JPH01255434A - Device for determination of branched transmission line trouble direction - Google Patents

Device for determination of branched transmission line trouble direction

Info

Publication number
JPH01255434A
JPH01255434A JP7824788A JP7824788A JPH01255434A JP H01255434 A JPH01255434 A JP H01255434A JP 7824788 A JP7824788 A JP 7824788A JP 7824788 A JP7824788 A JP 7824788A JP H01255434 A JPH01255434 A JP H01255434A
Authority
JP
Japan
Prior art keywords
failure
current
branch
sensor
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7824788A
Other languages
Japanese (ja)
Other versions
JP3023366B2 (en
Inventor
Riyouji Matsubara
亮滋 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63078247A priority Critical patent/JP3023366B2/en
Publication of JPH01255434A publication Critical patent/JPH01255434A/en
Application granted granted Critical
Publication of JP3023366B2 publication Critical patent/JP3023366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To effectively determine a trouble direction irrespective of the content of a trouble by detecting an aerial ground line current which is remarkably varied at the time of the trouble, and discriminating it by a determination circuit. CONSTITUTION:Currents (Ia), (Ib), (Ic) of the sides (a), (b), (c) are respectively measured by current sensors 5, 6, 7 at aerial ground line 4 near a branching point. The output Ia of the sensor 5 is compared by a trouble detector 8 with a preset maximum value Iha, a trouble is determined in case of Ia>Iha. In this case, the current Ib is compared by a comparator 9 with an Ic, it is determined that the trouble occurs at the side (b) in case of Ib>Ic, at the side (c) in case of Ic>Ib and at the side (a) in case of Ib=Ic. Further, when the phase difference phib between the currents Ia and Ib is phib>90 deg.C, a ground fault is judged at a branch iron tower J. In case of phiv<=90 deg., a ground fault is judged between the sensor 5 and a power source (a) or between the power source (a) and the tower J.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は故障方向の標定精度を改善する分岐送電線故障
方向標定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a branch power transmission line fault direction locating device that improves fault direction locating accuracy.

[従来の技術] 従来、分岐のある送電線において、いずれの送電線に故
障が発生しなかを標定する装置としては、例えば特開昭
61−76019号公報に示されているように、各架空
地線に流れる電流で発光する発光ダイオードを設け、こ
れら発光ダイオードの発光情況から、故障方向を知るも
のが提案されている。
[Prior Art] Conventionally, in a power transmission line with branches, as a device for locating which transmission line has a failure, as shown in Japanese Patent Application Laid-Open No. 61-76019, A system has been proposed in which light emitting diodes are provided that emit light using a current flowing through a ground wire, and the direction of failure can be determined from the state of light emitted by these light emitting diodes.

[発明が解決しようとする課題] しかし、上記した従来のものでは、単に電流の有無に対
応する発光の有無のみに頼り、故障時にm著な変化が生
ずる電流の大きさを考慮していなかったので、故障内容
によっては、故障方向の標定か必ずしも的確ではなかっ
な。
[Problems to be Solved by the Invention] However, the above-mentioned conventional devices simply relied on the presence or absence of light emission corresponding to the presence or absence of current, and did not take into account the magnitude of the current that would cause a significant change in the event of a failure. Therefore, depending on the nature of the failure, it may not always be possible to determine the direction of the failure accurately.

また、故障方向を標定し得るに止まり、故障内容につい
ては全く把握することができなかった。
Moreover, it was only possible to locate the direction of the failure, and it was not possible to understand the details of the failure at all.

更に、分岐点に連なるすべての架空地線に電流検知手段
及び発光手段を設置しなければならないため、装置の複
雑化を招いていた。
Furthermore, since current detection means and light emitting means must be installed on all the overhead ground wires connected to the branch point, the apparatus becomes complicated.

したがって、本発明の目的は、架空地線に流れる電流の
大きさ及び位相を比較することによって、上記した従来
技術の欠点を解消して、故障内容にかかわらず、故障方
向を確実に標定でき、しかもも故障方向によっては故障
内容をも知ることが可能な分岐送電線故障方向標定装置
を提供することにある。
Therefore, an object of the present invention is to overcome the above-described drawbacks of the prior art by comparing the magnitude and phase of the current flowing through the overhead ground wire, and to reliably locate the fault direction regardless of the nature of the fault. Moreover, it is an object of the present invention to provide a branch power transmission line failure direction locating device that can determine the failure details depending on the failure direction.

また、本発明の目的は電流センサを1個省略して装置を
簡単にすることができる分岐送電線故障方向標定装置を
提供することにある。
Another object of the present invention is to provide a branch power line failure direction locating device that can simplify the device by omitting one current sensor.

[課題を解決するためのf段] 第1の発明は電源から複数の負荷に電力を供給する分岐
線路を有する分岐送電線路の故障方向標定装置において
、分岐点を境に電源側、負荷側の各架空地線にこれらに
流れる電流を検出する電流センサが取り吋けられ、これ
らの電流センサの出力を標定回路に導く。標定回路は、
電流センサのうちの電源側センサの出力の大きさから故
障の発生を判定し、負荷側センサ同士の出力の大きさを
比較して、その比較出力から電源側又はいずれの負荷側
で故障が発生したかを判定すると共に、電源側センサと
負荷側センサとの出力の位相差を求め、その大きさから
電源側の故障内容を判定する。
[F stage for solving the problem] The first invention is a failure direction locating device for a branch power transmission line having a branch line that supplies power from a power source to a plurality of loads. Each overhead ground wire is equipped with a current sensor for detecting the current flowing therethrough, and the outputs of these current sensors are directed to a location circuit. The location circuit is
The occurrence of a failure is determined based on the output size of the power supply side sensor among the current sensors, and the output size of the load side sensors is compared, and based on the comparison output, it is determined whether a failure has occurred on the power supply side or any load side. At the same time, the phase difference between the outputs of the power source side sensor and the load side sensor is determined, and the nature of the failure on the power source side is determined from the magnitude of the phase difference.

第2の発明は電源から複数の負荷に電力を供給する分岐
線路を有する分岐送電線路の故障方向標定装置において
、分岐点を境に負荷側の各架空地線にこれらに流れる電
流を検出する電流センサか取り叶けられ、これらの電流
センサの出力を標定回路に導く、標定回路は電流センサ
の各出力の大きさから故障の発生を判定すると共に、電
流センサ同士の出力の大きさを比較して、その比較出力
から電源側又はいずれの負荷側で故障が発生したかを判
定する。
The second invention is a failure direction locating device for a branch power transmission line having a branch line that supplies power from a power source to a plurality of loads. The outputs of these current sensors are routed to the locating circuit.The locating circuit determines the occurrence of a failure based on the magnitude of each output of the current sensors, and also compares the magnitude of the outputs of the current sensors. Then, from the comparison output, it is determined whether the failure has occurred on the power supply side or on which load side.

:作用1 第1の発明の故障方向標定装置において、送電線路に故
障が発生すると電源側の架空地線に流れる電流が大きく
なる。したがって、電源側センサの出力が標定回路に導
かれて、その出力の大きさかチエツクされると、故障が
発生しているか否かがわかる。
: Effect 1 In the failure direction locating device of the first invention, when a failure occurs in the power transmission line, the current flowing through the overhead ground wire on the power source side increases. Therefore, when the output of the power supply side sensor is led to the locating circuit and the magnitude of the output is checked, it can be determined whether or not a failure has occurred.

また、送電線路の故障が電源側であるか、いずれの負荷
側であるかによって、即ち、故障方向によって、負荷側
の架空地線に流れる電流間に一定の大小関係が成立する
。したがって、負荷側センサ同士の出力の大きさが標定
回路で比較されると、その比較結果から電源側又はいず
れの負荷側で故障が発生しているかがわかる。
Further, depending on whether the failure of the power transmission line occurs on the power supply side or on which load side, that is, depending on the direction of the failure, a certain magnitude relationship is established between the currents flowing in the overhead ground wire on the load side. Therefore, when the magnitudes of the outputs of the load-side sensors are compared in the locating circuit, it can be determined from the comparison result whether the failure has occurred on the power supply side or on which load side.

さらに、電源側に故障が発生した場合、電源側の架空地
線に流れる電流の位相に対して、負荷側の架空地線に流
れる電流の位相が、地絡故障又は短絡故障等の故障内容
によって異なる。したかって、電源側センサと負荷側セ
ンサとの出力の位相差が標定回路で求められて、その大
きさがチエツクされると、電源側の故障内容がわかる。
Furthermore, when a fault occurs on the power supply side, the phase of the current flowing in the overhead ground wire on the load side may differ depending on the nature of the fault, such as a ground fault or short circuit fault, compared to the phase of the current flowing in the overhead ground wire on the power supply side. different. Therefore, when the phase difference between the outputs of the power source side sensor and the load side sensor is determined by the locating circuit and its magnitude is checked, the nature of the failure on the power source side can be determined.

第2の発明の故障方向標定装置において、送電線路に故
障が発生すると、負荷側の架空地線に流れる電流が大き
くなる。したがって、負荷側センサの出力が標定回路に
導かれて、その出力の大きさがチエツクされると故障の
発生がわかる。
In the failure direction locating device of the second invention, when a failure occurs in the power transmission line, the current flowing through the overhead ground wire on the load side increases. Therefore, when the output of the load-side sensor is led to the locating circuit and the magnitude of the output is checked, the occurrence of a failure can be determined.

また、故障の方向については上述した第1の発明と同じ
作用により判定される。
Further, the direction of failure is determined by the same operation as in the first invention described above.

[実施例] 本発明の実施例を第1図、第2図および第3図に基づい
て説明すれば以下の通りである。なお、ここでは負荷が
2つの場合を汲うが、3つ以上の場合にも共通する。
[Example] An example of the present invention will be described below based on FIGS. 1, 2, and 3. Note that although the case where there are two loads is considered here, the same applies to cases where there are three or more loads.

第1図は本発明に係る分岐送電線故障方向標定装置の一
実施例である。同図に示す如く、Jが分岐鉄塔、1は電
源a側の送電線路、2は負荷す側の送電線路、3は負荷
C側の送電線路、llは架空地線である。
FIG. 1 shows an embodiment of a branch power line fault direction locating device according to the present invention. As shown in the figure, J is a branch tower, 1 is a power transmission line on the power source a side, 2 is a power transmission line on the load side, 3 is a power transmission line on the load C side, and ll is an overhead ground wire.

本装置は、分岐点近傍の架空地線4でa側、b側、a側
のそれぞれに架空地線電流!a、Ib。
This device measures the overhead ground wire current on each of the a side, b side, and a side of the overhead ground wire 4 near the branch point! a, Ib.

Icを測定する電流センサ5,6.7と、これらセンサ
の情報が導かれる標定回路12とを備えている。標定回
路12はIaの大きさと予め設定された平常時の最大値
Ihaとを比較する事故検出回路8と、Ibの大きさと
Icの大きさとを比較する比較回路9と、Iaの位相と
Ibの位相を比較する位相比較回路10と、これらの回
路出力が導かれる標定演算回路11とで構成される。
It includes current sensors 5, 6.7 that measure Ic, and a location circuit 12 from which information from these sensors is derived. The location circuit 12 includes an accident detection circuit 8 that compares the magnitude of Ia and a preset normal maximum value Iha, a comparison circuit 9 that compares the magnitude of Ib with the magnitude of Ic, and a circuit that compares the magnitude of Ia with the magnitude of Ib. It is composed of a phase comparator circuit 10 that compares phases, and a location calculation circuit 11 to which the outputs of these circuits are derived.

電流センナ5,6.7は、例えば電流トランス、標定回
路12を構成する各回路8〜11はリニアICまたはマ
イクロコンピュータを用いて構成される。電流センサ5
,6.7から標定回路12への伝送路には耐雷性のため
に光ファイバを用いるとよい。
The current sensors 5, 6.7 are constructed using, for example, a current transformer, and each of the circuits 8 to 11 constituting the location circuit 12 is constructed using a linear IC or a microcomputer. Current sensor 5
, 6.7 to the location circuit 12, it is preferable to use an optical fiber for lightning resistance.

つぎに、第2図に基づいて、標定回路12の機能につい
て説明する。
Next, the function of the location circuit 12 will be explained based on FIG.

センサ5の出力Iaと予め設定された平常時の最大値I
haとを事故検出回路8で比較し、Ia≦Ihaのとき
には事故が発生していないか、分岐から遠いa側で事故
が発生しなと判定する。
Output Ia of sensor 5 and preset normal maximum value I
ha is compared with the accident detection circuit 8, and when Ia≦Iha, it is determined that an accident has not occurred or that an accident has not occurred on the side a, which is far from the branch.

Ia>Ihaのときには事故が発生したと判定して、I
bの大きさとIcの大きさを比較回路って比較し、Ib
>Icの場合にはb側、即ち、センサから負荷すの間の
送電線路2または負荷すで事故が発生したと標定し、I
 b < I cの場合にはa側、即ち、センサ7から
負荷Cの間の送電線路3まなは負荷Cで事故が発生した
と標定する。そしてIb−Icの場合にはa側、即ち、
電源aと分岐鉄塔Jとの間の送電線路1で又は分岐鉄塔
Jで事故が発生したと判定して、更に電流1aに対する
電流Ibの位相差φb (0<=φく180°)と設定
位相値である90°とを位相比較回路10で比較して、
φb〉90°の場合には分岐鉄塔Jでの地絡事故と標定
し、φb≦90°の場合はセンサ5と電源aとの間の送
電線路1での地絡故障または電源aと分岐鉄塔Jとの間
又は分岐鉄塔Jでの短絡事故と標定する。
When Ia>Iha, it is determined that an accident has occurred, and I
A comparison circuit compares the magnitude of b and the magnitude of Ic, and Ib
> In the case of Ic, it is determined that the fault has occurred on side b, that is, on the power transmission line 2 between the sensor and the load, or on the load, and
If b < I c, it is determined that the accident occurred on the a side, that is, on the power transmission line 3 between the sensor 7 and the load C or on the load C. And in the case of Ib-Ic, the a side, that is,
It is determined that an accident has occurred on the power transmission line 1 between the power supply a and the branch tower J or on the branch tower J, and the phase difference φb (0<=φ×180°) between the current Ib and the current 1a is set. The phase comparison circuit 10 compares the value with 90°,
If φb>90°, it is determined that there is a ground fault at the branch tower J, and if φb≦90°, it is determined that there is a ground fault in the power transmission line 1 between the sensor 5 and the power source a, or a ground fault occurs between the power source a and the branch tower J. This is determined to be a short-circuit accident between J and branch tower J or branch tower J.

なお、ここでのIb−Icは厳密なものではなく、両者
の差が30%程度の範囲に入っていればIb−Icとす
る。また、φb〉90°とφb≦90°も90°に限定
されるものではなく、それぞれ、φb>120” 、φ
b<60”程度としてもよい。
Note that Ib-Ic here is not strict, and if the difference between the two is within a range of about 30%, it is defined as Ib-Ic. Furthermore, φb〉90° and φb≦90° are not limited to 90°, but φb>120" and φb, respectively.
It may also be approximately b<60''.

第3図に基づいて本装置の原理を、事故時の分岐点近傍
での架空地線4の電流様相とともに説明する。
The principle of this device will be explained based on FIG. 3, together with the current state of the overhead ground wire 4 near the branch point at the time of an accident.

まず事故発生の検出であるが、Iaは、送電線路で事故
が発生した場合に電源a側近傍を除いて、必ず平常時の
最大値Ihaよりも大きくなる。次に、事故方向の標定
についてであるが、IbとIcをみると、a側または分
岐鉄塔での事故ではIb−Icであり、b側の事故では
Ib>Icであり、a側の事故ではI b<I cとな
る。
First, regarding the detection of the occurrence of an accident, when an accident occurs on the power transmission line, Ia is always larger than the maximum value Iha in normal times, except in the vicinity of the power supply a side. Next, regarding the orientation of the accident direction, looking at Ib and Ic, in an accident on the a side or a branch tower, Ib - Ic, in an accident on the b side Ib > Ic, and in an accident on the a side Ib<Ic.

また、a側の地絡事故か分岐鉄塔での地絡事故かの標定
は、a側で地絡事故が発生した場合にはIaに対するI
bの位相差φbはほぼ同じであるが、分岐鉄塔で地絡事
故が発生した場合にはφbはほぼ180°となることを
利用している。
In addition, when determining whether a ground fault occurs on the a side or a branch tower, if a ground fault occurs on the a side, I
The phase difference φb of b is almost the same, but when a ground fault occurs in a branch tower, φb becomes approximately 180°.

上述した実施例によれば、負荷側ではなくこれよりも重
要な電源側の故障内容が特に把握できるので、メリット
が大きい。
According to the embodiment described above, it is possible to particularly grasp the details of the failure not on the load side but on the power supply side, which is more important, so there is a great advantage.

また、従来から使用されている測定点から故障点までの
線路長を求める標定装置と故障方向を求める本装置とを
組合わせることにより、標定信頼度を一層高くすること
も可能である。
Furthermore, by combining a conventionally used locating device that determines the line length from a measurement point to a fault point with this device that determines the direction of a fault, it is possible to further increase the locating reliability.

なお、上記実施例では位相比較回路10への負荷側入力
を負荷す側のセンサ6からとっているが、負荷C側のセ
ンサ7からとってIaとIcどの位相差の絶対値φCに
φbを代えて用いてもよい。
In the above embodiment, the load-side input to the phase comparison circuit 10 is taken from the sensor 6 on the load side, but the absolute value φC of the phase difference between Ia and Ic is determined by φb from the sensor 7 on the load C side. It may be used instead.

特に両方の位相差φbとφCを用いて、比較結果が同じ
か否かを標定演算回路11で確認するようにすれば、故
障内容に関する標定の信頼度を高めることができる。
In particular, if both phase differences φb and φC are used to confirm whether or not the comparison results are the same in the location calculation circuit 11, the reliability of location regarding the failure details can be increased.

また、標定回路12から得られる標定結果は光ファイバ
複合架空地線(OPGW)内の光ファイバを用いて中央
監視所へ送っても、あるいは分岐鉄塔で表示又は記録す
るようにしてもよい。
Further, the location results obtained from the location circuit 12 may be sent to a central monitoring station using an optical fiber in an optical fiber composite overhead ground wire (OPGW), or may be displayed or recorded on a branch tower.

第4図、第5図および第6図は本発明の変形実施例を示
す、第4図が第1図と主に異なる点は、分岐鉄塔近傍の
a側の架空地線4から電流センサを取り去った点である
。これにより、標定回路22は、Ibと予め設定された
平常時のIbの最大fiiilhbとを比較する比較回
路18と、Icと予め設定された平常時のIcの最大値
Ihcとを比較する比較回路28と、IbとIcとを比
較する比較回路19と、これらの回路出力が導かれる標
定演算回路21とで構成される。
4, 5, and 6 show modified embodiments of the present invention. The main difference between FIG. 4 and FIG. 1 is that the current sensor is connected from the overhead ground wire 4 on side a near the branch tower. This is the point that has been removed. As a result, the location circuit 22 includes a comparison circuit 18 that compares Ib with a preset maximum value of Ib during normal times, and a comparison circuit that compares Ic with a preset maximum value Ihc of Ic during normal times. 28, a comparison circuit 19 that compares Ib and Ic, and a location calculation circuit 21 to which the outputs of these circuits are derived.

つぎに、第5図に基づいて、標定回8322の機能につ
いて説明する。
Next, the function of the orientation circuit 8322 will be explained based on FIG.

センサ6の出力Ibと予め設定された平常時の最大値I
hbとを比較回路18で比較し、またセンサ7の出力I
cと予め設定された平常時の最大値Ihcとを比較回路
28で比較し、 Ib≦IhbかつIc≦Ihcのときには事故が発生し
ていないか分岐から遠いa側で事故と標定する。
Output Ib of sensor 6 and preset maximum normal value I
hb is compared with the comparator circuit 18, and the output I of the sensor 7 is
A comparator circuit 28 compares c with a preset maximum normal value Ihc, and when Ib≦Ihb and Ic≦Ihc, it is determined whether an accident has occurred or whether an accident has occurred on side a, which is far from the branch.

Ib>IhbまたはIc>Ihcのときには事故が発生
したと判断してIbの大きさとICの大きさを比較回路
19で比較し、Ib>Icの場合にはb側で事故が発生
しなと標定し、Ib<Icの場合にはa側で事故が発生
したと標定し、Ib=Icの場合にはaff!!l送電
線または分岐鉄塔で事故が発生したと標定する。
When Ib>Ihb or Ic>Ihc, it is determined that an accident has occurred, and the comparison circuit 19 compares the magnitude of Ib with the magnitude of IC. If Ib>Ic, it is determined that no accident has occurred on the b side. If Ib<Ic, it is determined that the accident occurred on side a, and if Ib=Ic, aff! ! l Determine that the accident occurred on a power transmission line or branch tower.

第6図に基づいて本装置の標定原理を、事故時の分岐点
近傍での架空地線の電流様相とともに説明する。
The locating principle of this device will be explained based on FIG. 6, together with the current state of the overhead ground wire near the branch point at the time of an accident.

まず、事故発生の検出であるが、事故が起った場合a側
の分岐点から遠い地点で事故が発生しない限り、Ibま
たはIcの少なくともどちらかはそれぞれ平常時の最大
値より大きくなる。
First, regarding the detection of the occurrence of an accident, if an accident occurs, at least one of Ib and Ic will be larger than the normal maximum value unless the accident occurs at a point far from the branch point on the a side.

次に、事故方向の標定についてであるが、a側まなは分
岐鉄塔での事故ではIb=Icであり、b側の事故では
Ib>Icであり、cfFIの事故ではIb<Icとな
る。
Next, regarding the orientation of the accident direction, in the case of an accident at the branch tower on the a side, Ib=Ic, in the case of an accident on the b side, Ib>Ic, and in the case of a cfFI accident, Ib<Ic.

以上が標定手法の原理である。The above is the principle of the orientation method.

上述した変形例によれば、電源a側で故障が発生しな場
合、その故障内容までは知ることができないものの、電
流センサの設置は負荷側のみで良く、電源側センサを1
個省略できるため、装置の簡略化を図ることができる。
According to the above-mentioned modification, if a failure does not occur on the power supply side, although the details of the failure cannot be known, the current sensor only needs to be installed on the load side, and only one sensor on the power supply side can be installed.
Since these parts can be omitted, the apparatus can be simplified.

[発明の効果] 本発明は、上述のとおり構成されているので、次に記載
する効果を槽する。
[Effects of the Invention] Since the present invention is configured as described above, it provides the following effects.

請求項1の分岐送電線故障方向標定装置においては、故
障時に票茗な変化が生じる架空地線電流を、電流センサ
によって検出して標定回路に導き、この標定回路で故障
の発生方向で異なる電流の大きさを解析するようにした
ので、故障内容にかかわらず、故障方向を的確に標定で
きる。また、電流の大きさのみならず位相を解析するよ
うにしたので、電源側の故障時にはその内容を知ること
ができる9 請求項2の分岐送電線故障方向標定装置においては、故
障内容の標定はできないけれども、故障方向の的確な標
定を確保しつつ、電源側の電流センサを1個省略して装
置を簡単にすることができる。
In the branch power transmission line fault direction locating device according to claim 1, the overhead ground wire current, which changes significantly at the time of a fault, is detected by a current sensor and guided to a locating circuit, and this locating circuit detects a current that differs depending on the direction in which the fault occurs. Since the magnitude of the error is analyzed, the failure direction can be accurately located regardless of the failure details. In addition, since not only the magnitude of the current but also the phase is analyzed, the content of the failure can be known in the event of a failure on the power supply side. Although this is not possible, it is possible to simplify the device by omitting one current sensor on the power supply side while ensuring accurate location of the fault direction.

4、図)簡単な説明 第1図は本発明の実施例を示す送電線故障方・向標定装
置の構成図、第2図は第1図に示す回路の機能説明図、
第3図は事故地点における架空地線電流の特性図、第4
図は第1図の電源側センサを省略した変形例を示す構成
図、第5図は第4図に示す回路の機能説明図、第6図は
事故地点における架空地線電流の特性図である。
4. Diagrams) Brief Description FIG. 1 is a configuration diagram of a power transmission line failure direction/direction locating device showing an embodiment of the present invention, and FIG. 2 is a functional explanatory diagram of the circuit shown in FIG. 1.
Figure 3 is a characteristic diagram of the overhead ground wire current at the accident location.
The figure is a configuration diagram showing a modification example in which the power supply side sensor of Fig. 1 is omitted, Fig. 5 is a functional explanatory diagram of the circuit shown in Fig. 4, and Fig. 6 is a characteristic diagram of the overhead ground wire current at the accident point. .

図中、1は電源a側の送電線路、2は負荷す側の送電線
路、3は負荷C側の送電線路、・1は架空地線、5はa
側の電流センサ、6は負荷す側の電流センサ、7は負荷
C側の電流センサ、12.22は標定回路、aは電源、
b、cは負荷、Jは分岐鉄塔である。
In the figure, 1 is the power transmission line on the power source a side, 2 is the power transmission line on the load side, 3 is the power transmission line on the load C side, 1 is the overhead ground wire, 5 is a
6 is a current sensor on the load side, 7 is a current sensor on the load C side, 12.22 is a location circuit, a is a power source,
b and c are loads, and J is a branch tower.

Claims (1)

【特許請求の範囲】 1、電源から複数の負荷に電力を供給する分岐線路を有
する分岐送電線路の故障方向標定装置において、分岐点
を境に電源側、負荷側の各架空地線にこれらの電流を検
出する電流センサを取り付け、これらの電流センサのう
ち電源側センサの出力の大きさから故障の発生を判定し
、負荷間センサ同士の出力の大きさを比較して、その比
較出力から電源側かいずれの負荷側で故障が発生したか
を判定すると共に、電源面センサと負荷側センサとの出
力の位相差を求め、その大きさから電源側の故障内容を
判定する標定回路を設けたことを特徴とする分岐送電線
故障方向標定装置。 2、電源から複数の負荷に電力を供給する分岐線路を有
する分岐送電線路の故障方向標定装置において、分岐点
を境に負荷間の各架空地線にこれらに流れる電流を検出
する電流センサを取り付け、電流センサの各出力の大き
さから故障の発生を判定すると共に、電流センサ同士の
出力の大きさを比較して、その比較出力から電源側かい
ずれかの負荷側で故障が発生したかを判定する標定回路
を設けたことを特徴とする分岐送電線故障方向標定装置
[Claims] 1. In a failure direction locating device for a branch power transmission line having a branch line that supplies power from a power source to a plurality of loads, these Install a current sensor that detects current, determine whether a failure has occurred based on the output size of the power supply side sensor among these current sensors, compare the output size of the sensors between the loads, and use the compared output to determine whether the power source In addition to determining whether a failure has occurred on either side or the load side, a locating circuit is installed that determines the phase difference between the outputs of the power supply side sensor and the load side sensor, and determines the nature of the failure on the power supply side based on the magnitude. A branch power line fault direction locating device characterized by: 2. In a fault direction locating device for a branch power transmission line that has a branch line that supplies power from a power source to multiple loads, a current sensor is installed on each overhead ground wire between the loads at the branch point to detect the current flowing through them. In addition to determining the occurrence of a failure from the magnitude of each output of the current sensor, the magnitude of the outputs of the current sensors is compared, and from the comparison output it is determined whether the failure has occurred on the power supply side or on either the load side. A branch power transmission line failure direction locating device characterized by having a locating circuit for determining.
JP63078247A 1988-04-01 1988-04-01 Branch line fault direction locating device Expired - Fee Related JP3023366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63078247A JP3023366B2 (en) 1988-04-01 1988-04-01 Branch line fault direction locating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63078247A JP3023366B2 (en) 1988-04-01 1988-04-01 Branch line fault direction locating device

Publications (2)

Publication Number Publication Date
JPH01255434A true JPH01255434A (en) 1989-10-12
JP3023366B2 JP3023366B2 (en) 2000-03-21

Family

ID=13656675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63078247A Expired - Fee Related JP3023366B2 (en) 1988-04-01 1988-04-01 Branch line fault direction locating device

Country Status (1)

Country Link
JP (1) JP3023366B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116849A (en) * 1976-03-26 1977-09-30 Nippon Oils & Fats Co Ltd Fault section evaluation method for transmission lines
JPS57186923A (en) * 1981-05-12 1982-11-17 Mitsubishi Electric Corp Digital type simple bus protective relay unit
JPS59186923A (en) * 1983-04-08 1984-10-23 Kureha Chem Ind Co Ltd Remedy for human prostatic cancer
JPS59222028A (en) * 1983-05-30 1984-12-13 住友電気工業株式会社 Method of detecting flash trouble in transmission line branch point
JPS6176019A (en) * 1984-09-20 1986-04-18 日立電線株式会社 Branch transmission-line trouble section standardizing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116849A (en) * 1976-03-26 1977-09-30 Nippon Oils & Fats Co Ltd Fault section evaluation method for transmission lines
JPS57186923A (en) * 1981-05-12 1982-11-17 Mitsubishi Electric Corp Digital type simple bus protective relay unit
JPS59186923A (en) * 1983-04-08 1984-10-23 Kureha Chem Ind Co Ltd Remedy for human prostatic cancer
JPS59222028A (en) * 1983-05-30 1984-12-13 住友電気工業株式会社 Method of detecting flash trouble in transmission line branch point
JPS6176019A (en) * 1984-09-20 1986-04-18 日立電線株式会社 Branch transmission-line trouble section standardizing device

Also Published As

Publication number Publication date
JP3023366B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
CN103261900B (en) The method that the ground short circuit of the supply lines of the one-sided power supply of three phase supply net is monitored and electrical protection apparatus
BRPI0104617B1 (en) Fault type identification system in a power transmission system
US6998848B2 (en) Method for producing a fault signal which indicates a short to ground
CN110231539B (en) Single-pole ground fault detection system for true bipolar direct current transmission and distribution line
JPH01255434A (en) Device for determination of branched transmission line trouble direction
KR102428133B1 (en) junction box of detecting a disconnection of wire for wireless power track
JPH0511269B2 (en)
JP3802028B2 (en) Protective relay using photocurrent sensor
US20220283214A1 (en) Leakage Current Detection in Cable Tray
JPS62206465A (en) Fault section locator for aerial power transmission line
JPH0642214Y2 (en) Current measuring device
KR102559512B1 (en) PT Fault Detection Device of 3-Phase Integrated MOF and 3-Phase Integrated MOF Fault Detection Apparatus
JP2568097B2 (en) Power cable accident section detection method
JPS6224165A (en) Orientation system of transmission and distribution wire failure section
US20230221381A1 (en) Fault detection methods and systems therefor
JPH0738867Y2 (en) Transmission line failure direction detector
JPS62255880A (en) Discriminating method for accident section of power cable
JPH09304468A (en) Method for locating fault-point of parallel two line system
JPS6373165A (en) Fault section detector for electric power equipment
JPH01313779A (en) Fault section detecting device for underground transmission line
JPH0810241B2 (en) Fault segment location method for overhead power lines
JPS6176014A (en) Disconnection detector
JPS62255881A (en) Discriminating method for accident section of power cable
JPH03137577A (en) Device for locating fault in power transmission
KR100457260B1 (en) measuring method of load current on po- wer cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees