JPH01254209A - Hollow yarn type module structural body - Google Patents

Hollow yarn type module structural body

Info

Publication number
JPH01254209A
JPH01254209A JP8206288A JP8206288A JPH01254209A JP H01254209 A JPH01254209 A JP H01254209A JP 8206288 A JP8206288 A JP 8206288A JP 8206288 A JP8206288 A JP 8206288A JP H01254209 A JPH01254209 A JP H01254209A
Authority
JP
Japan
Prior art keywords
housing
fields
hollow fiber
structural body
module structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8206288A
Other languages
Japanese (ja)
Other versions
JPH0753227B2 (en
Inventor
Masahiko Yamaguchi
正彦 山口
Hidenori Mitsui
秀則 三井
Minoru Sanai
佐内 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63082062A priority Critical patent/JPH0753227B2/en
Publication of JPH01254209A publication Critical patent/JPH01254209A/en
Publication of JPH0753227B2 publication Critical patent/JPH0753227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain the title module structural body which is excellent in heat resistance durable to repeated steam sterilization and chemical resistance and capable of utilization in various fields by utilizing heat resistant engineering plastic which is high in thermal deformation temp., rigid and stable in hydrolytic property as a housing member. CONSTITUTION:A housing is formed of heat resistant engineering plastic such as polysulfone which has glass transition temp. not lower than 150 deg.C and hydrolytic stability of physical properties holding rate not lower than 80% after continuous exposure to hot water for 1500hours. A hollow yarn porous membrane made of PP is bundled and charged in this housing and both end parts are fixed while utilizing the substance obtained by mixing a polyamine- base curing agent with epoxy resin as a potting material. This hollow yarn type module structural body made by such a way has high strength and can be utilized for all fields such as medical fields and foodstuff fields and also industrial fields.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液体あるいは気体を浄化、分離処理したり、液
中への散気又は液中からの脱ガス等に好適に使用される
、耐熱性、耐薬品性および機械的性質に優れた中空糸型
モジュール構造体に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is a heat-resistant material that is suitable for purifying and separating liquids or gases, aeration into liquids, degassing from liquids, etc. The present invention relates to a hollow fiber type module structure with excellent durability, chemical resistance, and mechanical properties.

[従来の技術及び発明が解決しようとする課題]従来の
中空糸型モジュール構造体は、ハウジングが金属製であ
ったり、ポリカーボネート、塩化ビニル、アクリル樹脂
、ABS樹脂等の樹脂製のものから構成されている例が
多い。ハウジングか金属製の場合には、形成されるモジ
ュール構造体か重いこと、高価であること、量産化が難
しいこと等の欠点があり、またハウジングが汎用樹脂製
の場合には、耐熱性、耐薬品性、機械的物性か弱いこと
等の欠点を有している。
[Prior art and problems to be solved by the invention] In conventional hollow fiber module structures, the housing is made of metal or made of resin such as polycarbonate, vinyl chloride, acrylic resin, ABS resin, etc. There are many examples of this. If the housing is made of metal, there are disadvantages such as the resulting module structure being heavy, expensive, and difficult to mass produce.Also, if the housing is made of general-purpose resin, it has poor heat resistance and durability. It has drawbacks such as poor chemical properties and weak mechanical properties.

一方、多孔質中空糸膜をハウジングに固着するボッティ
ング材としては、成形の容易さやシールの良好性からポ
リウレタン系のものが多く使用されている。しかし、ポ
リウレタン系のボッティング材にあっては耐熱性、耐薬
品性、耐溶剤性の点からその使用範囲が狭くなるという
欠点を有している。
On the other hand, as a botting material for fixing a porous hollow fiber membrane to a housing, a polyurethane-based material is often used because of its ease of molding and good sealing properties. However, polyurethane-based botting materials have the disadvantage that their range of use is narrow in terms of heat resistance, chemical resistance, and solvent resistance.

[課題を解決するための手段] そこで、本発明者らは従来の中空糸型モジュール構造体
のハウジング部材として、熱変形温度か高く、剛性があ
り、クリープが少なく、加水分解性が安定な部材を用い
ることにより、繰り返し蒸気滅菌にも充分耐え得る耐熱
性、耐薬品性に優れ、且つ高強度で工業分野の他、医学
分野、食品分野等のあらゆる分野に使用できるモジュー
ル構造体を得ることができることを見出し、本発明に到
達した。
[Means for Solving the Problems] Therefore, the present inventors have developed a material that has a high heat distortion temperature, is rigid, has little creep, and has stable hydrolyzability as a housing member for a conventional hollow fiber type module structure. By using this method, it is possible to obtain a module structure that has excellent heat resistance and chemical resistance that can withstand repeated steam sterilization, and has high strength and can be used in all fields such as the industrial field, the medical field, the food field, etc. We have discovered what we can do and have arrived at the present invention.

即ち、本発明は、複数の多孔質中空糸膜を、ガラス転移
温度が150℃以上、且つ1500時間連続熱水暴露後
の物性保持率が80%以上である加水分解安定性を有す
る耐熱性エンジニアリングプラスチックスから形成され
るハウジング内に装填し、前記複数の多孔質中空糸膜の
両端部をエポキシ樹脂により該ハウジングに流密(ここ
で流密とは液体および気体をシールすることを意味する
)に固着してなる中空糸型モジュール構造体、を提供す
るものである。
That is, the present invention provides a heat-resistant engineering method for manufacturing a plurality of porous hollow fiber membranes with hydrolytic stability having a glass transition temperature of 150° C. or higher and a physical property retention rate of 80% or higher after continuous exposure to hot water for 1500 hours. The plurality of porous hollow fiber membranes are loaded into a housing made of plastic, and both ends of the plurality of porous hollow fiber membranes are sealed to the housing using an epoxy resin (here, "tight" means sealing liquid and gas). A hollow fiber type module structure is provided.

本発明においては、ハウジング部材としてガラス転移点
(Tg)が150°C以上、且つ1500時間連続熱水
暴露後の物性保持率が80%以上である加水分解安定性
を有する耐熱性エンジニアリングプラスチックスを使用
する点に大きな特徴がある。
In the present invention, a heat-resistant engineering plastic having a glass transition point (Tg) of 150°C or higher and a hydrolytically stable property retention rate of 80% or higher after continuous exposure to hot water for 1500 hours is used as the housing member. It has a major feature in its use.

ここて、加水分解安定性の尺度として規定する物性保持
率とは、96°Cの熱水に連続1500時間浸漬したと
きの機械的性質(引張強さ)の元の値に対する割合(%
)を云うものであり、また、加水分解安定性の試験方法
としては、引張試験片(5x0.5x0.125インチ
)をASTM (アメリカ試験材料協会)の規格に基い
て引張の試験を行ない、上記の試験片を96°C熱水に
連続1500時間浸漬し、引張試験を行なった値との比
率を物性保持率とした。
Here, the physical property retention rate defined as a measure of hydrolytic stability is the ratio (%) of mechanical properties (tensile strength) to the original value when immersed in hot water at 96°C for 1500 hours.
), and as a test method for hydrolytic stability, a tensile test piece (5 x 0.5 x 0.125 inches) was subjected to a tensile test based on the ASTM (American Society for Testing and Materials) standard. The test piece was continuously immersed in 96°C hot water for 1500 hours, and the ratio to the value obtained in a tensile test was taken as the physical property retention rate.

このような特性を有する耐熱性エンジニアリングプラス
チックスとしては、例えば、ポリサルホン、ポリエーテ
ルサルホン、ポリエーテルイミド、ポリアリルサルホン
等を代表的なものとして挙げることができる。
Typical examples of heat-resistant engineering plastics having such characteristics include polysulfone, polyethersulfone, polyetherimide, polyallylsulfone, and the like.

ガラス転移点(Tg)が150°C未満の場合、あるい
は1500時間連続熱水暴露後の物性保持率が80%未
満である加水分解安定性を示すものは、耐熱性がなく、
また繰返し高圧蒸気滅菌に充分耐え得ないものである。
If the glass transition point (Tg) is less than 150°C, or if the property retention rate after 1500 hours of continuous hot water exposure is less than 80%, it is not heat resistant.
Moreover, it cannot sufficiently withstand repeated high-pressure steam sterilization.

因みにポリサルホンの1500時間連続熱水暴露後の物
性保持率を示すと略100%であり、ポリエーテルサル
ホン、ポリエーテルイミドおよびポリアリルサルホンも
夫々90〜100%の物性保持率を示す。一方、ポリカ
ーボネートは50%以下の物性保持率となり、本発明で
は使用し得ない。
Incidentally, the retention of physical properties of polysulfone after continuous exposure to hot water for 1500 hours is approximately 100%, and polyethersulfone, polyetherimide, and polyallylsulfone also exhibit retention of physical properties of 90 to 100%, respectively. On the other hand, polycarbonate has a physical property retention rate of 50% or less and cannot be used in the present invention.

また、上記の耐熱性エンジニアリングプラスチックスは
UL規格に甚く連続使用温度160°Cで、耐スチーム
性が良好であり、又、長期の耐クリープ特性が良く、機
械的・電気的特性が優れているものである。さらに高温
において酸、アルカリに耐えるものである。
In addition, the heat-resistant engineering plastics mentioned above meet the UL standard at a continuous use temperature of 160°C, have good steam resistance, have good long-term creep resistance, and have excellent mechanical and electrical properties. It is something that exists. Furthermore, it can withstand acids and alkalis at high temperatures.

次に、本発明に用いる多孔質中空糸膜としては、溶融賦
形可能な結晶性の熱可塑性ポリマーから成るものが好ま
しく用いられる。すなわち、従来においては、湿式紡糸
法を中心にしたセルロース系樹脂(酢酸セルロース、銅
アンモニアセルロース、アセチルセルロース)、ポリメ
チルメタクリレート、ポリアクリロニトリル、ポリビニ
ルアルコール等の膜が用いられていたが、#熱性の点か
ら滅菌が難しいため医療分野で問題があり、また強度面
や耐薬品性においても問題があるため、化学工業、石油
化学工業、医薬品工業、電子材料工業等の製造工程に使
われる液体の分離、浄化処理等に使用することができな
かった。
Next, as the porous hollow fiber membrane used in the present invention, one made of a crystalline thermoplastic polymer that can be melt-formed is preferably used. In other words, in the past, membranes made of cellulose resins (cellulose acetate, cuprammonium cellulose, acetyl cellulose), polymethyl methacrylate, polyacrylonitrile, polyvinyl alcohol, etc. were mainly used using wet spinning methods, but There are problems in the medical field because sterilization is difficult, and there are also problems in terms of strength and chemical resistance, so separation of liquids used in manufacturing processes in the chemical industry, petrochemical industry, pharmaceutical industry, electronic material industry, etc. , it could not be used for purification treatment, etc.

このような観点から、本発明では溶融賦形可能な結晶性
の熱可塑性ポリマー、特に結晶化度が60%以上の溶融
賦形可能な結晶性熱可塑性ポリマーを乾式溶融紡糸し、
物理的延伸法により多孔質化させた中空糸膜を用いると
、耐熱性、強度および耐薬品性に優れ、前記分野におい
て好適に使用し得ることとなった。
From this point of view, in the present invention, a melt-formable crystalline thermoplastic polymer, particularly a melt-formable crystalline thermoplastic polymer having a degree of crystallinity of 60% or more, is dry melt-spun,
When a hollow fiber membrane made porous by a physical stretching method is used, it has excellent heat resistance, strength, and chemical resistance, and can be suitably used in the above fields.

ここで、溶融賦形可能な結晶性の熱可塑性ポリマーとし
ては、例えばポリプロピレン、ポリ4−メチルペンテン
−1等のオレフィン系樹脂、ポリフッ化ビニリデン、ポ
リ四フッ化エチレン、四フッ化エチレン・コポリマー等
のフッ素樹脂を代表的なものとして挙げることかできる
Examples of crystalline thermoplastic polymers that can be melt-formed include polypropylene, olefin resins such as poly4-methylpentene-1, polyvinylidene fluoride, polytetrafluoroethylene, and tetrafluoroethylene copolymers. A typical example is fluororesin.

これらの熱可塑性ポリマーは、熱可塑性ポリマーの特性
に実質的に悪影響を及ぼさない範囲で他の材料を共重合
あるいは混合することができる。
These thermoplastic polymers can be copolymerized or mixed with other materials to the extent that the properties of the thermoplastic polymer are not substantially adversely affected.

上記多孔質中空糸膜は、従来公知の方法によって製造で
き、例えば、特開昭60−139807号公報、同60
−139808号公報に示されているように、素材に被
溶出物質を混合して成膜した後、膜中から被溶出物質を
溶出させて多孔質膜とする抽出法、又、中空原糸を紡糸
した後、特定温度範囲及び/又は特定媒体中で延伸して
多孔質化する延伸法等によって製造することができる。
The above-mentioned porous hollow fiber membrane can be manufactured by a conventionally known method, for example, JP-A-60-139807, JP-A-60-139807;
As shown in Japanese Patent No. 139808, there is an extraction method in which a material to be eluted is mixed with a material to form a film, and then the substance to be eluted is eluted from the membrane to form a porous membrane. After spinning, it can be produced by a stretching method in which it is stretched in a specific temperature range and/or in a specific medium to make it porous.

次に、上記多孔質中空糸膜をハウジングに装填し、中空
糸膜の両端部をハウジングに流密に固着させるためのボ
ッティング材について説明する。
Next, a description will be given of a botting material for loading the porous hollow fiber membrane into the housing and fluidly fixing both ends of the hollow fiber membrane to the housing.

ボッティング材は、成形の容易さ、シールの良好性から
、従来型としてポリウレタン系樹脂が使用されている。
Polyurethane resin is conventionally used as the botting material due to its ease of molding and good sealing properties.

しかしながら、ポリウレタン系のボッティング材は熱に
弱くて、加水分解し易く、しかも耐薬品性、特に溶剤に
弱い点がしばしば問題となっていた。
However, polyurethane-based botting materials often have problems in that they are sensitive to heat, easily hydrolyzed, and have poor chemical resistance, particularly to solvents.

そこで、本発明においては、耐熱性・耐薬品性に優れ、
機械的物性にも問題が少なく、しかも耐久性の良好なボ
ッチインク材としてエポキシ樹脂を用いたものである。
Therefore, in the present invention, it has excellent heat resistance and chemical resistance,
Epoxy resin is used as the ink material with few problems in mechanical properties and good durability.

また、硬化温度が高く硬化に時間がかかる等を考慮する
と、ポリアミン系硬化剤をエポキシ樹脂に混合してなる
ボッティング材が好ましく使用される。
Furthermore, considering that the curing temperature is high and curing takes time, a botting material prepared by mixing a polyamine curing agent with an epoxy resin is preferably used.

本発明で用いるポリアミン系硬化剤の内、ポリアミド系
硬化剤は次に示す特徴を有することから特に好ましく用
いられる。
Among the polyamine curing agents used in the present invention, polyamide curing agents are particularly preferably used because they have the following characteristics.

ポリアミド系硬化剤は通常、常温で液状であり、熱を加
える必要なくエポキシ樹脂との混合が回部であり、また
少し加温すれば(50〜100℃程度)、混合粘度が極
めて低くなって、多孔質中空糸膜との接着性が良好とな
り端部シール性が優れたものとなる。この場合、ポリア
ミド系硬化剤の粘度が温度75℃で70ボイス以下、好
ましくは50ボイズ以下であるとより効果的である。こ
の粘度かあまり高くなり過ぎるとボッティング時の流動
性が悪くなって、充分ボッティング材が中空糸膜の束中
に侵入できなくなり、また中空糸膜との密着性が不良と
なって、シール不良を発生しやすくなる。
Polyamide hardeners are usually liquid at room temperature, and can be mixed with epoxy resins without the need for heat.Additionally, if slightly heated (approximately 50 to 100 degrees Celsius), the viscosity of the mixture becomes extremely low. , the adhesion with the porous hollow fiber membrane becomes good, and the end sealability becomes excellent. In this case, it is more effective if the viscosity of the polyamide curing agent is 70 voices or less, preferably 50 voices or less at a temperature of 75°C. If this viscosity becomes too high, the fluidity during botting will deteriorate, making it impossible for the botting material to penetrate into the bundle of hollow fiber membranes, and the adhesion with the hollow fiber membranes will be poor, resulting in a seal. Defects are more likely to occur.

ポリアミド系硬化剤は芳香族ポリアミン系、あるいは酸
無水物系の硬化剤に比べて、硬化温度が低く(常温〜1
00°C程度)、シかも硬化時間も短い(20〜80分
程度)。
Polyamide curing agents have a lower curing temperature than aromatic polyamine or acid anhydride curing agents (from room temperature to
00°C), and the curing time is short (about 20 to 80 minutes).

また、ポリアミド系硬化剤はエポキシ樹脂との混合作業
時の毒性や刺激性が極めて少ないだけでなく、エポキシ
樹脂の硬化剤として食品・医薬品関係に使用可能である
ことがアメリカのFDAに3いても認められており、食
品・医薬品関係の他、浄水器関係等極めて広範囲の用途
での使用が可能となる。
In addition, polyamide curing agents not only have extremely low toxicity and irritation when mixed with epoxy resins, but also have been approved by the US FDA as a curing agent for epoxy resins that can be used in food and pharmaceutical applications. It has been approved and can be used in an extremely wide range of applications, including food and pharmaceuticals as well as water purifiers.

更に従来のポリウレタン樹脂ボッティング材に比して、
耐溶剤性、耐薬品性、耐鴨性が極めて改良され、酸・ア
ルカリ溶液、有機溶剤(アルコール、エステル、ケトン
類等)への適用が可能となるとともに、高圧蒸気滅菌処
理を繰返して行なっても充分な耐久性を有している。
Furthermore, compared to conventional polyurethane resin botting materials,
Its solvent resistance, chemical resistance, and duck resistance have been greatly improved, making it possible to be applied to acid/alkaline solutions and organic solvents (alcohols, esters, ketones, etc.), and it can be repeatedly sterilized using high-pressure steam. It also has sufficient durability.

以上で説明したポリアミド系硬化剤の具体例としては、
リノール酸の2量体であるダイマー酸や脂肪酸とポリア
ミンの縮合生成物(商品名:パーサミド(ヘンケル社製
)、ゼナミド(ヘンケル社製))が挙げられる。
Specific examples of the polyamide curing agent explained above include:
Examples include dimer acid, which is a dimer of linoleic acid, and condensation products of fatty acids and polyamines (trade names: Persamide (manufactured by Henkel) and Zenamide (manufactured by Henkel)).

次いで、上記ポリアミド系硬化剤と混合するエポキシ樹
脂としては特にその種類に制限はなく、例えばグリシジ
ルエーテル、グリシジルエステル、グリシジルアミン、
脂肪族エポキサイド、脂垣族エポキサイドタイプ等が使
用される。上記の内、グリシジルタイプのものが一般的
であり、なかでもグリシジルエーテル型やグリシジルエ
ステル型エポキシ樹脂のような、常温で液状タイプのも
のか特に好ましく用いられる。
Next, the type of epoxy resin to be mixed with the polyamide curing agent is not particularly limited, and examples thereof include glycidyl ether, glycidyl ester, glycidyl amine,
Aliphatic epoxide, fatty epoxide type, etc. are used. Among the above, glycidyl type epoxy resins are common, and among them, those that are liquid at room temperature, such as glycidyl ether type and glycidyl ester type epoxy resins, are particularly preferably used.

上記グリシジルエーテル型の例としては、ビスフェノー
ルAジグリシジルエーテル、ビスフェノールFジグリシ
ジルエーテル、ボリブロピレングリコールジグリシジル
エ、−チル等が挙げられ、グリシジルエステル型の例と
しては、フタル酸ジグリシジルエステル、ダイマー酸ジ
グリシジルエステル等が挙げられる。
Examples of the glycidyl ether type include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, polypropylene glycol diglycidyl ether, -thyl, etc., and examples of the glycidyl ester type include phthalic acid diglycidyl ester, Examples include dimer acid diglycidyl ester.

ポリアミド系硬化剤とエポキシ樹脂の混合は、常温また
は必要に応じて50〜100℃に加温して行なう。硬化
温度は常温〜120°C程度の範囲で必要に応じて決定
することができるが、一般的には高温の方か混合時の粘
度が低く、硬化時間も短くなるが、一方、あまり高温過
ぎると可使時間が極めて短くなるため、50〜100℃
程度の範囲で決定するのが好ましい。
The polyamide curing agent and the epoxy resin are mixed at room temperature or, if necessary, heated to 50 to 100°C. The curing temperature can be determined as needed within the range of room temperature to about 120°C, but generally higher temperatures will lower the viscosity during mixing and shorten the curing time, but on the other hand, too high a temperature. 50 to 100℃, as the pot life is extremely short.
It is preferable to decide within a range of degrees.

本発明において、多孔質中空糸膜両端部のハウジングへ
のボッティング方法(固着方法)としては、中空糸束の
長手方向に遠心力をかけながら中空糸束な収納、装填し
たハウジング内に上記ボッティング材を注入することに
より成形する回転遠心成形法でもよく、また中空糸束を
ハウジング内に装填・静置した状態でハウジング内にボ
ッティング材を注入する静置成形法を用いることもでき
る。
In the present invention, the method of botting (fixing) both ends of the porous hollow fiber membrane to the housing is to store the hollow fiber bundle while applying centrifugal force in the longitudinal direction of the hollow fiber bundle, and to place the bottling in the loaded housing. A rotary centrifugal molding method may be used, in which the botting material is injected into the housing, or a static molding method may be used, in which the botting material is injected into the housing while the hollow fiber bundle is loaded and left in the housing.

[実施例] 以下、本発明を実施例に基きざらに詳細に説明するが、
本発明はこれら実施例に限られるものではない。
[Examples] Hereinafter, the present invention will be explained in detail based on Examples, but
The present invention is not limited to these examples.

(実施例) 内径45m■(φ)、外径52+us(φ)、長さ38
0■のポリスルホン製ハウジング内に、内径32071
m  (φ)、膜厚55pm、長さ300mmのポリプ
ロピレン多孔質中空糸膜(商品名二しクタン、宇部興産
■製)2400本を集束して装填し、両端部をボッティ
ング材により固定した。ボッティング材としては、グリ
シジルエーテル型常温液状タイプエポキシ樹脂(商品名
:エビコート828、油化シェルエポキシ■製)とポリ
アミド樹脂硬化剤(商品名:パーサミド125、ヘンケ
ル白水■製)を重量比65 : 35、温度75°Cに
て混合したものを用い、ボッティング材注入後約1時間
硬化させた。次いで中空糸膜束端部のボッティング材で
密着固定された部分の中央部を糸末長さ方向に直角に切
断し、開口した。
(Example) Inner diameter 45m (φ), outer diameter 52+us (φ), length 38
Inside the polysulfone housing with an inner diameter of 32071 mm
2400 polypropylene porous hollow fiber membranes (trade name: Nishikutan, manufactured by Ube Industries, Ltd.) having a thickness of 55 pm and a length of 300 mm were bundled and loaded, and both ends were fixed with a botting material. As the botting material, a glycidyl ether type epoxy resin (product name: Ebicoat 828, manufactured by Yuka Shell Epoxy ■) and a polyamide resin curing agent (product name: Persamide 125, manufactured by Henkel Hakusui ■) were used in a weight ratio of 65: 35. The mixture was mixed at a temperature of 75° C. and cured for about 1 hour after injection of the botting material. Next, the central part of the end of the hollow fiber membrane bundle tightly fixed with the botting material was cut at right angles to the length direction of the fiber ends to form an opening.

上記のようにして製造した、ポリスルホン製ハウジング
に装填したポリプロピレン多孔質中空糸膜とエポキシ樹
脂硬化物からなる中空糸型モジュール構造体の耐薬品性
、耐熱性および高圧蒸気滅菌テストを行なった。そのテ
スト条件および結果を表−1に示す。
Chemical resistance, heat resistance, and high pressure steam sterilization tests were conducted on the hollow fiber type module structure manufactured as described above, consisting of a polypropylene porous hollow fiber membrane loaded in a polysulfone housing and a cured epoxy resin. The test conditions and results are shown in Table 1.

(比較例) ハウジングとしてポリカーボネート製を用い、ポツティ
ング材としてポリウレタン樹脂を使用した以外は実施例
と同一の条件にて中空糸型モジュール構造体を作製し、
この中空糸型モジュール構造体の耐薬品性、耐熱性およ
び高圧蒸気滅菌テストを行なった。その結果を表−1に
示す。
(Comparative example) A hollow fiber module structure was produced under the same conditions as in the example except that polycarbonate was used as the housing and polyurethane resin was used as the potting material.
This hollow fiber module structure was tested for chemical resistance, heat resistance, and high pressure steam sterilization. The results are shown in Table-1.

(以下、余白) [発明の効果] 以上説明したように、本発明の中空糸型モジュール構造
体は、ハウジングをガラス転移温度が150℃以上、且
つ1500時間連続熱水暴露後の物性保持率が80%以
上である加水分解安定性を有する耐熱性エンジニアリン
グプラスチックスから形成し、多孔質中空糸膜両端部を
エポキシ樹脂に、て固着しているので、耐熱性、耐薬品
性に優れ、且つ高強度で工業分野の他、医学分野、食品
分野等のあらゆる分野に使用できるものである。
(Hereinafter, blank space) [Effects of the Invention] As explained above, the hollow fiber type module structure of the present invention has a housing with a glass transition temperature of 150°C or higher and a property retention rate after continuous exposure to hot water for 1500 hours. It is made of heat-resistant engineering plastics with a hydrolytic stability of 80% or more, and both ends of the porous hollow fiber membrane are fixed with epoxy resin, so it has excellent heat resistance and chemical resistance. Due to its strength, it can be used in all fields such as industrial, medical, and food fields.

Claims (1)

【特許請求の範囲】[Claims] (1)複数の多孔質中空糸膜を、ガラス転移温度が15
0℃以上、且つ1500時間連続熱水暴露後の物性保持
率が80%以上である加水分解安定性を有する耐熱性エ
ンジニアリングプラスチックスから形成されるハウジン
グ内に装填し、前記複数の多孔質中空糸膜の両端部をエ
ポキシ樹脂により該ハウジングに流密に固着してなるこ
とを特徴とする中空糸型モジュール構造体。
(1) Multiple porous hollow fiber membranes with a glass transition temperature of 15
The plurality of porous hollow fibers are loaded into a housing made of heat-resistant engineering plastics having hydrolytic stability with a physical property retention rate of 80% or more after continuous exposure to hot water at 0° C. or higher for 1500 hours. A hollow fiber type module structure characterized in that both ends of a membrane are fluid-tightly fixed to the housing with an epoxy resin.
JP63082062A 1988-04-02 1988-04-02 Hollow fiber type module structure Expired - Lifetime JPH0753227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63082062A JPH0753227B2 (en) 1988-04-02 1988-04-02 Hollow fiber type module structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63082062A JPH0753227B2 (en) 1988-04-02 1988-04-02 Hollow fiber type module structure

Publications (2)

Publication Number Publication Date
JPH01254209A true JPH01254209A (en) 1989-10-11
JPH0753227B2 JPH0753227B2 (en) 1995-06-07

Family

ID=13764020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63082062A Expired - Lifetime JPH0753227B2 (en) 1988-04-02 1988-04-02 Hollow fiber type module structure

Country Status (1)

Country Link
JP (1) JPH0753227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125562A (en) * 1990-09-03 1992-04-27 Ind Technol Res Inst Method of forming etching resistance pattern
JP2014000544A (en) * 2012-06-20 2014-01-09 Nok Corp Bundle attachment tube for hollow thread membrane module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611365A (en) * 1984-05-21 1986-01-07 Yamamasa:Kk Fish meat food of delicate flavor and production thereof
JPS6113965A (en) * 1984-06-29 1986-01-22 大日本インキ化学工業株式会社 Hollow yarn type dialyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611365A (en) * 1984-05-21 1986-01-07 Yamamasa:Kk Fish meat food of delicate flavor and production thereof
JPS6113965A (en) * 1984-06-29 1986-01-22 大日本インキ化学工業株式会社 Hollow yarn type dialyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125562A (en) * 1990-09-03 1992-04-27 Ind Technol Res Inst Method of forming etching resistance pattern
JP2014000544A (en) * 2012-06-20 2014-01-09 Nok Corp Bundle attachment tube for hollow thread membrane module

Also Published As

Publication number Publication date
JPH0753227B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
JP6467920B2 (en) Manufacturing method of cartridge type hollow fiber membrane module
JPH06296834A (en) Hollow yarn type filter
US4616052A (en) High temperature creep resistant thermoplastic elastomer compositions
WO1989000879A1 (en) Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
US20020056675A1 (en) Gas vent filter construction incorporating a hollow fiber membrane assembly
US6224765B1 (en) Filter element
WO2010114010A1 (en) Hollow-fiber element for organic-vapor separation
WO2013146080A1 (en) Hollow fiber membrane module and production method therefor
JPH01254209A (en) Hollow yarn type module structural body
JP3250655B2 (en) Potting agent for hollow fiber membrane module, hollow fiber membrane module, and method for producing the same
JP3591670B2 (en) Potting material and hollow fiber membrane module
JPH04135630A (en) Hollow yarn membrane filteration module
JPH0661431B2 (en) Hollow fiber bundle assembly
JPH01266166A (en) Synthetic resin composition
JPH0368428A (en) Fluid separating module and production thereof
JPS63134005A (en) Pressure withstanding microporous hollow yarn filter membrane
US20220355252A1 (en) Hollow fiber membrane module and manufacturing method therefor
JPH03106422A (en) Fluid separation module and its manufacture
JP3497593B2 (en) Hollow fiber membrane module
JPH03106421A (en) Fluid separation module and its manufacture
JPH09276667A (en) Solvent-resistant hollow yarn semipermeable membrane type cartridge and semipermeable membrane type module therefor
JPH06319960A (en) Hollow fiber membrane module
JPH0368427A (en) Fluid separating module and production thereof
JPH0347887B2 (en)
JPH08323157A (en) Production of hollow fiber membrane module and its module