高速動作可能な相
補型トランジスタとして好適な、2次元電子及び2次元
ホールガスを利用した2種類のトランジスタを同一基板
上に形成するために適当な構造をもつ半導体装置を提供
することにある。
The present invention is intended to solve these problems, and its purpose is to develop two types of complementary transistors that utilize two-dimensional electrons and two-dimensional hole gas and are suitable for complementary transistors that can operate at low power consumption and high speed. An object of the present invention is to provide a semiconductor device having a structure suitable for forming two transistors on the same substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、 同一基板上に形成されたnチャネルトランジスタと、n
チャネルトランジスタを具え、該nチャネルトランジス
タは、少なくとも、不純物無添加のシリコン−ゲルマニ
ウム混晶層と、不純物無添加のシリコン層と、p型シリ
コン層との3層の積層構造と、該積層構造上に設けられ
た第1高抵抗層と、該第1高抵抗層上に設けられた第1
ソース、ドレイン及びゲー)、電極を具え、前R’6 
nチャネルトランジスタは、少なくともn型のンリコノ
ーゲルマニウム混晶層と、不純物無添加のシリコン−ゲ
ルマニウム混晶層と、不純物無添加のシリコン層との3
層の積層構造と、該積層構造上に設けられた第2高抵抗
層と、該第2高抵抗層上に設けられた第2ソース、ドレ
イン及びゲート電極を具え、 前記nチャネルトランジスタは、該不純物無添加のンリ
コンーゲルマニウム混晶層中に量子井戸を形成し、該量
子井戸は2次元ホールガスを、前記nチャネルトランジ
スタは、該不純物無添加のシリコン層中に量子井戸を形
成し、該量子井戸は2次元電子ガスをチャネルとし、 前記nチャネルトランジスタと前記のチャネルトランジ
スタのゲート電極下の構造は、シリコン及びシリコン−
ゲルマニウム混晶層が同一組成かつ同一の膜厚で、垂直
方向に変化しており、不純物密度のみが異なることを特
徴とする特〔実施例〕 以下、本発明について、実施例に基づき、詳細に説明す
る。
A semiconductor device of the present invention includes an n-channel transistor formed on the same substrate, and an n-channel transistor formed on the same substrate.
The n-channel transistor includes a three-layer stacked structure including at least an impurity-free silicon-germanium mixed crystal layer, an impurity-free silicon layer, and a p-type silicon layer; a first high resistance layer provided on the first high resistance layer; and a first high resistance layer provided on the first high resistance layer.
source, drain and electrode), and the front R'6
The n-channel transistor includes at least three layers: an n-type silicon germanium mixed crystal layer, an impurity-free silicon-germanium mixed crystal layer, and an impurity-free silicon layer.
The n-channel transistor includes a stacked structure of layers, a second high resistance layer provided on the stacked structure, and second source, drain, and gate electrodes provided on the second high resistance layer. A quantum well is formed in an impurity-free silicon-germanium mixed crystal layer, the quantum well supplies a two-dimensional hole gas, and the n-channel transistor forms a quantum well in the impurity-free silicon layer; The quantum well uses a two-dimensional electron gas as a channel, and the structures under the gate electrodes of the n-channel transistor and the channel transistor are made of silicon and silicon-
A special feature in which the germanium mixed crystal layer has the same composition and the same thickness, changes in the vertical direction, and differs only in impurity density [Example] The present invention will be described in detail below based on Examples. explain.

第1図は本発明の半導体装置の略式断面図であり、Aは
pチャネルトラフ922部、Bはnチャネルトランジス
タ部である。
FIG. 1 is a schematic cross-sectional view of the semiconductor device of the present invention, where A is a p-channel trough 922 portion and B is an n-channel transistor portion.

1はシリコン基板であり、高抵抗のものを用いているが
、トランジスタ間の素子分離を行なうならば高抵抗の必
要はない。2はpチャネルとnチャネルの分離領域であ
り、絶縁体を埋めこんでいる。8も絶縁体で層間絶縁瞑
である。3はシリコン−ゲルマニウム混晶のスペーサ層
で、1のMllIiE側から上方に向って、ゲルマニウ
ムの組成が増大するように作られており、例えば、ゲル
マニウムの組成が0から0.5まで変化する。
Reference numeral 1 denotes a silicon substrate having high resistance, but if isolation between transistors is to be achieved, high resistance is not necessary. Reference numeral 2 denotes a p-channel and n-channel separation region, which is filled with an insulator. 8 is also an insulator and has interlayer insulation. 3 is a spacer layer of silicon-germanium mixed crystal, which is formed so that the germanium composition increases upward from the MllIiE side of 1; for example, the germanium composition changes from 0 to 0.5.

まず、nチャネルトランジスタについて説明する。4は
シリコン−ゲルマニウム混晶層で、5の不純物無添加の
シリコン層との界面近傍に2次元ホールガスが形成され
、チャネル領域となる。6はp型のシリコン層であり、
2次元ホールガスを形成するためには、少なくとも、上
記5.6.7の、3層の積層構造が必要である。7は高
抵抗層で10のゲート電極とシ□ットキー接合を形成さ
せるためのものである。9はソース電極、1)はドレイ
ンffl tffiである。12.13はイオン注入等
によって形成された高濃度のp型領域で、それぞれ、ソ
ース及びドレインである。
First, the n-channel transistor will be explained. 4 is a silicon-germanium mixed crystal layer, and a two-dimensional hole gas is formed near the interface with the impurity-free silicon layer 5, forming a channel region. 6 is a p-type silicon layer;
In order to form a two-dimensional hole gas, at least a three-layer stacked structure as described in 5.6.7 above is required. 7 is a high resistance layer for forming a Schottky junction with the gate electrode 10; 9 is a source electrode, and 1) is a drain ffl tffi. 12 and 13 are highly doped p-type regions formed by ion implantation or the like, which are the source and drain, respectively.

次に、nチャネルトランジスタについて説明する。20
はn型のシリコン−ゲルマニウム混晶層であり、19は
不純物無添加のシリコン−ゲルマニウム混晶層、18は
不純物無添加のシリコン層である。19と20の界面近
傍の20のシリコン層中に2次元電子ガスが形成される
が、そのためには、少なくとも、18.19.20の3
層の4jf層構造が必要である。17は高抵抗層である
が、18の不純物無添加のシリコン層と同じ材質でかま
わない。15はゲート電t!、14、L、Sはそれぞれ
、ドレイン電極、ソース電極である。21.22はn型
の不純物をイオン注入等により導入したドレイ乙 ソー
スである。
Next, the n-channel transistor will be explained. 20
is an n-type silicon-germanium mixed crystal layer, 19 is a silicon-germanium mixed crystal layer to which no impurities are added, and 18 is a silicon layer to which no impurities are added. A two-dimensional electron gas is formed in the silicon layer 20 near the interface between 19 and 20.
A 4jf layer structure of layers is required. Although 17 is a high resistance layer, it may be made of the same material as the impurity-free silicon layer 18. 15 is the gate electric t! , 14, L, and S are a drain electrode and a source electrode, respectively. 21 and 22 are drain sources into which n-type impurities are introduced by ion implantation or the like.

以上、本発明の半導体装置の構造について述べてきたが
、その動作を説明するため、第2図にポテンシャル図を
示す。第2図(A)はnチャネルトランジスタ、第2図
(B)はnチャネルトランジスタの、ゲート電極下部の
ポテンシャル図である。横方向は深さ方向を現している
が、各層の厚さは、わかりやす(描いたもので、この図
とは異なっている。丸印で囲まれている部分にそれぞれ
2次元ホールガス、2次元電子ガスが存在する。
The structure of the semiconductor device of the present invention has been described above, and a potential diagram is shown in FIG. 2 to explain its operation. FIG. 2(A) is a potential diagram of the lower part of the gate electrode of an n-channel transistor, and FIG. 2(B) is a potential diagram of the lower part of the gate electrode of the n-channel transistor. The horizontal direction represents the depth direction, but the thickness of each layer is easy to understand (this is a drawing and is different from this figure.The areas surrounded by circles are two-dimensional hole gas, two-dimensional hole gas, two-dimensional Dimensional electron gas exists.

まず(a)図について説明する。21はゲート電極でl
1図の10に相当する。以下、22.23.24.25
.26.27はそれぞれ、第1図の7.6.5.4.3
.1に相当している。このnチャネルトランジスタは、
a t 0)G a A s / AρxGa+ −x
As系の2次元電子ガスを利用したトランジスタと同様
に、バンドギャップの小さい半導体層中に、キャリアを
蓄積させるものである。従って、この図では、ホールが
不純物散乱の影響を受けずに高速で動作するnチャネル
トランジスタとなる。
First, Figure (a) will be explained. 21 is the gate electrode l
This corresponds to 10 in Figure 1. Below, 22.23.24.25
.. 26.27 are respectively 7.6.5.4.3 in Figure 1
.. It corresponds to 1. This n-channel transistor is
a t 0) G a As / AρxGa+ -x
Similar to transistors using As-based two-dimensional electron gas, carriers are accumulated in a semiconductor layer with a small band gap. Therefore, in this figure, the hole becomes an n-channel transistor that operates at high speed without being affected by impurity scattering.

次に(b)図であるが、28はゲート電極で第1図15
に相当する。以下、29.30.31.32.33.3
4はそれぞれ、第1図の17.18.19.20.3.
1に相当している。このnチャネルトランジスタは、G
 a A s / AρxGa、−xAs系のへテロ接
合と異なり、バンドギャップの広い半導体層中にキャリ
アを蓄積させるものである。従って、この図では、電子
が不純物散乱の影砦を受けずに高速で動作するnチャネ
ルトランジスタとなる。
Next, in FIG. 1B, 28 is a gate electrode.
corresponds to Below, 29.30.31.32.33.3
4 correspond to 17, 18, 19, 20, 3, etc. in FIG. 1, respectively.
It corresponds to 1. This n-channel transistor has G
Unlike the aAs/AρxGa, -xAs-based heterojunction, carriers are accumulated in a semiconductor layer with a wide bandgap. Therefore, in this figure, the transistor becomes an n-channel transistor in which electrons operate at high speed without being affected by impurity scattering.

相補型でトランジスタを動作させるためには、nチャネ
ルトランジスタ、nチャネルトランジスタともにノーマ
リ−オフでなければならない。また、相互コンダクタン
スの値もバランスがきれていることが要求される。この
ため、nチャネルトランジスタ、nチャネルトランジス
タともに、各層の厚さ、混晶の組成、不純物O1fは正
確に制御する必要があり、また、その解は種々あるが、
第2図のポテンシャルが実現されていることが必要であ
る。ゲート電極の材料もトランジスタのスレッンコルド
電圧を左右するパラメータである。本発明ではPtを用
いているが、T1等多くの材料が考えられるのは当然で
あり、pチャネル、nチャネル別々の材料にすることが
できるのも当然である。
In order to operate the transistors in a complementary manner, both the n-channel transistor and the n-channel transistor must be normally off. It is also required that the mutual conductance values be well balanced. For this reason, it is necessary to accurately control the thickness of each layer, the composition of the mixed crystal, and the impurity O1f for both n-channel transistors and n-channel transistors, and there are various solutions.
It is necessary that the potential shown in Figure 2 be realized. The material of the gate electrode is also a parameter that affects the Threncord voltage of the transistor. Although Pt is used in the present invention, it is natural that many materials such as T1 can be considered, and that it is also possible to use different materials for p-channel and n-channel.

〔発明の効果〕〔Effect of the invention〕

上述の如(、本発明の半導体装置によれば、pチャネル
トランジスタは2次元ホールガスを利用し、nチャネル
トランジスタは2次元電子ガスを利用するため、どちら
も大きな相互コンダクタンスを持つ。また、シリコン−
ゲルマニウム系に於いては、電子移動度とポール移動度
が比較的近い値をもつため、各層の膜厚、組成、不純物
密度を適切な値とすれば、pチャネルトランジスタとn
チャネルトランジスタの占を面積を等しくすることがで
きるため、相補型トランジスタとしての特徴を十分に生
かすことができる。すなわち、超低消費電力で高速動作
のトランジスタとして、超大規模集積回路に利用できる
。とくに、本発明の構造をとれば、pチャネルトランジ
スタ部とnチャネルトランジスタ部の変調ドーピングに
対して、同時に選択ドーピングを行うことが可能であり
、nチャネル用とnチャネル用の結晶成長は別々に行う
必要がない。
As described above (according to the semiconductor device of the present invention, the p-channel transistor uses two-dimensional hole gas and the n-channel transistor uses two-dimensional electron gas, so both have large mutual conductance. −
In germanium-based materials, electron mobility and pole mobility have relatively similar values, so if the film thickness, composition, and impurity density of each layer are set to appropriate values, p-channel transistor and n
Since the areas of the channel transistors can be made equal, the characteristics as complementary transistors can be fully utilized. In other words, it can be used in ultra-large scale integrated circuits as a transistor with ultra-low power consumption and high-speed operation. In particular, with the structure of the present invention, it is possible to perform selective doping for the modulation doping of the p-channel transistor section and the n-channel transistor section at the same time, and the crystal growth for the n-channel and for the n-channel can be performed separately. There's no need to do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置の断面模式図で、Aの部分
はpチャネルトランジスタ、Bの部分はnチャネルトラ
ンジスタを示す図。 第2図(a)、(b)において、 同図(a)は、本発
明のpチャネルトランジスタのゲート下部のポテンシャ
ル図。同図(b)は、nチャネルトランジスタのゲート
下部のボテーンシャル図。 以  上 出馴人 セイコーエプソン株式会社 代理人 弁理士 最 上  務 他1名第1函 (α) 遅 (b) 第Z区
FIG. 1 is a schematic cross-sectional view of a semiconductor device of the present invention, in which the part A shows a p-channel transistor and the part B shows an n-channel transistor. In FIGS. 2(a) and 2(b), FIG. 2(a) is a potential diagram below the gate of the p-channel transistor of the present invention. FIG. 6(b) is a vocative diagram of the lower part of the gate of the n-channel transistor. Those who are familiar with Seiko Epson Co., Ltd. Patent attorney Tsutomu Mogami and 1 other person Box 1 (α) Late (b) District Z

Claims (3)

【特許請求の範囲】[Claims] (1)同一基板上に形成されたpチャネルトランジスタ
とnチャネルトランジスタを具え、 該pチャネルトランジスタは、少なくとも不純物無添加
のシリコン−ゲルマニウム混晶層と、不純物無添加のシ
リコン層と、p型シリコン層との3層の積層構造と、該
積層構造上に設けられた第1高抵抗層と、該第1高抵抗
層上に設けられた第1ソース、ドレイン及びゲート電極
を具え、前記nチャネルトランジスタは、少なくともn
型のシリコン−ゲルマニウム混晶層と、不純物無添加の
シリコン−ゲルマニウム混晶層と、不純物無添加のシリ
コン層との3層の積層構造と、該積層構造上に設けられ
た第2高抵抗層と、総第2高抵抗層上に設けられた第2
ソース、ドレイン及びゲート電極を具え、 前記pチャネルトランジスタは、該不純物無添加のシリ
コン−ゲルマニウム混晶層中に量子井戸を形成し、該量
子井戸は2次元ホールガスを、前記nチャネルトランジ
スタは、該不純物無添加のシリコン層中に量子井戸を形
成し、該量子井戸は2次元電子ガスをチャネルとし、 前記pチャネルトランジスタと前記のチャネルトランジ
スタのゲート電極下の構造は、シリコン及びシリコン−
ゲルマニウム混晶層が、同一組成かつ同一の膜厚で、垂
直方向に変化しており、不純物密度のみが異なることを
特徴とする半導体装置。
(1) A p-channel transistor and an n-channel transistor formed on the same substrate, and the p-channel transistor includes at least an impurity-free silicon-germanium mixed crystal layer, an impurity-free silicon layer, and a p-type silicon a first high resistance layer provided on the multilayer structure, and first source, drain, and gate electrodes provided on the first high resistance layer, and the n-channel The transistor has at least n
A three-layer stacked structure of a molded silicon-germanium mixed crystal layer, an impurity-free silicon-germanium mixed crystal layer, and an impurity-free silicon layer, and a second high-resistance layer provided on the stacked structure. and a second layer provided on the total second high resistance layer.
The p-channel transistor has a source, a drain, and a gate electrode, and the p-channel transistor has a quantum well formed in the undoped silicon-germanium mixed crystal layer, and the quantum well carries a two-dimensional hole gas. A quantum well is formed in the impurity-free silicon layer, the quantum well uses a two-dimensional electron gas as a channel, and the structures under the gate electrodes of the p-channel transistor and the channel transistor are made of silicon and silicon-
A semiconductor device characterized in that germanium mixed crystal layers have the same composition and the same thickness, vary in the vertical direction, and differ only in impurity density.
(2)pチャネルトランジスタとnチャネルトランジス
タのチャネル領域が、選択変調ドーピングにより形成さ
れることを特徴とする特許請求第1項記載の半導体装置
(2) The semiconductor device according to claim 1, wherein the channel regions of the p-channel transistor and the n-channel transistor are formed by selective modulation doping.
(3)シリコン基板上にシリコン−ゲルマニウムの混晶
層をスペーサ層として具え、該スペーサ層はゲルマニウ
ムの組成が基板から素子側に向って大きくなることを特
徴とする特許請求の範囲第2項記載の半導体装置。
(3) A silicon-germanium mixed crystal layer is provided as a spacer layer on a silicon substrate, and the spacer layer has a germanium composition that increases from the substrate toward the element side. semiconductor devices.
JP14559587A 1987-06-11 1987-06-11 Semiconductor device Pending JPS63308966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14559587A JPS63308966A (en) 1987-06-11 1987-06-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14559587A JPS63308966A (en) 1987-06-11 1987-06-11 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63308966A true JPS63308966A (en) 1988-12-16

Family

ID=15388705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14559587A Pending JPS63308966A (en) 1987-06-11 1987-06-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63308966A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266813A (en) * 1992-01-24 1993-11-30 International Business Machines Corporation Isolation technique for silicon germanium devices
US5534713A (en) * 1994-05-20 1996-07-09 International Business Machines Corporation Complementary metal-oxide semiconductor transistor logic using strained SI/SIGE heterostructure layers
US5561302A (en) * 1994-09-26 1996-10-01 Motorola, Inc. Enhanced mobility MOSFET device and method
US6674100B2 (en) 1996-09-17 2004-01-06 Matsushita Electric Industrial Co., Ltd. SiGeC-based CMOSFET with separate heterojunctions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266813A (en) * 1992-01-24 1993-11-30 International Business Machines Corporation Isolation technique for silicon germanium devices
US5534713A (en) * 1994-05-20 1996-07-09 International Business Machines Corporation Complementary metal-oxide semiconductor transistor logic using strained SI/SIGE heterostructure layers
US5561302A (en) * 1994-09-26 1996-10-01 Motorola, Inc. Enhanced mobility MOSFET device and method
US6674100B2 (en) 1996-09-17 2004-01-06 Matsushita Electric Industrial Co., Ltd. SiGeC-based CMOSFET with separate heterojunctions

Similar Documents

Publication Publication Date Title
JP2994227B2 (en) Layer structure for CMOS transistor using strained Si / SiGe heterostructure layer
JP3135939B2 (en) HEMT type semiconductor device
JP2528537B2 (en) Field effect transistor
US5234848A (en) Method for fabricating lateral resonant tunneling transistor with heterojunction barriers
US5422502A (en) Lateral bipolar transistor
JPH05110086A (en) Tunnel transistor
US9773904B2 (en) Vertical field effect transistor with biaxial stressor layer
EP0130676B1 (en) Semiconductor device having a hetero junction
US6455377B1 (en) Method to form very high mobility vertical channel transistor by selective deposition of SiGe or multi-quantum wells (MQWs)
EP0147196B1 (en) A semiconductor member and semiconductor device employing such a member
JPS63308966A (en) Semiconductor device
JPH1056076A (en) Manufacture of semiconductor hetero structure capable of making both modfets of n channel and p channel, and cmodfet circuit
JPS61147577A (en) Complementary semiconductor device
EP0380077A2 (en) Transistor provided with strained germanium layer
JP2611358B2 (en) Semiconductor device
JPS60263471A (en) Semiconductur device
JPS63136577A (en) Semiconductor device
JPH088360B2 (en) Tunnel transistor and manufacturing method thereof
US20220301942A1 (en) Hybrid nanosheet tunnel-fet/cmos technology
CN1312758C (en) CMOS element with strain equilibrium structure and making method thereof
JP2658934B2 (en) Tunnel transistor
JP3272966B2 (en) Semiconductor device
JPH10116919A (en) Field-effect transistor
JPS6289365A (en) Semiconductor device
JPH1168087A (en) Resonance tunnel transistor and manufacture thereof