JPH0125483B2 - - Google Patents

Info

Publication number
JPH0125483B2
JPH0125483B2 JP59063063A JP6306384A JPH0125483B2 JP H0125483 B2 JPH0125483 B2 JP H0125483B2 JP 59063063 A JP59063063 A JP 59063063A JP 6306384 A JP6306384 A JP 6306384A JP H0125483 B2 JPH0125483 B2 JP H0125483B2
Authority
JP
Japan
Prior art keywords
weight
polymerization
copolymer
parts
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59063063A
Other languages
Japanese (ja)
Other versions
JPS60203612A (en
Inventor
Masao Nakagawa
Kyoshi Mori
Toshiaki Sugita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP6306384A priority Critical patent/JPS60203612A/en
Priority to US06/714,759 priority patent/US4560735A/en
Priority to EP85103416A priority patent/EP0157314A1/en
Priority to CN 85101103 priority patent/CN85101103A/en
Publication of JPS60203612A publication Critical patent/JPS60203612A/en
Publication of JPH0125483B2 publication Critical patent/JPH0125483B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、アルフアメチルスチレン10〜80重量
%、アクリロニトリル5〜50重量%、さらにスチ
レン、クロルスチレン、パラメチルスチレン、t
−ブチルスチレン、アクリル酸エステル、メタク
リル酸エステルから選ばれた1種または2種以上
の化合物0〜70重量%の使用割合にある単量体を
用いて、特殊な過酸化物系開始剤により懸濁重合
又は塊状重合に於て短かい重合時間で高転化率の
透明性、耐熱性、強度に優れた共重合体を製造す
る方法に関するものである。 アルフアメチルスチレンにアクリロニトリル、
さらにこれらと共重合しうるスチレン、クロルス
チレン、パラメチルスチレン、t−ブチルスチレ
ン等の各種置換スチレン;メチルアクリレート、
エチルアクリレート、ブチルアクリレート等のア
クリル酸エステル;メチルメタクリレート、エチ
ルメタクリレート、ブチルメタクリレート等のメ
タクリル酸エステルから選ばれた1種または2種
以上の化合物を共重合させて、実用性に於て充分
な程度に耐熱性の優れた共重合体を得るには、ア
ルフアメチルスチレンを前記使用単量体のうち少
なくとも10重量%以上、好ましくは20重量%以上
使用して、アルフアメチルスチレンの含有量が10
重量%以上、好ましくは20重量%以上占める共重
合体とする必要がある。 しかるに、かかる観点に基づいて、従来、アル
フアメチルスチレンを上記の通り大量使用し耐熱
性の優れた共重合体を懸濁重合又は塊状重合によ
り得るには、ターシヤリーブチルパーオキシベン
ゾエート、ターシヤリーブチルパーオキシアセテ
ート、ジターシヤリーブチルパーオキサイド等の
有機過酸化物を重合開始剤として用いる方法があ
るが、これらの開始剤を用いる方法に於ては、重
合温度の如何に拘らず、はなはだ多量用いること
が必要であり、従つて得られる共重合体はその重
合度が極度に低く、成形材料として有用性に乏し
いものであつた。さらにこれら開始剤により重合
度を上げるため開始剤を少なくすると、いわゆる
dead end重合となり、工業的に求められる高転
化率は得られないか、高転化率を得ようとすると
極めて長時間の重合時間を要し、著しく生産性の
悪いものであつた。又、ベンゾイルパーオキサイ
ドの如き有機過酸化物を使用するとき、これに適
する重合温度を用いても工業的に利用し得る高転
化率の共重合体は全く得られないのである。 以上の如く、従来の懸濁重合又は塊状重合での
アルフアメチルスチレン−アクリロニトリル系共
重合体の製造に於ては、工業的に成形材料として
利用可能な共重合体を製造し得る技術は得られな
いか、もしくは工業的に見て著しく生産性の悪い
ものであつた。 本発明者は、かかる点に鑑み鋭意研究した結
果、懸濁重合又は塊状重合により短時間で高転化
率の透明性、耐熱性、強度に優れたアルフアメチ
ルスチレン−アクリロニトリル系共重合体の製造
方法を見い出し、本発明を完成するに至つた。 すなわち、本発明は、アルフアメチルスチレン
10〜80重量%、アクリロニトリル5〜50重量%、
さらにスチレン、クロルスチレン、パラメチルス
チレン、t−ブチルスチレン、アクリル酸エステ
ル、メタクリル酸エステルから選ばれた1種又は
2種以上の化合物0〜70重量%の使用割合にある
単量体を用い、ジ−t−ブチルパーオキシアゼレ
ートを開始剤として、重合温度80〜120℃で懸濁
重合又は塊状重合させることにより、短かい重合
時間で高転化率の透明性、耐熱性、強度に優れた
共重合体を得る製造方法を要旨とする。 本発明に用いる単量体は、アルフアメチルスチ
レン10〜80重量%、アクリロニトリル5〜50重量
%、さらにスチレン、クロルスチレン、パラメチ
ルスチレン、qt−ブチルスチレン等の各種置換ス
チレン;メチルアクリレート、エチルアクリレー
ト、ブチルアクリレート等のアクリル酸エステ
ル;メチルメタクリレート、エチルメタクリレー
ト、ブチルメタクリレート等のメタクリル酸エス
テルから選ばれた少なくとも1種の化合物0〜70
重量%の混合物であり、より好ましくはアルフア
メチルスチレン20〜80重量%、アクリロニトリル
10〜40重量%、さらにスチレン、クロルスチレ
ン、パラメチルスチレン、t−ブチルスチレン等
の各種置換スチレン;メチルアクリレート、エチ
ルアクリレート、ブチルアクリレート等のアクリ
ル酸エステル;メチルメタクリレート、エチルメ
タクリレート、ブチルメタクリレート等のメタク
リル酸エステルから選ばれた少なくとも1種の化
合物0〜70重量%である。 本発明に使用される開始剤は、ジ−t−ブチル
パーオキシアゼレートである。その使用量は0.1
〜2.0重量%、より好ましくは0.2〜1.5重量%であ
り、0.1重量%未満では工業的に実用性のある転
化率が全く得られないか、もしくは極度に長時間
を要し、著しく生産性の悪いものとなる。また
2.0重量%を越えると短時間で高転化率のものは
得られるが、著しく分子量が低下し、成形した場
合に強度が大巾に低下する。 以上の様に、式()で表わされる有機過酸化
物を開始剤として用いることにより、懸濁重合又
は塊状重合でアルフアメチルスチレン−アクリロ
ニトリル系共重合体が極めて短時間に、しかも高
品質のものが得られることは、従来の技術・知見
からは全く予想され得なかつた事であり、現在そ
の機構は不明である。 本発明に於る共重合体を得る重合方法として
は、公知の懸濁重合又は塊状重合が採用される。
特に、懸濁重合の場合、水媒体中に公知の分散剤
が用いられる。分散剤としては、ポリビニルアル
コール、ポリビニルピロリドン、メチルセルロー
ス等の有機分散剤、又は第三燐酸カルシウム、燐
酸マグネシウム、ケイ酸ソーダ、酸化亜鉛、炭酸
マグネシウム等の無機分散剤があり、無機分散剤
の場合にはドデシルベンゼンスルフオン酸ソー
ダ、α−オレフインスルフオン酸ソーダ等のアニ
オン界面活性剤を併用して用いると分散の効果は
著しく良好となる。 又、本発明に於る開始剤を用いる場合、重合温
度を選定する事は重要である。即ち、重合温度は
80〜120℃が良く、さらに好ましくは95〜120℃で
ある。80℃未満では転化率が極めて低くなり、ま
た120℃をこえると分子量が低下し、工業的に有
用な共重合体が得難い。 次に実施例を示すが、各実施例のそれぞれの表
に於て、得られた共重合体の転化率を百分率(重
量%)で示し、また得られた共重合体の性質に関
しては、各共重合体を射出成形により成形したサ
ンプルについて得られた結果であり、熱歪温度は
耐熱性を表わすものとして測定したもので、JIS
−K−6871の方法による値を示し、衝撃強度も
JIS−K−6871の方法による。尚、比粘度である
ηspは、溶媒をジメチルホルムアミドとし、その
溶液を用い30℃で測定した値を示し、重合度の比
較基準とした。 実施例 1 撹拌機付きオートクレーブに水110重量部、リ
ン酸三カルシウム0.24重量部、ドデシルベンゼン
スルフオン酸ソーダ0.003重量部、塩化ナトリウ
ム0.2重量部を入れ、次いで、撹拌状態でジ−t
−ブチルパーオキシアゼレート0.5重量部を溶解
したアルフアメチルスチレン50重量部、アクリロ
ニトリル30重量部、スチレン20重量部の混合単量
体を該系に導入し、懸濁状態とし、直ちに105℃
に昇温、7時間重合を行なつた後、40℃に冷却、
脱水、乾燥を行なつて樹脂(A)を得た。 得られた樹脂の転化率、比粘度、熱歪温度、衝
撃強度の測定値を表−1に示した。 比較例 1 実施例1に於て、ジ−t−ブチルパーオキシア
ゼレート0.5重量部をベンゾイルパーオキサイド
0.5重量部に、及び重合温度を90℃に変更した以
外は同様にして樹脂(B)を得た。その結果を表−1
に示した。 実施例 2 実施例1に於て、ジ−t−ブチルパーオキシア
ゼレートの使用量を0.3重量部にし、重合時間を
10時間とした以外は実施例1と同様に行なつて樹
脂(C)を得た。結果を表−1に示した。 実施例 3 実施例1に於て、単量体をアルフアメチルスチ
レン30重量部、アクリロニトリル10重量部、スチ
レン60重量部とした以外は、実施例1と同様にし
て樹脂(D)を得た。結果を表−1に示した。 比較例 2 実施例3に於て、ジ−t−ブチルパーオキシア
ゼレート0.5重量部をベンゾイルパーオキサイド
1.0重量部に、及び重合温度を90℃に変更した以
外は同様にして樹脂(B)を得た。結果を表−1に示
した。 【表】
Detailed Description of the Invention The present invention provides 10 to 80% by weight of alphamethylstyrene, 5 to 50% by weight of acrylonitrile, and furthermore styrene, chlorstyrene, paramethylstyrene, t
- One or more compounds selected from butylstyrene, acrylic esters, and methacrylic esters. The present invention relates to a method for producing a copolymer with high conversion rate, excellent transparency, heat resistance, and strength in a short polymerization time in turbid polymerization or bulk polymerization. Acrylonitrile in alpha methylstyrene,
Furthermore, various substituted styrenes such as styrene, chlorstyrene, paramethylstyrene, and t-butylstyrene that can be copolymerized with these; methyl acrylate,
Acrylic esters such as ethyl acrylate and butyl acrylate; one or more compounds selected from methacrylic esters such as methyl methacrylate, ethyl methacrylate, and butyl methacrylate are copolymerized to a sufficient degree for practical use. In order to obtain a copolymer with excellent heat resistance, alpha methylstyrene is used at least 10% by weight or more, preferably 20% by weight or more of the monomers used, so that the content of alphamethylstyrene is 10% by weight or more, preferably 20% by weight or more.
The copolymer must account for at least 20% by weight, preferably at least 20% by weight. However, based on this point of view, conventionally, in order to obtain a copolymer with excellent heat resistance by suspension polymerization or bulk polymerization using alphamethylstyrene in large quantities as described above, tert-butyl peroxybenzoate, t-butyl There are methods using organic peroxides such as peroxyacetate and ditertiary butyl peroxide as polymerization initiators, but in methods using these initiators, extremely large amounts are used regardless of the polymerization temperature. Therefore, the resulting copolymer has an extremely low degree of polymerization and is of little use as a molding material. Furthermore, if the amount of initiator is decreased in order to increase the degree of polymerization using these initiators, so-called
This resulted in dead end polymerization, and either the industrially required high conversion rate could not be obtained, or an extremely long polymerization time was required to obtain a high conversion rate, resulting in extremely poor productivity. Further, when an organic peroxide such as benzoyl peroxide is used, even if an appropriate polymerization temperature is used, a copolymer with a high conversion rate that can be used industrially cannot be obtained at all. As described above, in the production of alphamethylstyrene-acrylonitrile copolymers using conventional suspension polymerization or bulk polymerization, a technology capable of producing a copolymer that can be used industrially as a molding material has not been obtained. Either there was no production, or the productivity was extremely poor from an industrial perspective. As a result of intensive research in view of the above points, the present inventors have discovered a method for producing an alpha-methylstyrene-acrylonitrile copolymer with high conversion rate, excellent transparency, heat resistance, and strength in a short period of time by suspension polymerization or bulk polymerization. They discovered this and completed the present invention. That is, the present invention provides alpha methyl styrene.
10-80% by weight, acrylonitrile 5-50% by weight,
Furthermore, one or more compounds selected from styrene, chlorostyrene, paramethylstyrene, t-butylstyrene, acrylic ester, and methacrylic ester are used as monomers at a usage rate of 0 to 70% by weight, By carrying out suspension or bulk polymerization using di-t-butyl peroxyazelate as an initiator at a polymerization temperature of 80 to 120°C, it has excellent transparency, heat resistance, and strength with a high conversion rate in a short polymerization time. The gist is a manufacturing method for obtaining a copolymer. The monomers used in the present invention include 10 to 80% by weight of alphamethylstyrene, 5 to 50% by weight of acrylonitrile, and various substituted styrenes such as styrene, chlorostyrene, paramethylstyrene, and qt-butylstyrene; methyl acrylate, and ethyl acrylate. , acrylic esters such as butyl acrylate; at least one compound selected from methacrylic esters such as methyl methacrylate, ethyl methacrylate, and butyl methacrylate 0 to 70
A mixture of % by weight, more preferably 20-80% by weight of alpha-methylstyrene, acrylonitrile
10 to 40% by weight, and various substituted styrenes such as styrene, chlorostyrene, paramethylstyrene, and t-butylstyrene; acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate; methyl methacrylate, ethyl methacrylate, butyl methacrylate, etc. 0 to 70% by weight of at least one compound selected from methacrylic acid esters. The initiator used in the present invention is di-t-butyl peroxyazelate. Its usage is 0.1
-2.0% by weight, more preferably 0.2-1.5% by weight; if it is less than 0.1% by weight, it will not be possible to obtain an industrially practical conversion rate at all, or it will take an extremely long time, resulting in a significant decrease in productivity. It becomes bad. Also
If it exceeds 2.0% by weight, a high conversion rate can be obtained in a short period of time, but the molecular weight decreases significantly and the strength when molded is significantly reduced. As described above, by using the organic peroxide represented by the formula () as an initiator, alphamethylstyrene-acrylonitrile copolymers can be produced in a very short time and with high quality by suspension polymerization or bulk polymerization. This could not have been predicted from conventional technology and knowledge, and the mechanism is currently unknown. As a polymerization method for obtaining the copolymer in the present invention, known suspension polymerization or bulk polymerization is employed.
In particular, in the case of suspension polymerization, known dispersants are used in the aqueous medium. Dispersants include organic dispersants such as polyvinyl alcohol, polyvinylpyrrolidone, and methylcellulose, and inorganic dispersants such as tricalcium phosphate, magnesium phosphate, sodium silicate, zinc oxide, and magnesium carbonate. When used in combination with an anionic surfactant such as sodium dodecylbenzenesulfonate or sodium α-olefin sulfonate, the dispersion effect becomes significantly better. Furthermore, when using the initiator in the present invention, it is important to select the polymerization temperature. That is, the polymerization temperature is
The temperature is preferably 80 to 120°C, more preferably 95 to 120°C. If the temperature is less than 80°C, the conversion rate will be extremely low, and if it exceeds 120°C, the molecular weight will decrease, making it difficult to obtain an industrially useful copolymer. Examples are shown next, and in each table of each example, the conversion rate of the obtained copolymer is shown in percentage (wt%), and the properties of the obtained copolymer are shown in each table. These are the results obtained for a sample molded from a copolymer by injection molding, and the heat distortion temperature was measured as an expression of heat resistance, and is based on JIS
- Shows the value according to the method of K-6871, and also shows the impact strength.
According to the method of JIS-K-6871. Note that the specific viscosity ηsp is a value measured at 30° C. using a solution of dimethylformamide as a solvent, and was used as a comparison standard for the degree of polymerization. Example 1 110 parts by weight of water, 0.24 parts by weight of tricalcium phosphate, 0.003 parts by weight of sodium dodecylbenzenesulfonate, and 0.2 parts by weight of sodium chloride were placed in an autoclave equipped with a stirrer, and then di-t was added under stirring.
- A mixed monomer mixture of 50 parts by weight of alphamethylstyrene, 30 parts by weight of acrylonitrile, and 20 parts by weight of styrene in which 0.5 parts by weight of butyl peroxyazelate was dissolved was introduced into the system, brought into a suspended state, and immediately heated to 105°C.
After polymerization for 7 hours, the temperature was raised to 40°C.
Resin (A) was obtained by dehydration and drying. Table 1 shows the measured values of conversion rate, specific viscosity, heat strain temperature, and impact strength of the obtained resin. Comparative Example 1 In Example 1, 0.5 parts by weight of di-t-butyl peroxyazelate was replaced with benzoyl peroxide.
Resin (B) was obtained in the same manner except that the amount was changed to 0.5 parts by weight and the polymerization temperature was changed to 90°C. Table 1 shows the results.
It was shown to. Example 2 In Example 1, the amount of di-t-butyl peroxyazelate used was 0.3 parts by weight, and the polymerization time was
Resin (C) was obtained in the same manner as in Example 1 except that the heating time was 10 hours. The results are shown in Table-1. Example 3 Resin (D) was obtained in the same manner as in Example 1, except that the monomers were 30 parts by weight of alphamethylstyrene, 10 parts by weight of acrylonitrile, and 60 parts by weight of styrene. The results are shown in Table-1. Comparative Example 2 In Example 3, 0.5 parts by weight of di-t-butyl peroxyazelate was replaced with benzoyl peroxide.
Resin (B) was obtained in the same manner except that the amount was changed to 1.0 part by weight and the polymerization temperature was changed to 90°C. The results are shown in Table-1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アルフアメチルスチレン10〜80重量%、アク
リロニトリル5〜50重量%、さらにスチレン、ク
ロルスチレン、パラメチルスチレン、t−ブチル
スチレン、アクリル酸エステル、メタクリル酸エ
ステルから選ばれた1種または2種以上の化合物
0〜70重量%の使用割合にある単量体を用い、ジ
−t−ブチルパーオキシアゼレートを開始剤とし
て、重合温度80〜120℃で懸濁重合又は塊状重合
により共重合させることを特徴とする共重合体の
製造方法。
1 10 to 80% by weight of alphamethylstyrene, 5 to 50% by weight of acrylonitrile, and one or more selected from styrene, chlorostyrene, paramethylstyrene, t-butylstyrene, acrylic ester, and methacrylic ester. Copolymerization is carried out by suspension polymerization or bulk polymerization at a polymerization temperature of 80 to 120°C using monomers in a proportion of 0 to 70% by weight of the compound and di-t-butyl peroxyazelate as an initiator. A method for producing a characteristic copolymer.
JP6306384A 1984-03-29 1984-03-29 Preparation of copolymer Granted JPS60203612A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6306384A JPS60203612A (en) 1984-03-29 1984-03-29 Preparation of copolymer
US06/714,759 US4560735A (en) 1984-03-29 1985-03-22 Process for preparing copolymer
EP85103416A EP0157314A1 (en) 1984-03-29 1985-03-22 Process for preparing copolymer
CN 85101103 CN85101103A (en) 1984-03-29 1985-04-01 The preparation method of multipolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6306384A JPS60203612A (en) 1984-03-29 1984-03-29 Preparation of copolymer

Publications (2)

Publication Number Publication Date
JPS60203612A JPS60203612A (en) 1985-10-15
JPH0125483B2 true JPH0125483B2 (en) 1989-05-18

Family

ID=13218504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6306384A Granted JPS60203612A (en) 1984-03-29 1984-03-29 Preparation of copolymer

Country Status (2)

Country Link
JP (1) JPS60203612A (en)
CN (1) CN85101103A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072814B2 (en) * 1986-05-21 1995-01-18 化薬アクゾ株式会社 Method for producing α-methylstyrene-acrylonitrile copolymer
JPH0717716B2 (en) * 1986-05-30 1995-03-01 日本合成ゴム株式会社 Method for producing copolymer
KR100690344B1 (en) * 2004-12-11 2007-03-09 주식회사 엘지화학 Method for producing transparent copolymer resin having good chemical resistance, fluidity and fading resistance, and copolymer resin prepared by the method
KR100922700B1 (en) * 2007-06-15 2009-10-20 금호석유화학 주식회사 Maleimide-alpha-alkylstyrene-based terpolymer with low molten viscosity and continuous bulk process for producing it
KR101316737B1 (en) * 2009-12-29 2013-10-10 제일모직주식회사 Acrylic Resin with Good Transparency, Flowability, and Scratch-Resistance
CN103183762B (en) * 2011-12-29 2015-08-05 奇美实业股份有限公司 Styrene-alpha-methylstyrene-acrylonitrile copolymer and rubber-modified styrene resin
CN102924642B (en) * 2012-05-22 2014-11-26 中国石油集团东北炼化工程有限公司吉林设计院 Apparatus for increasing acrylonitrile conversion rate in styrene-acrylonitrile copolymerization reaction
JP6210254B2 (en) * 2014-04-25 2017-10-11 エルジー・ケム・リミテッド Heat resistant styrene copolymer and styrene resin composition containing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242592A (en) * 1975-10-02 1977-04-02 Nippon Steel Chem Co Ltd Process for preparing styene-acrylonitrile copolymers
JPS5328685A (en) * 1976-08-28 1978-03-17 Nippon Oil & Fats Co Ltd Preparation of styrene (type) polymers
US4169195A (en) * 1976-12-29 1979-09-25 Borg-Warner Corporation Process for preparing alpha-methylstyrene polymers
JPS54150493A (en) * 1978-05-18 1979-11-26 Nippon Oil & Fats Co Ltd Production of styrene polymer or copolymer
JPS55725A (en) * 1978-06-19 1980-01-07 Denki Kagaku Kogyo Kk Copolymerization
JPS56167706A (en) * 1980-05-30 1981-12-23 Denki Kagaku Kogyo Kk Polymerization of styrene type monomer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242592A (en) * 1975-10-02 1977-04-02 Nippon Steel Chem Co Ltd Process for preparing styene-acrylonitrile copolymers
JPS5328685A (en) * 1976-08-28 1978-03-17 Nippon Oil & Fats Co Ltd Preparation of styrene (type) polymers
US4169195A (en) * 1976-12-29 1979-09-25 Borg-Warner Corporation Process for preparing alpha-methylstyrene polymers
JPS54150493A (en) * 1978-05-18 1979-11-26 Nippon Oil & Fats Co Ltd Production of styrene polymer or copolymer
JPS55725A (en) * 1978-06-19 1980-01-07 Denki Kagaku Kogyo Kk Copolymerization
JPS56167706A (en) * 1980-05-30 1981-12-23 Denki Kagaku Kogyo Kk Polymerization of styrene type monomer

Also Published As

Publication number Publication date
CN85101103A (en) 1987-01-17
JPS60203612A (en) 1985-10-15

Similar Documents

Publication Publication Date Title
JPH0246603B2 (en)
JPH0125483B2 (en)
US4916196A (en) Process for producing a heat resistant resin composition
JPH0546368B2 (en)
US4560735A (en) Process for preparing copolymer
JPH0125484B2 (en)
JPS60206810A (en) Production of copolymer
JPH0694492B2 (en) Method for producing heat resistant resin and optical element comprising the same
JPH0832749B2 (en) Method for producing copolymer
JPH0684409B2 (en) Method for producing heat-resistant thermoplastic resin
JPS63199710A (en) Novel methyl methacrylate/styrene resin excellent in heat resistance and transparency
JPS60203619A (en) Production of thermoplastic resin
KR100527298B1 (en) Method for Preparing Acrylic Resin with Reduced Coagulation in the Suspension Polymerization
JPS63182309A (en) Production of thermoplastic heat-resistant resin
JPH0125485B2 (en)
JPS60210652A (en) Alpha-alkylstyrene/nitrile resin composition having good moldability
JP2778916B2 (en) Optical element
JPS5851961B2 (en) Copolymer manufacturing method
JPH0125481B2 (en)
JPS60208310A (en) Alpha-alkylstyrene-nitrile copolymer with good moldability
JP2840645B2 (en) Heat resistant thermoplastic resin and method for producing the same
JPH0826206B2 (en) Heat resistant thermoplastic resin composition
JPH04288310A (en) Production of thermopastic resin for transparent molded article
JPS5946532B2 (en) Flame retardant resin composition
JPS6390518A (en) Heat-resistant thermoplastic resin