JPH0368428A - Fluid separating module and production thereof - Google Patents

Fluid separating module and production thereof

Info

Publication number
JPH0368428A
JPH0368428A JP20552689A JP20552689A JPH0368428A JP H0368428 A JPH0368428 A JP H0368428A JP 20552689 A JP20552689 A JP 20552689A JP 20552689 A JP20552689 A JP 20552689A JP H0368428 A JPH0368428 A JP H0368428A
Authority
JP
Japan
Prior art keywords
membrane
adhesive
fluorine
separation membrane
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20552689A
Other languages
Japanese (ja)
Inventor
Tetsuo Nishimura
哲夫 西村
Hiroyuki Yamamura
山村 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP20552689A priority Critical patent/JPH0368428A/en
Publication of JPH0368428A publication Critical patent/JPH0368428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a fluid separating module with tightly fixed separating membranes by sealing the micropores in flat fluorine-contg. porous separating membranes with an adhesive. CONSTITUTION:The surfaces of flat fluorine-contg. porous separating membranes are treated with an org. solvent having <=30dyn/cm surface tension and >=30% of the micropores in the membranes are filled with an adhesive or >=70% of the micropores in the membranes are filled with the adhesive. By this method, a fluid separating module with the separating membranes tightly fixed with the adhesive is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ふっ素系多孔質分離膜の接着方法、特に、ふ
っ素系多孔質分離膜を用いて、液体および気体分離膜モ
ジュールを製作する際の、ふっ素系多孔質分離膜の接着
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for adhering a fluorine-based porous separation membrane, and particularly to a method for manufacturing a liquid and gas separation membrane module using a fluorine-based porous separation membrane. The present invention relates to a method for adhering a fluorine-based porous separation membrane.

[従来の技術] ふっ素系多孔質分離膜は、優れた耐熱性、耐薬品性を有
しているのみならず、耐汚れ性、溶出性、酸素透過性な
どにも優れているため、素材の特性を生かし、水処理、
ガス分離、薬品濾過、バイオ産業での菌体分離などで、
実用化が試みられている。ふっ素系多孔質分離膜は、一
般に平膜形状のものと中空糸膜またはチューブ膜形状の
ものがあるが、膜そのものの状態では実用化が難しく、
膜を適当な形状に加工、シールした膜分離モジュールの
形状で実用化することが必要である。しかしながら、一
般にふっ素系多孔質分離膜は、極めて接着性が悪く、通
常の接着剤を用いた接着手法では、膜をうまく接着シー
ルすることができないため、これらのふっ素系多孔質分
離膜をシールする方法について、種々の検討が行われて
きた。
[Conventional technology] Fluorine-based porous separation membranes not only have excellent heat resistance and chemical resistance, but also have excellent stain resistance, elution properties, and oxygen permeability. Taking advantage of its characteristics, water treatment,
For gas separation, chemical filtration, bacterial cell isolation in the bio industry, etc.
Attempts are being made to put it into practical use. Fluorine-based porous separation membranes generally come in the form of flat membranes, hollow fiber membranes, or tube membranes, but it is difficult to put them into practical use as membranes themselves.
It is necessary to put the membrane into practical use in the form of a membrane separation module in which the membrane is processed and sealed into an appropriate shape. However, in general, fluorine-based porous separation membranes have extremely poor adhesion, and it is not possible to successfully adhere and seal the membrane using ordinary adhesive bonding methods. Various studies have been conducted regarding the method.

現在、よく用いられている方法としては、ふっ素系多孔
質分離膜を同系統のふっ素糸樹脂を介して熱融着により
接着する熱融着法、ふっ素系多孔質分離膜の接着予定部
にケミカルエツチング処理を施すことにより膜表面のふ
つそ原子を引き抜き、接着性を向上させるケミカルエツ
チング法、接着に先立ちふっ素系多孔質分離膜の接着予
定部にコロナ放電やプラズマ処理を施して接着性を高め
る方法などがある。
At present, methods commonly used include thermal fusion, in which a fluorine-based porous separation membrane is bonded through fluorine thread resin of the same type, and a chemical bonding method in which a fluorine-based porous separation membrane is bonded to the area to be bonded. A chemical etching method that uses etching to pull out the atoms on the membrane surface to improve adhesion, and prior to adhesion, corona discharge or plasma treatment is applied to the part of the fluorine-based porous separation membrane to be bonded to improve adhesion. There are methods.

[発明が解決しようとする課題] しかしながら、生産を前提とした、ふっ素系多孔質分離
膜のモジュール化を考慮すると、従来の技術では下記の
ような種々の問題があり、実用性に欠けるところが多か
った。
[Problems to be Solved by the Invention] However, when considering the modularization of fluorine-based porous separation membranes for production, the conventional techniques have various problems as described below and are often impractical. Ta.

例えば、熱融着による接着手法では、平膜のプレートア
ンドフレーム型モジュールや、プリーツ型のモジュール
では、場合に応じて適用が可能であるものの作業性が悪
く、一般に取扱いの制約によりモジュールの形状が制限
されたり、微細部分の接着性が必ずしも良くないことな
どの問題点がある。また、平膜の分離膜モジュールとし
て最も一般的な形状であるスパイラル型モジュールの製
作の場合は、熱融着法による接着は極めて困難であるな
どの理由のため、大量生産を前提にした実用化を行なう
までには至っていない。
For example, bonding methods using heat fusion can be applied to flat membrane plate-and-frame modules and pleated modules depending on the case, but workability is poor, and the shape of the module is generally limited due to handling constraints. There are problems such as limitations and adhesion of fine parts is not necessarily good. In addition, in the case of manufacturing spiral-type modules, which are the most common shape for flat membrane separation membrane modules, it is extremely difficult to adhere them using heat fusion methods, so practical implementation is based on mass production. We have not yet reached the point of doing so.

その他、ケミカルエツチング処理法では、膜面の変色や
取扱いにくさなどの問題があり、コロナ放電やプラズマ
処理法では、装置面を含めた取扱いにくさの問題を容易
に解決することが難しく、最善の策とはいい難かった。
In addition, chemical etching treatment methods have problems such as discoloration of the film surface and difficulty in handling, while corona discharge and plasma treatment methods have difficulty in easily solving the problem of difficulty in handling, including the equipment surface. It was difficult to say what the plan was.

本発明の目的は、上記従来技術の欠点を解消し。The object of the present invention is to overcome the drawbacks of the prior art described above.

安全かつ作業性に優れた、平膜状ふっ素系多孔質分離膜
の接着方法を提供することにある。
An object of the present invention is to provide a method for bonding flat fluorine-based porous separation membranes that is safe and has excellent workability.

[課題を解決するための手段] 本発明は、平膜形状のふっ素系多孔質分離膜を接着剤で
シールしてなる流体分離膜モジュールであって、該モジ
ュールの接着部分における該平膜状ふっ素系多孔質分離
膜の膜内微細孔の30%以上が接着剤によって埋められ
ていることを特徴とする流体分離モジュールおよびその
製法に関する。
[Means for Solving the Problems] The present invention provides a fluid separation membrane module formed by sealing a flat fluorine-based porous separation membrane with an adhesive, and wherein the flat fluorine-based porous separation membrane is sealed in the adhesive portion of the module. The present invention relates to a fluid separation module in which 30% or more of the micropores in a porous separation membrane are filled with an adhesive, and a method for producing the same.

また、本発明の流体分離膜モジュールは、ふっ素系多孔
質分離膜を接着し、流体分離モジュールを製作するに際
して、該ふっ素系多孔質分離膜の膜表面を有機溶剤で処
理した後で、接着剤による接着操作を行うことにより、
基本的に達成される。
In addition, in the fluid separation membrane module of the present invention, when manufacturing a fluid separation module by bonding a fluorine-based porous separation membrane, the membrane surface of the fluorine-based porous separation membrane is treated with an organic solvent, and then the adhesive is used. By performing the gluing operation by
basically achieved.

すなわち、ぶつ素系多孔質分離膜は、膜素材そのものは
、接着性に劣るふっそ樹脂であるので、有機溶剤で処理
したとしても、エポキシ接着剤等の一般の接着剤で接着
することは難しい。しかし、平膜状ふっそ系多孔質分離
膜の膜表面には、長さ0.01〜1ミクロンと推定され
る微細孔が無数にあり、適当な表面張力を有する有機溶
剤で膜表面を処理することにより、微細孔内に該有機溶
剤が一時的に保持される。この状態で、例えばエポキシ
接着剤を膜表面に塗布することにより、該有機溶剤と該
接着剤が混じり合い、該接着剤が該微細孔内部に浸透し
、膜内部に根をはった状態(アンカー効果)で硬化する
結果、該平膜状ふっ素系多孔質分離膜は、しっかりとエ
ポキシ接着剤で固定(接着)される。この時、該微細孔
内に有機溶剤を充填させる操作を行なわないで接着剤を
膜面に塗布しても、ふっそ樹脂自体が疎水性であるため
に接着剤は該微細孔内には浸透せず、このため、該平膜
状ふっそ系多孔質分離膜は接着剤でしっかりと接着され
ることは無い。
In other words, the membrane material of a fluorine-based porous separation membrane is fluorine resin, which has poor adhesive properties, so even if it is treated with an organic solvent, it is difficult to adhere with a general adhesive such as an epoxy adhesive. . However, the membrane surface of a flat fluorine-based porous separation membrane has countless micropores estimated to be 0.01 to 1 micron in length, and the membrane surface must be treated with an organic solvent with an appropriate surface tension. By doing so, the organic solvent is temporarily retained within the micropores. In this state, for example, by applying an epoxy adhesive to the membrane surface, the organic solvent and the adhesive mix, and the adhesive penetrates into the micropores and takes root inside the membrane ( As a result of curing due to the anchoring effect, the flat fluorine-based porous separation membrane is firmly fixed (adhered) with the epoxy adhesive. At this time, even if the adhesive is applied to the membrane surface without filling the organic solvent into the micropores, the adhesive will penetrate into the micropores because the fluorine resin itself is hydrophobic. Therefore, the flat fluorine-based porous separation membrane is not firmly bonded with an adhesive.

本発明におけるふっ素系多孔質膜の膜材質としては、ポ
リテトラフルオロエチレン、ポリビニリデンフルオライ
ド、テトラフルオロエチレン−エチレン共重合体、テト
ラフルオロエチレン−パーフルオロアルキルビニルエー
テル共重合体、ポリクロロトリフルオロエチレン等、ふ
っ素系多孔質膜を形成しうるものであれば特に種類は問
わないが、好ましくは、特に通常の方法では接着が困難
なポリテトラフルオロエチレン(PTFE)、テトラフ
ルオロエチレン−パーフルオロアルキルビニルエーテル
共重合体(PFA)、テトラフルオロエチレン−ヘキサ
フルオロプロピレン共重合体(F E P)が適当であ
る また、平膜状ふっ素系多孔質分離膜の構造としては、精
密濾過膜、限外濾過膜にみられるような膜表面に通ずる
微細孔が無数にあるスポンジ構造の膜が接着剤の浸透に
適しており、微細孔の分布が均一でも、微細孔の孔径が
異なり分布が非対称な膜でも良い。また、微細孔の形状
も、円形に近いものでもよく、スリット状のものでも良
い。すなわち、平膜状ふっ素系多孔質分離膜を本発明の
方法により処理することで接着剤が膜の微細孔に浸透し
、前述のいわゆるアンカー効果により強固に接着される
Membrane materials for the fluorine-based porous membrane in the present invention include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and polychlorotrifluoroethylene. The type is not particularly limited as long as it can form a fluorine-based porous membrane, such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene-perfluoroalkyl vinyl ether, which are particularly difficult to bond by normal methods. Copolymer (PFA) and tetrafluoroethylene-hexafluoropropylene copolymer (FEP) are suitable.Furthermore, the structure of the flat fluorine-based porous separation membrane includes precision filtration membranes and ultrafiltration membranes. Sponge-structured membranes with countless micropores that communicate with the membrane surface are suitable for adhesive penetration, and membranes with uniform distribution of micropores or asymmetrical distribution of micropores with different pore sizes are acceptable. . Further, the shape of the micropores may be close to circular or may be slit-like. That is, by treating a flat fluorine-based porous separation membrane by the method of the present invention, the adhesive penetrates into the fine pores of the membrane and is firmly bonded due to the above-mentioned so-called anchor effect.

本発明の流体分離膜モジュールの形状としては、平膜状
のふっ素系多孔質分離膜を用いたモジュールであれば、
特に形状は問わないが、好ましくは、スパイラル型モジ
ュール、プレートアンドフレーム型モジュール、プリー
ツ型モジュール等が好ましい。スパイラル型モジュール
は、両側を接着剤で封筒状にシールした平膜状ふっ素系
多孔質分離膜を、多孔質の中心パイプの回りにスペーサ
ーと共に巻き付けた構造をしており、−船釣に耐圧性に
優れていることが特徴である。プレートアンドフレーム
型モジュールは、該平膜状ふっ素系多孔質分離膜を平板
状のフレームの片面または両面に積層した構造をしてお
り、周囲付近を接着剤でシールして機密性を保っている
。プリーツ型モジュールは、該平膜状分離膜をひだ状に
折り畳み、膜の幅方向両端を接着剤でシールしてなる構
造である。
As for the shape of the fluid separation membrane module of the present invention, if it is a module using a flat fluorine-based porous separation membrane,
Although the shape is not particularly limited, spiral-type modules, plate-and-frame-type modules, pleated-type modules, etc. are preferable. The spiral module has a structure in which a flat fluorine-based porous separation membrane is sealed with adhesive on both sides in an envelope shape and is wrapped around a porous central pipe along with a spacer, making it pressure resistant for boat fishing. It is characterized by being excellent in. Plate-and-frame type modules have a structure in which the flat fluorine-based porous separation membrane is laminated on one or both sides of a flat frame, and the surrounding area is sealed with adhesive to maintain airtightness. . A pleated module has a structure in which the flat separation membrane is folded into pleats and both ends in the width direction of the membrane are sealed with an adhesive.

本発明に用いる有機溶剤としては表面張力が30 d 
y n / c m程度以下が好ましく、特にフレオン
類、アルコール類、エーテル類、ケトン類、炭化水素類
、から選ばれる1種以上の溶剤が適している。さらに好
ましくは、フレオン類、アルコール類が望ましい。表面
張力が30 d y n / c m以上であれば、微
細孔のサイズにもよるが、平膜状ふっ素糸分離膜との濡
れ性が悪く接着剤がうまく微細孔に浸透しなくなる場合
がある。処理方法としては、該ふっ素系多孔質分離膜の
全体もしくは接着予定部を、有機溶剤に浸漬する方法で
よく、バッチ式でも製膜時の連続式でも良い。浸漬時間
としては、膜内に有機溶剤が浸透する時間であればよく
好ましくは1分以上〜30分以内である。
The organic solvent used in the present invention has a surface tension of 30 d.
It is preferably about yn/cm or less, and one or more solvents selected from freons, alcohols, ethers, ketones, and hydrocarbons are particularly suitable. More preferred are freons and alcohols. If the surface tension is 30 dyn/cm or more, depending on the size of the micropores, the wettability with the flat membrane-like fluorine thread separation membrane may be poor and the adhesive may not be able to penetrate the micropores properly. . The treatment method may be a method of immersing the entire fluorine-based porous separation membrane or a portion to be bonded in an organic solvent, and may be a batch method or a continuous method during film formation. The immersion time may be any time required for the organic solvent to permeate into the membrane, and is preferably from 1 minute to 30 minutes.

又浸漬温度は、0〜30℃が好ましい。Moreover, the immersion temperature is preferably 0 to 30°C.

使用する接着剤としては、エポキシ系、ウレタン系が好
ましく用いられるが、さらに好ましくは、比較的、強度
、耐熱性等に優れたエポキシ接着剤が望ましい。エポキ
シ系接着剤の種類としては、エビ・ビス型、脂環型、長
鎖脂肪族型、ノボラ・ソク型、臭素化エポキシ樹脂、ヘ
テロサイクリ・ソク系等が好ましい。硬化剤としては酸
無水物系、芳香族アミン系、脂肪族アミン系等が用いら
れる。
The adhesive used is preferably an epoxy adhesive or a urethane adhesive, and more preferably an epoxy adhesive having relatively excellent strength, heat resistance, etc. Preferred types of epoxy adhesives include shrimp/bis type, alicyclic type, long chain aliphatic type, novola type, brominated epoxy resin, and heterocyclic type. As the curing agent, acid anhydride type, aromatic amine type, aliphatic amine type, etc. are used.

接着剤の初期粘度としては、膜の微細孔に接着剤が浸透
できる粘度であればよく、200〜5000cpの範囲
にあるのが好ましい。また硬化時間があまり長くなると
、膜外面の微細孔から浸透した接着剤が、該ふっ素系多
孔質分離膜の反対面側にまで達し、接着剤の流出を生じ
る懸念があるため、接着剤の硬化時間は、接着する中空
糸膜の細孔サイズ、分布などにより異なるが、1〜5時
間が好ましい。
The initial viscosity of the adhesive may be any viscosity that allows the adhesive to penetrate into the fine pores of the membrane, and is preferably in the range of 200 to 5000 cp. Furthermore, if the curing time is too long, there is a risk that the adhesive that has permeated through the micropores on the outer surface of the membrane will reach the opposite side of the fluorine-based porous separation membrane, causing adhesive to flow out. Although the time varies depending on the pore size and distribution of the hollow fiber membrane to be adhered, it is preferably 1 to 5 hours.

本発明における流体分離モジュールにおいては、接着部
分における該ふっ素系多孔質分離膜の膜内微細孔の30
%以上が接着剤によって埋められていることが必要であ
るが、好ましくは、該ふっ素系多孔質分離膜の膜内微細
孔の70%以上が該接着剤により埋められていることが
良い。
In the fluid separation module of the present invention, 30% of the micropores in the membrane of the fluorine-based porous separation membrane in the adhesive part
It is necessary that 70% or more of the fine pores in the fluorine-based porous separation membrane be filled with the adhesive.

ここで30%以上が接着剤によって埋められているとは
、接着部分における全微細孔の体積の30%以上が接着
剤によって埋められていることを意味する。
Here, 30% or more of the pores are filled with the adhesive means that 30% or more of the volume of all the micropores in the bonded portion are filled with the adhesive.

[実施例] 実施例1 延伸法により無数のスリット状の微細孔を膜表面に有し
た平膜形態のポリテトラフルオロエチレンの多孔質分離
膜を、連続デイツプ方式によりテトラクロロ−ジフルオ
ロエタン液中に20秒間浸漬した後、膜面を外側にして
封筒状に折り畳み、膜封筒部分の両サイドをエポキシ接
着剤でシールし、ポリエチレン製ネットスペーサーと共
に、多孔性中心パイプの回りに巻回して図1に示すスパ
イラル型モジュールを製作した。次に、製作したスパイ
ラル型モジュールの外周部全面をテープぼりにより締め
付けた後、中心パイプの片端を盲にし、他端よりゲージ
圧力1.0kg/cm2の空気圧を付与したが、2時間
経過後も流量の増加は無く、接着剤と該ポリテトラフル
オロエチレン多孔質膜はしっかりと接着されていること
が確認された。
[Example] Example 1 A porous separation membrane of polytetrafluoroethylene in the form of a flat film having countless slit-like micropores on the membrane surface by a stretching method was soaked in a tetrachloro-difluoroethane solution for 20 minutes by a continuous dip method. After soaking for seconds, fold it into an envelope shape with the membrane side facing outward, seal both sides of the membrane envelope part with epoxy adhesive, and wrap it around the porous central pipe with a polyethylene net spacer as shown in Figure 1. I made a spiral type module. Next, after tightening the entire outer periphery of the manufactured spiral module with tape, one end of the center pipe was made blind, and air pressure of 1.0 kg/cm2 was applied from the other end, but even after 2 hours, There was no increase in flow rate, and it was confirmed that the adhesive and the polytetrafluoroethylene porous membrane were firmly adhered.

次に、本スパイラル型モジュールを解体し、膜封筒の接
着部分のサンプルをとりだし、凍結乾燥後、刃物で切断
し膜接着部分の断面を出し、本断面を5000倍の倍率
で走査型電子顕微鏡で観察したところ、膜内部の微細孔
の75%が、該エポキシ接着剤で埋められていることが
確認された。
Next, this spiral-shaped module was disassembled, a sample of the adhesive part of the membrane envelope was taken out, and after freeze-drying, it was cut with a knife to obtain a cross section of the membrane adhesive part, and this cross section was examined with a scanning electron microscope at a magnification of 5000x. Upon observation, it was confirmed that 75% of the micropores inside the membrane were filled with the epoxy adhesive.

実施例2゜ 延伸法により無数のスリット状の微細孔を膜表面に有し
た平膜形態のポリテトラフルオロエチレンの多孔質分離
膜を、30cmX30cmの大きさに切断し、テトラク
iロージフルオロエタン液中に30秒間浸漬した。その
後、切断膜と同寸法のアルミ板上に、該浸漬膜をポリエ
チレン製ネットスペーサーおよびノズルと共にはりっけ
、エポキシ接着剤で周囲を接着し、図2にしめずプレー
トアンドフレーム型の流体分離モジュールを製作した。
Example 2 A porous separation membrane of polytetrafluoroethylene in the form of a flat membrane having numerous slit-like micropores on the membrane surface by a stretching method was cut into a size of 30 cm x 30 cm and placed in a tetrachloride fluoroethane solution. It was immersed for 30 seconds. After that, the immersed membrane was mounted on an aluminum plate with the same dimensions as the cut membrane, together with a polyethylene net spacer and a nozzle, and the surrounding area was adhered with epoxy adhesive. was produced.

製作後、ノズル部分よりゲージ圧力0. 5kg/cm
2の空気を供給したが、流量の増加は見られず、接着剤
と該ポリテトラフルオロエチレン多孔質膜はしっかりと
接着されていることが確認された。次に、本プレートア
ンドフレーム型モジュールを解体し、膜の接着部分のサ
ンプルを取りだし、凍結乾燥の後、刃物で切断し、膜接
着部分の断面を出し、本断面を5000倍の倍率の走査
型電子顕微鏡で観察したところ、膜内部の微細孔の約3
5%が該エポキシ接着剤で埋められていることが確認さ
れた。
After manufacturing, the gauge pressure is 0.0 from the nozzle part. 5kg/cm
2 was supplied, but no increase in the flow rate was observed, and it was confirmed that the adhesive and the polytetrafluoroethylene porous membrane were firmly adhered. Next, this plate-and-frame type module was disassembled, a sample of the adhesive part of the membrane was taken out, and after freeze-drying, it was cut with a knife to obtain a cross section of the membrane adhesive part, and this cross section was scanned at 5000x magnification. When observed with an electron microscope, approximately 3 of the micropores inside the membrane
It was confirmed that 5% was filled with the epoxy adhesive.

比較例1゜ 膜をトリクロロ−トリフルオロエタン液と全く接触させ
ていないことを除けば、実施例1と全く同一の平膜形態
のポリテトラフルオロエチレンの多孔質分離膜を用いて
、同一方法でスパイラル型モジュールを製作した。その
後同様の方法で、中心パイプの片端よりゲージ圧力1.
Okg/cm2の1気圧を付与したが、すぐに流量が増
加し、接着剤と該ポリテトラフルオロエチレン多孔質膜
はしっかりと接着されていないことが確認された。
Comparative Example 1 A polytetrafluoroethylene porous separation membrane in the same flat membrane form as in Example 1 was used in the same manner as in Example 1, except that the membrane was not brought into contact with the trichloro-trifluoroethane liquid at all. I made a spiral type module. After that, in the same way, from one end of the center pipe, the gauge pressure is 1.
Although 1 atm of Okg/cm2 was applied, the flow rate increased immediately, and it was confirmed that the adhesive and the polytetrafluoroethylene porous membrane were not firmly bonded.

次に、本スパイラル型モジュールを解体し、シール剥が
れの無い部分の膜の接着部のサンプルを取りだし、凍結
乾燥の後、刃物で切断し、膜接着部分の断面を出し、本
断面を5000倍の倍率の走査型電子顕微鏡で観察した
ところ、膜内部の微細孔の約25%が該エポキシ接着剤
で埋められていることが確認された。
Next, this spiral-shaped module was disassembled, a sample of the adhesive part of the membrane was taken from the part where the seal did not peel off, and after freeze-drying, it was cut with a knife to obtain a cross section of the membrane adhesive part. Observation with a high-magnification scanning electron microscope confirmed that about 25% of the micropores inside the membrane were filled with the epoxy adhesive.

[発明の効果] 本発明により、平膜状ふっ素糸多孔質中空糸分離膜が、
接着剤でしっかりと固定された流体分離モジュールを、
簡便かつ安全な方法で製作することが可能となる。
[Effect of the invention] According to the present invention, a flat membrane-like fluorine fiber porous hollow fiber separation membrane has
The fluid separation module is firmly fixed with adhesive.
It becomes possible to manufacture it by a simple and safe method.

Claims (4)

【特許請求の範囲】[Claims] (1)平膜形状のふっ素系多孔質分離膜を接着剤でシー
ルしてなる流体分離膜モジュールであって、該モジュー
ルの接着部分における該平膜状ふっ素系多孔質分離膜の
膜内微細孔の30%以上が接着剤によって埋められてい
ることを特徴とする流体分離モジュール。
(1) A fluid separation membrane module formed by sealing a flat membrane-shaped fluorine-based porous separation membrane with an adhesive, in which fine pores in the flat membrane-shaped fluorine-containing porous separation membrane in the adhesive part of the module are provided. A fluid separation module characterized in that 30% or more of the area is filled with an adhesive.
(2)平膜状ふっ素系多孔質分離膜の膜内微細孔の70
%以上が接着剤によって埋められていることを特徴とす
る請求項1記載の流体分離モジュール。
(2) 70 micropores in the flat fluorine-based porous separation membrane
The fluid separation module according to claim 1, characterized in that more than % of the fluid separation module is filled with adhesive.
(3)平膜状ふっ素系多孔質分離膜の表面を有機溶剤で
処理した後、該ふっ素系多孔質分離膜を接着剤によりシ
ールすることを特徴とする流体分離膜モジュールの製造
方法。
(3) A method for producing a fluid separation membrane module, which comprises treating the surface of a flat fluorine-based porous separation membrane with an organic solvent and then sealing the fluorine-based porous separation membrane with an adhesive.
(4)有機溶剤の表面張力が30dyn/cm以下であ
ることを特徴とする請求項3記載の流体分離モジュール
の製造方法。
(4) The method for manufacturing a fluid separation module according to claim 3, wherein the organic solvent has a surface tension of 30 dyn/cm or less.
JP20552689A 1989-08-07 1989-08-07 Fluid separating module and production thereof Pending JPH0368428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20552689A JPH0368428A (en) 1989-08-07 1989-08-07 Fluid separating module and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20552689A JPH0368428A (en) 1989-08-07 1989-08-07 Fluid separating module and production thereof

Publications (1)

Publication Number Publication Date
JPH0368428A true JPH0368428A (en) 1991-03-25

Family

ID=16508346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20552689A Pending JPH0368428A (en) 1989-08-07 1989-08-07 Fluid separating module and production thereof

Country Status (1)

Country Link
JP (1) JPH0368428A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191147A1 (en) 2012-06-20 2013-12-27 富士フイルム株式会社 Acidic gas separation module and production method therefor, acidic gas separation layer, production method and facilitated transport membrane therefor, and acidic gas separation system
WO2014050460A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Acidic gas separation module, acidic gas separation device, and telescope prevention plate
JP2014161746A (en) * 2013-02-21 2014-09-08 Fujifilm Corp Acid gas separation module
US9452384B2 (en) 2013-07-30 2016-09-27 Fujifilm Corporation Acidic gas separation laminate and acidic gas separation module provided with laminate
US9457319B2 (en) 2013-07-30 2016-10-04 Fujifilm Corporation Acidic gas separation laminate and acidic gas separation module provided with laminate
US10092880B2 (en) 2015-05-29 2018-10-09 Sumitomo Chemical Company, Limited Spiral-wound acid gas separation membrane element, acid gas separation membrane module, and acid gas separation apparatus
JP2022536922A (en) * 2019-06-13 2022-08-22 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Highly Oriented Expanded Polytetrafluoroethylene with Excellent Rigidity

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191147A1 (en) 2012-06-20 2013-12-27 富士フイルム株式会社 Acidic gas separation module and production method therefor, acidic gas separation layer, production method and facilitated transport membrane therefor, and acidic gas separation system
EP2865438A4 (en) * 2012-06-20 2016-03-23 Fujifilm Corp Acidic gas separation module and production method therefor, acidic gas separation layer, production method and facilitated transport membrane therefor, and acidic gas separation system
WO2014050460A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Acidic gas separation module, acidic gas separation device, and telescope prevention plate
JP2014161746A (en) * 2013-02-21 2014-09-08 Fujifilm Corp Acid gas separation module
US9452384B2 (en) 2013-07-30 2016-09-27 Fujifilm Corporation Acidic gas separation laminate and acidic gas separation module provided with laminate
US9457319B2 (en) 2013-07-30 2016-10-04 Fujifilm Corporation Acidic gas separation laminate and acidic gas separation module provided with laminate
US10092880B2 (en) 2015-05-29 2018-10-09 Sumitomo Chemical Company, Limited Spiral-wound acid gas separation membrane element, acid gas separation membrane module, and acid gas separation apparatus
JP2022536922A (en) * 2019-06-13 2022-08-22 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Highly Oriented Expanded Polytetrafluoroethylene with Excellent Rigidity

Similar Documents

Publication Publication Date Title
JP5882282B2 (en) Atmospheric pressure microwave plasma treated porous membrane
CA1326116C (en) Fluoro-oxidized polymeric membranes for gas separation and process for preparing them
WO1989000879A1 (en) Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
US9132616B2 (en) Multi-layer composite membrane materials and methods therefor
JPH0368428A (en) Fluid separating module and production thereof
CA1286865C (en) Porous liquid polytetrafluoroethylene membrane with hydrophobic and hydrophilic surfaces
JPH03106421A (en) Fluid separation module and its manufacture
JPH03169304A (en) Spiral type degassing membrane module
JPH0338231A (en) Hydrophilic-hydrophobic separation unit membranes and separation membrane and its preparation
JPH03106422A (en) Fluid separation module and its manufacture
CA2367547A1 (en) Porous membrane
JP2000288367A (en) Manufacture of hydrophobic porous membrane
JPH0368427A (en) Fluid separating module and production thereof
JP2946628B2 (en) Method for producing hollow porous separation membrane element
JPH06170182A (en) Hollow fiber membrane module and production thereof
JP2617501B2 (en) Method for improving separation characteristics of semipermeable membrane
JPS62210008A (en) Production of liquid separation membrane exhibiting permselectivity to ethanol
JPS6223401A (en) Ultrafiltration membrane
JPS60227804A (en) Manufacture of separation membrane
JPS62129105A (en) Selective separation process of alcohol
JPS5996135A (en) Anion exchange membrane and its production
JPS62286508A (en) Production of hollow yarn separation membrane
JPS5969105A (en) Composite molding for gas separation
JPH05184883A (en) Membrane separation element
JPH06114241A (en) Production of fluid separation membrane module