JPH01253638A - Defect checking apparatus for disk-shaped optical recording medium - Google Patents

Defect checking apparatus for disk-shaped optical recording medium

Info

Publication number
JPH01253638A
JPH01253638A JP8087788A JP8087788A JPH01253638A JP H01253638 A JPH01253638 A JP H01253638A JP 8087788 A JP8087788 A JP 8087788A JP 8087788 A JP8087788 A JP 8087788A JP H01253638 A JPH01253638 A JP H01253638A
Authority
JP
Japan
Prior art keywords
defect
inspection
optical recording
shaped optical
tracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8087788A
Other languages
Japanese (ja)
Other versions
JP2563458B2 (en
Inventor
Koji Tsuchiya
土屋 浩司
Yoshio Hata
秦 良雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8087788A priority Critical patent/JP2563458B2/en
Publication of JPH01253638A publication Critical patent/JPH01253638A/en
Application granted granted Critical
Publication of JP2563458B2 publication Critical patent/JP2563458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9506Optical discs

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

PURPOSE:To improve reliability in checking serious defects, by scanning information tracks for every specified tracks in a skipping mode, detecting the position information at the time of occurrence of the defect at a value smaller than a normal checking reference value, and rechecking all the tracks before and after the position where the defect has occurred. CONSTITUTION:A reference value WC is set so that the magnitude of a defect is smaller than a normal checking reference WB. The defects in a regenerated signal RF, a tracking error signal TE and a focus error signal FE in one track are checked. When an error whose magnitude of the defect exceeds WC in a defect detecting circuit 26, the error is stored in a defect-position information memory circuit 28. Then, the step is jumped into the next track. This procedure is repeated. When the checking of the final track is finished, the contents in the circuit 28 are read and analyzed. When the defects exceeding WC occur, the unchecked tracks before and after the defective tracks are rechecked. The quality of the defects is judged based on the final checking reference value WA. Thus, the checking of the serious defect can be ensured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、円盤状光学記録媒体における損傷や異物混入
等の欠陥を検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for detecting defects such as damage or foreign matter in a disc-shaped optical recording medium.

従来の技術 円盤状光学記録媒体(以下、光ディスクという)におい
ては、製造途中で記録表面に傷がイー」いたり異物が混
入したりする欠陥を生じることがある。
BACKGROUND OF THE INVENTION Conventional disk-shaped optical recording media (hereinafter referred to as optical disks) may have defects such as scratches on the recording surface or the introduction of foreign matter during manufacturing.

かかる欠陥は情報再生時に大きい障害となるため、その
有無をあらかじめ検出する必要がある、3最近、コンビ
、−夕外部メモリとしての光ディスクが実用化されてお
り、これら記録媒体はその特徴から、今後の高度情報社
会にとって不可欠な低廉記録媒体を提供するものとして
期待されている。そこで、光ディスクの欠陥を、短時間
で、しかも正確に検出できる量産用検査装置が必要とな
ってきた。
Since such defects pose a major obstacle during information reproduction, it is necessary to detect their presence in advance.3Recently, optical discs as combination and external memories have been put into practical use, and due to their characteristics, these recording media will be used in the future. It is expected to provide an inexpensive recording medium that is essential to the advanced information society of the world. Therefore, there is a need for a mass-production inspection device that can accurately detect defects in optical disks in a short period of time.

以下に従来例の欠陥検査装置について説明する。A conventional defect inspection apparatus will be described below.

第3図は従来の欠陥検査装置の一例の構成図である。1
は光学検出素子で、光学へノド8から光ビームが光ディ
スクに入射され、その記録面部で反射された読取光ビー
ムが導かれる。2は各々の光検出素子1から導かれた読
取光ビームのスポットに応じた出力について演算をし、
再生信号(RF)と、光学ヘッド8からの光ディスクに
おいて形成するメボノl−の、螺旋状まだは同心円状l
−フックに列する位置ずれに応じた1−ランキンクエラ
ー信号(TE)及び光学へノド8からの光ビームの記録
面上での集束状態に応じたフォーカスエラー信号(FE
)をそれぞれ演算する信号処理部である。3〜5は各々
これら再生信号(RF)。
FIG. 3 is a configuration diagram of an example of a conventional defect inspection device. 1
1 is an optical detection element, in which a light beam is incident on the optical disk from an optical nozzle 8, and a reading light beam reflected from the recording surface is guided. 2 calculates the output according to the spot of the reading light beam guided from each photodetector element 1;
The reproduction signal (RF) and the spiral or concentric circle formed on the optical disk from the optical head 8
- A 1-rank error signal (TE) corresponding to the positional deviation in alignment with the hook and a focus error signal (FE) corresponding to the convergence state of the light beam from the optical nod 8 on the recording surface.
) is a signal processing unit that calculates each of the following. 3 to 5 are these reproduction signals (RF), respectively.

l−ランキンクエラー信号(TE)、フォーカスエラー
信号(FE)を信号増幅し、再生信号(RF /)。
l-Rank error signal (TE) and focus error signal (FE) are amplified and reproduced signal (RF/).

トラッキングエラー(it l’ (TE’)+  フ
ォーカスエラー信号(F E’)を得る信号増幅部であ
る。6は信号増幅された再生信号(RF/)、  I−
ラノギンクエラー信−Q−(T E’) l  フォー
カスエラー信号(F E/)においてディスクにおける
欠陥によりある閾値以上の大きさのエラーを発生した場
合に、その欠陥の大きさに準じたパルス幅の検出パルス
を出力して欠陥検出を行う欠陥検出部である。7は欠陥
検出部6で検出されたバルヌのパルス幅大きさより、検
査基準と比較して良否判定を行い、検査装置fのシステ
ムコントロールを行うコントロール部である。
This is a signal amplification section that obtains a tracking error (IT l'(TE') + focus error signal (FE'). 6 is a signal amplified reproduction signal (RF/), I-
Ranogink error signal -Q-(TE') l When an error of a size greater than a certain threshold value occurs due to a defect in the disk in the focus error signal (FE/), detects the pulse width according to the size of the defect. This is a defect detection section that detects defects by outputting pulses. Reference numeral 7 denotes a control unit that performs a quality judgment by comparing the magnitude of the Varne pulse width detected by the defect detection unit 6 with an inspection standard, and performs system control of the inspection device f.

以上の様に構成された欠陥検査装置について、以下その
動作を説明する。
The operation of the defect inspection apparatus configured as described above will be explained below.

まず、トラッキングサーボコントロール及びフォーカス
サーボコントロールが行なわれたモトで、光ディスクに
形成された螺旋状または同心固状トラックにそって再生
パワーの光ビームにて検査を行うと、光ディスクの外表
面や螺旋状または同心円状l−ランクが形成された記録
部面の汚れや傷等の欠陥がある場合には、その欠陥が光
学ヘッドより読みとられて、光学検出部を形成する複数
の光検出素子1の検出信号中に欠陥による変化が生じる
。そして、複数の光検出素子1の検出信号によるディス
クの欠陥に起因する変化に基づき、複数の光検出素子1
の検出信号の演算が行われる。欠陥は、信号処理部2か
ら得られる再生信号(RF)に信号欠陥を生せしめると
ともに、同じく信号処理部から得られるトランキンクエ
ラー信号(TE)、及びフォーカスエラー信号(FE)
中にも欠陥部を生じる。
First, when tracking servo control and focus servo control are performed, an inspection is performed using a light beam of reproducing power along a spiral or concentric solid track formed on an optical disc. Alternatively, if there is a defect such as dirt or scratches on the recording surface on which the concentric L-rank is formed, the defect is read by the optical head and the plurality of photodetecting elements 1 forming the optical detection section are detected. Defects cause changes in the detection signal. Then, based on the change caused by the disc defect due to the detection signals of the plurality of photodetecting elements 1, the plurality of photodetecting elements 1
The detection signal is calculated. The defect causes a signal defect in the reproduced signal (RF) obtained from the signal processing section 2, as well as the trunking error signal (TE) and focus error signal (FE) also obtained from the signal processing section.
Defects also occur inside.

第5図に、再生信号中に含まれる欠陥検出の測定原理を
示す。再生信号は欠陥の種類により増加6 /、−7 する方向にも減少する方向にも変化する。この信号に対
し、閾値を設定して欠陥検出を行い、閾値を起えた欠陥
の大きさに準じた幅のパ)Vスを出力する。そして、こ
のパルス幅の大きさをクロックパルスによって計測し、
欠陥の大きさを検出する。
FIG. 5 shows the measurement principle for detecting defects contained in reproduced signals. Depending on the type of defect, the reproduced signal changes either in the direction of increasing 6/, -7 or in the direction of decreasing. A threshold value is set for this signal to perform defect detection, and a path (V) having a width corresponding to the size of the defect that caused the threshold value is output. Then, measure the size of this pulse width using a clock pulse,
Detect the size of defects.

再生信号(RF)中での重大欠陥は記録情報と読込み情
報との不一致、つまりビットエラーやドロップアウトを
引き起こす原因となる。また、トランキンクエラー信号
(TE)及びフォーカスエラー信号(FE)中に比較的
大きな欠陥が発生した場合、トラッキングサーボコント
ロールアルいはフォーカスサーボコントロールが正常に
作動しなくなる事態が生じ易くなる。
Serious defects in the reproduced signal (RF) cause mismatch between recorded information and read information, that is, bit errors and dropouts. Furthermore, if a relatively large defect occurs in the trunk error signal (TE) and focus error signal (FE), the tracking servo control or the focus servo control is likely to malfunction.

このため、欠陥検出装置では、ディスク中で、ビットエ
ラーやドロノプアウl−の原因となり得る重大欠陥及び
トラッキングサーボコントロール及びフォーカスサーボ
コントロールが正常に動作シなくなる原因となり得る重
大欠陥を適確に検出を行う必要性がある。
For this reason, the defect detection device accurately detects serious defects in the disk that may cause bit errors or dropouts, as well as serious defects that may cause the tracking servo control and focus servo control to malfunction. There is a need.

とこで、従来の欠陥検査装置の検査フロ−チャ−トを第
4図に示す。光ディスクは膨大な記録容量を有しておシ
、その情報トラック量も膨大な数となる。このだめ、従
来の欠陥検査装置では、検査時間の短縮を考慮して、ユ
ーザー情報トラック範囲を一定トラック間隔に飛び越し
て、欠陥検査を行っておシ、円盤状光学記録媒体の欠陥
の大きさに対する検査基準値WAに対し、検査基準WB
を設定しくWA>WB)、欠陥に対する良否判定を行っ
ていた。
Incidentally, FIG. 4 shows an inspection flowchart of a conventional defect inspection apparatus. Optical discs have a huge recording capacity, and the number of information tracks on them is also huge. To avoid this, conventional defect inspection equipment skips the user information track range at fixed track intervals and performs defect inspection in order to shorten inspection time. Inspection standard value WB against inspection standard value WA
WA > WB), and a pass/fail judgment was made for defects.

発明が解決しようとする課題 しかしながら上記のような従来の構成及び検査法での欠
陥検査装置では、光ディスクの全面を一定トラック間隔
に飛びこしながら欠陥検査を行っているため、検査トラ
ック間に挟着れる様な欠陥や、数十トラックにまたがる
様な光デイスク基板表面や螺旋状または同心円状トラッ
クが形成された記録面部の汚れや傷などの重大欠陥の検
出が困難であるという問題点を有していた。
Problems to be Solved by the Invention However, in the defect inspection apparatus using the conventional configuration and inspection method as described above, defects are inspected by flying over the entire surface of the optical disk at regular track intervals, so that defects may be caught between the inspection tracks. The problem is that it is difficult to detect serious defects, such as defects such as scratches, stains and scratches on the surface of an optical disk substrate that spans dozens of tracks, or on the recording surface where spiral or concentric tracks are formed. was.

本発明は上記従来の問題点を解決するため、ディスク状
記録媒体における重大欠陥を、短時間の検査時間でしか
も確実に検出を打力えることを実現し、欠陥に列する信
頼性を向上させた欠陥検査装置を提供することを目的と
するものである。
In order to solve the above-mentioned conventional problems, the present invention realizes the ability to reliably detect serious defects in disk-shaped recording media in a short inspection time, and improves the reliability of identifying defects. The object of the present invention is to provide a defect inspection device with improved performance.

課題を解決するだめの手段 本発明においては、円盤状光学記録媒体における螺旋状
捷たは同心円状トラックのデータ領域の欠陥検出を行う
に際して、円盤状光学記録媒体の一定間隔トラックごと
に検査を行い、円盤状光学記録媒体の内部または表面部
に存在するものとされた欠陥部が、読取位置におかれる
状態に応じて読み取られた時に得られる欠陥検出パルス
よシ、その欠陥部分の発生位置情報を蓄積し、それら検
出位置情報より、検出された欠陥部分の前後トラックを
網羅したトラックの再検査を行うことにより、円盤状光
学記録媒体における、重大欠陥を、短時間の検査時間で
、しかもより確実に検出を行うことを可能にしたもので
ある。
Means for Solving the Problems In the present invention, when detecting defects in the data area of spiral twists or concentric tracks in a disc-shaped optical recording medium, the disc-shaped optical recording medium is inspected for each track at regular intervals. , a defect detection pulse obtained when a defective part that is assumed to exist inside or on the surface of a disk-shaped optical recording medium is read according to the state in which it is placed at a reading position, and information on the occurrence position of the defective part. By accumulating the detected position information and re-inspecting the tracks before and after the detected defective part, serious defects in disc-shaped optical recording media can be detected in a short inspection time and more efficiently. This enables reliable detection.

作   用 この構成によって、情報トラック範囲を一定トラック毎
に飛び起こして欠陥検査を行う際に、重9、−1 大欠陥の大きさの、閾値Wcを従来法での閾値WBよシ
さらに小さな値に設定しくWB>WC)する等して、欠
陥発生時の位置情報を検出し、この欠陥情報を記録して
いき、その欠陥発生位置情報に基づき、欠陥発生位置の
前後のトラックを網羅する全トラックについて再検査を
行うことにより、重大欠陥に対する信頼性の向上を実現
することができる。
Effect: With this configuration, when defect inspection is performed by jumping up the information track range every certain track, the threshold value Wc for the size of a large defect of 9,-1 can be set to a smaller value than the threshold value WB in the conventional method. WB > WC), etc., to detect the position information at the time of defect occurrence and record this defect information. By re-inspecting the trucks, it is possible to improve reliability against major defects.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。第1図は本発明の一実施例における欠陥検査
装置の構成図を示すものである。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration diagram of a defect inspection apparatus according to an embodiment of the present invention.

第1図において、21は光学ヘッド30からの光ビーム
がディスクに入射されてその記録面部で反射された読取
光ビームが導かれる光検出素子、22は各々の光検出素
子21から導かれた読取光ビームのスポットに応じた出
力について演算をし、再生信号(RF)と光学ヘッドか
らの光デイヌクにおいて形成されるスポットの螺旋状ト
ラックに対する位置ずれに応じたトラッキングエラー信
号10 ・\−7 (TE)ff 光学ヘッドからの光ビームのディスクに
おける記録面部上での集束状態に応じたフォーカスエラ
ー信号(FE)を演算する信号処理部である。23〜2
5はこれら再生信号(RF)、l−ラッキングエラー信
号(TE)、  フォ−カスエラー信号(jE)を信号
増幅し、再生信号(RF/ ) 。
In FIG. 1, reference numeral 21 denotes a photodetector element through which a light beam from the optical head 30 is incident on the disk and is reflected by the recording surface of the disk, and 22 indicates a readout beam guided from each photodetector element 21. The output corresponding to the spot of the light beam is calculated, and a tracking error signal 10 \-7 (TE )ff This is a signal processing unit that calculates a focus error signal (FE) according to the convergence state of the light beam from the optical head on the recording surface portion of the disk. 23-2
5 amplifies the reproduced signal (RF), l-racking error signal (TE), and focus error signal (jE) to generate a reproduced signal (RF/).

トラッキングエラー信号(TE/)、フォーカスエラー
信号(FE’)を得る信号増幅部である。26はその増
幅された再生信号(RF’)、)ラッキングエラー信号
(TE′)、フォーカスエラー信号(T E’)におい
てディスクの外表部または、ディスク中における欠陥に
よりある閾値以上の異常信号(エラー)を発生した場合
に、その欠陥の大きさに応じたパルス幅の検出パルスを
出力する欠陥検出部、27はその欠陥検出部26で再生
信号(RF’)、)ラッキングエラー信号(T E’)
 J  フォーカスエラー信号(F E/)中にエラー
が発生した場合に得られたパルスをトリガとして、その
エラー発生の位置情報を検出する欠陥位置情報検出部、
28は欠陥位置は報検出部27で得られた再11 、− 生信号(RF)、l−ラッキングエラー信号(TE)、
及びフォーカスエラー信号(FE)中のエラー発生位置
情報を蓄積する欠陥情報記録部であり、メモリーで構成
されている。
This is a signal amplification section that obtains a tracking error signal (TE/) and a focus error signal (FE'). 26 is an amplified reproduction signal (RF'), racking error signal (TE'), and focus error signal (TE') that contain abnormal signals (errors) exceeding a certain threshold due to defects on the outer surface of the disc or inside the disc. ) occurs, a defect detection unit 27 outputs a detection pulse with a pulse width corresponding to the size of the defect, and the defect detection unit 27 outputs a reproduction signal (RF') and a racking error signal (T E'). )
J. A defect position information detection unit that detects position information of the error occurrence using a pulse obtained when an error occurs in the focus error signal (FE/) as a trigger;
28 indicates the defect position obtained by the information detection unit 27; - raw signal (RF); - racking error signal (TE);
and a defect information recording unit that stores error occurrence position information in the focus error signal (FE), and is composed of a memory.

29は欠陥検出部26で欠陥パルスが発生された時に、
欠陥位置情報検出部27より位置情報を読み込み、欠陥
情報記録部28へ位置情報を記録させたシ、パルス幅の
大きさを検査基準値と比較して良否判定を行い、−まだ
欠陥の再測定時の再検査先頭アドレス計算等を行う、検
査装置のシステムコントロール部でアル。
29 indicates that when a defect pulse is generated in the defect detection section 26,
After reading the position information from the defect position information detection unit 27 and recording the position information in the defect information recording unit 28, the size of the pulse width is compared with the inspection reference value to determine pass/fail. The system control section of the inspection device performs re-inspection start address calculations, etc.

以上の様に構成された本実施例の欠陥検査装置について
、以下、その動作を第2図の欠陥検査装置の検査フロー
チャートを参照しながら説明する。
The operation of the defect inspection apparatus of this embodiment configured as described above will be described below with reference to the inspection flowchart of the defect inspection apparatus shown in FIG.

検査ヌクート後、プロセス100にて検査ドライブの立
上げを行い、トラッキングサーボコントロール及び、フ
ォーカスザーボコントロールを安定に保つ。次にプロセ
ス101においてディスクのユーザー領域の先頭アドレ
スに光学ヘッドをシークさせ、シーク完了後の次の1回
転で、1トラック分の欠陥検査を行う。このとき、プロ
セス103では再生信号、トラッキングエラー信号及び
フォーカスエラー信号中の欠陥検査をイ1い、欠陥の大
きさが検査基準値WAに対し、Wcとなる基準値を設定
する。ただし、WKO値は、従来測定法での基準値WA
に対し、WA 、>WB ”:)Wcとなる値とする。
After the inspection, the inspection drive is started up in process 100, and the tracking servo control and focus servo control are kept stable. Next, in process 101, the optical head is caused to seek to the first address of the user area of the disk, and in the next revolution after the completion of the seek, defect inspection for one track is performed. At this time, in process 103, defect inspection in the reproduced signal, tracking error signal, and focus error signal is performed, and a reference value is set so that the size of the defect becomes Wc with respect to the inspection reference value WA. However, the WKO value is the standard value WA using the conventional measurement method.
, WA ,>WB ”:)Wc.

デイシジョン104において、欠陥の大きさがW。を越
えるエラーが発生した場合、プロセス105へ進み欠陥
発生位置データとその大きさについて、位置情報記録用
メモリ上に記録する。
In decision 104, the size of the defect is W. If an error exceeding 100% has occurred, the process proceeds to process 105, where the defect occurrence position data and its size are recorded on the position information recording memory.

次に、プロセス107に進み、次の検査l・ラノクヘジ
ャンプを行う。デイシジョン104にて欠陥が発生しな
かった場合にも同様に次の検査トラックヘジャンプする
Next, the process advances to process 107 and jumps to the next inspection l/ranok. If no defect occurs in decision 104, the process similarly jumps to the next inspection track.

以I−のことをユーザー使用情報領域が終了する丑での
間くり返し7行い、デイシジョン106にて、ユーザ領
域の最終トラックが検査が終った後にプロセス108に
て欠陥情報記録用メモリの内容を読込む。プロセス10
9にて、108で読込んだ欠陥情報についての解析を行
う。大きさがWe以13  、 上の欠陥が発生している場合には、その欠陥位置情報よ
り欠陥検査トラックを含めた前後の未検査トラックを全
て網羅する様にプロセス111にて再検査先頭アドレス
及び再検査終了アドレスの計算を行う。We以上の欠陥
が複数個発生している場合には複数個分の再検査先頭ア
ドレス及び阿検査終了アドレスが計算される。
The above steps I- are repeated 7 times until the end of the user information area, and after the last track of the user area has been inspected in decision 106, the contents of the defect information recording memory are read in process 108. It's crowded. Process 10
At step 9, the defect information read at step 108 is analyzed. If a defect with a size of We13 or above has occurred, the re-inspection start address and Calculate the re-examination end address. If a plurality of defects of We or higher have occurred, re-inspection start addresses and A-inspection end addresses for the plurality of defects are calculated.

次に、プロセス112において、プロセス111で計算
を行った再検査先頭アドレスに光学ヘッドをシークさせ
、先頭アドレスから終了アドレスまでの全トラックの欠
陥検査を行い、デイシジョン114ではプロセス105
同様に欠陥情報を欠陥位置情報用メモリに情報をストア
していく。
Next, in process 112, the optical head is caused to seek to the re-inspection start address calculated in process 111, and all tracks from the start address to the end address are inspected for defects.
Similarly, defect information is stored in the memory for defect position information.

そして、デイシジョン115では同様な作業を欠陥情報
数だけくり返す。このとき、再検査は欠陥発生トラック
前後を数本飛びの飛び越し検査で行うようにしてもよい
Then, in decision 115, the same operation is repeated as many times as there is defect information. At this time, the re-inspection may be performed by skipping several defective tracks before and after the defective track.

最後に、プロセス116にて欠陥の大きさの検査基準値
WAにて欠陥の良否判定を行い、測定を終了する。
Finally, in process 116, the quality of the defect is determined based on the defect size inspection reference value WA, and the measurement is completed.

14、、。14.

発明の効果 以」−の様に、本発明によれば、円盤状光学記録媒体に
おける螺旋状寸たは同心円状トラックの欠陥検出を行う
に際して、最初に円盤状光学記録媒体の一定間隔トラッ
クごとに検査を行うことにより、円盤状光学記録媒体の
内部まだは表面部に存在するものとされる欠陥部が読取
位置におかれた状態に応じて欠陥検出信号を発生する円
盤状光学媒体の欠陥検査時間を短縮でき、さらに、円盤
状光学記録媒体の読み取りにより得られる欠陥検出パル
スにより、その欠陥部分の発生位置情報を蓄積してその
欠陥部分前後トラックについて再検査を行うようにした
ことにより円盤状光学記録媒体における重大欠陥をより
確実に検査することができるものである。
According to the present invention, when detecting a defect in a spiral track or a concentric track in a disc-shaped optical recording medium, first, each track of the disc-shaped optical recording medium is detected at regular intervals. Defect inspection of disc-shaped optical media that generates a defect detection signal according to the state in which a defective part, which is assumed to exist inside or on the surface of the disc-shaped optical recording medium, is placed at the reading position by performing the inspection. In addition, by using the defect detection pulse obtained by reading the disk-shaped optical recording medium to accumulate information on the location of the defect and re-inspecting the tracks before and after the defect, the disk-shaped optical recording medium can be re-inspected. This allows serious defects in optical recording media to be inspected more reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の円盤状光学記録媒体例の円
盤状光学E!媒体の欠陥検査装置の構成15 ・\−。 を示すブロック図、第5図はその検査工程のフローチャ
ートである。 21・・・・光検出素子、22・・ 信号処理部、23
〜25・・・・・・信号増幅部、26・・・・欠陥情報
検出部、27・・・・・・欠陥情報検査回路、28・・
・・・欠陥情報記録部、29・・・・・コントロール部
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名$ヱ 鼾 ? 田(
FIG. 1 shows an example of a disk-shaped optical recording medium according to an embodiment of the present invention. Configuration of medium defect inspection device 15 ・\-. FIG. 5 is a flowchart of the inspection process. 21... Photodetection element, 22... Signal processing section, 23
~25... Signal amplification section, 26... Defect information detection section, 27... Defect information inspection circuit, 28...
. . . Defect information recording section, 29 . . . Control section. Name of agent: Patent attorney Toshio Nakao and one other person Field (

Claims (4)

【特許請求の範囲】[Claims] (1)円盤状光学記録媒体上の螺旋状または同心円状の
情報トラックを一定トラック数毎に飛び越し走査しなが
ら光ビームを収束して照射しこの前記円盤状光学記録媒
体からの反射ビームを検出する光検出器を含む検出手段
と、前記円盤状光学記録媒体上の欠陥により前記反射ビ
ームが強度変調されて前記検出手段の出力信号が一定レ
ベルを越えたときにパルス信号を発生するパルス発生手
段と、前記光ビームの円盤状光学記録媒体の欠陥位置を
検出する位置検出手段と、その欠陥発生位置情報を蓄え
る手段とを有し、前記欠陥発生位置情報により欠陥発生
トラックを含む前後トラックもしくは前後の複数トラッ
クの再検査をするようにしたことを特徴とする円盤状光
学記録媒体の欠陥検査装置。
(1) A light beam is converged and irradiated while scanning a spiral or concentric information track on a disk-shaped optical recording medium in a fixed number of tracks, and a reflected beam from the disk-shaped optical recording medium is detected. a detection means including a photodetector; and a pulse generation means for generating a pulse signal when the intensity of the reflected beam is modulated by a defect on the disc-shaped optical recording medium and the output signal of the detection means exceeds a certain level. , a position detecting means for detecting the defect position of the disc-shaped optical recording medium of the light beam, and a means for storing the defect occurrence position information, and the defect occurrence position information is used to detect the front and rear tracks including the defect occurrence track or the front and rear tracks including the defect occurrence track. A defect inspection device for a disk-shaped optical recording medium, characterized in that a plurality of tracks are re-inspected.
(2)再検査時にトラック飛び越し検査における欠陥検
査発生トラックを間に狭んだ前後2つの飛び越し検査合
格トラックで狭まれる未検査トラックを全部検査するよ
うにしたことを特徴とする請求項1記載の円盤状光学記
録媒体の欠陥検査装置。
(2) At the time of re-inspection, all the uninspected tracks that are narrowed by the two passing tracks before and after the track where the defect inspection occurred in the track skipping inspection are sandwiched between them are inspected. A defect inspection device for disc-shaped optical recording media.
(3)トラック飛び越し検査時の欠陥の大きさに対する
検査基準値(W_C)と再検査時の欠陥の大きさに対す
る検査基準値(W_A)とを異なった値に設定するよう
にした請求項1または2記載の円盤状光学記録媒体の欠
陥検査装置。
(3) An inspection reference value (W_C) for the size of a defect during track skipping inspection and an inspection reference value (W_A) for the size of a defect during re-inspection are set to different values. 2. The defect inspection device for a disc-shaped optical recording medium according to 2.
(4)トラック飛び越し検査時の欠陥の大きさに対する
検査基準値(W_C)と再検査時の欠陥の大きさに対す
る検査基準値(W_A)は、W_A>W_Cとなるよう
な値に設定するようにした請求項3記載の円盤状光学記
録媒体の欠陥検査装置。
(4) The inspection standard value (W_C) for defect size during track skipping inspection and the inspection standard value (W_A) for defect size during re-inspection are set to values such that W_A>W_C. 4. The defect inspection device for a disc-shaped optical recording medium according to claim 3.
JP8087788A 1988-03-31 1988-03-31 Defect inspection device for disk-shaped optical recording medium Expired - Lifetime JP2563458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8087788A JP2563458B2 (en) 1988-03-31 1988-03-31 Defect inspection device for disk-shaped optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8087788A JP2563458B2 (en) 1988-03-31 1988-03-31 Defect inspection device for disk-shaped optical recording medium

Publications (2)

Publication Number Publication Date
JPH01253638A true JPH01253638A (en) 1989-10-09
JP2563458B2 JP2563458B2 (en) 1996-12-11

Family

ID=13730576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8087788A Expired - Lifetime JP2563458B2 (en) 1988-03-31 1988-03-31 Defect inspection device for disk-shaped optical recording medium

Country Status (1)

Country Link
JP (1) JP2563458B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215619B1 (en) * 1999-07-15 2007-05-08 Koninklijke Philips Electronics, N.V. Method of scanning a recording disc for defects, and recording device for recording information on a disc-shaped recording medium
WO2009025038A1 (en) * 2007-08-22 2009-02-26 Toyo Glass Co., Ltd. Method and device for inspecting defect of side face at mouth of container
EP2112654A1 (en) * 2007-02-14 2009-10-28 Panasonic Corporation Optical disc device
US7821893B2 (en) 2004-01-07 2010-10-26 Thomson Licensing Method for analyzing an abnormal region on an optical recording medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215619B1 (en) * 1999-07-15 2007-05-08 Koninklijke Philips Electronics, N.V. Method of scanning a recording disc for defects, and recording device for recording information on a disc-shaped recording medium
EP2178088A3 (en) * 1999-07-15 2011-10-26 Koninklijke Philips Electronics N.V. Method of scanning a recording disc for defects, and recording device for recording information on a disc-shaped recording medium
US7821893B2 (en) 2004-01-07 2010-10-26 Thomson Licensing Method for analyzing an abnormal region on an optical recording medium
EP2112654A1 (en) * 2007-02-14 2009-10-28 Panasonic Corporation Optical disc device
EP2112654A4 (en) * 2007-02-14 2009-10-28 Panasonic Corp Optical disc device
US8164998B2 (en) 2007-02-14 2012-04-24 Panasonic Corporation Optical disc device
EP2461324A1 (en) * 2007-02-14 2012-06-06 Panasonic Corporation Optical disc device
WO2009025038A1 (en) * 2007-08-22 2009-02-26 Toyo Glass Co., Ltd. Method and device for inspecting defect of side face at mouth of container
JPWO2009025038A1 (en) * 2007-08-22 2010-11-18 東洋ガラス株式会社 Container mouth side defect inspection method and apparatus
JP4676500B2 (en) * 2007-08-22 2011-04-27 東洋ガラス株式会社 Container mouth side defect inspection method and apparatus

Also Published As

Publication number Publication date
JP2563458B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
JP3210680B2 (en) Information playback device
AU2006315202A1 (en) Apparatus and method for analysis of optical storage media
US7760603B2 (en) Apparatus and method for discriminating optical disc type
US20080181062A1 (en) Method and apparatus for controlling focus of an optical information storage medium
JPH01253638A (en) Defect checking apparatus for disk-shaped optical recording medium
US20040130982A1 (en) Method of controlling recording operation for optical disc recording apparatus
TWI247281B (en) Method of determining defect detection mode for optical storage device
CN100377245C (en) Optical disk apparatus, method for controlling the same, and recording medium
US20050286378A1 (en) Data writing method
CN101252007B (en) Multi layer optical disc and optical disc apparatus capable of coping with the multi layer optical disc
KR101150986B1 (en) Optical disc driving apparatus for opc and controlling method the same
JPS60121575A (en) Optical information recording and reproducting device
JPH05342638A (en) Device and method for checking optical disk
JPH05159507A (en) Inspecting apparatus and method for optical disc
JP2568528B2 (en) Signal recording / reproducing device
JPS6318523A (en) Defect inspection system for additional description type optical disk
KR100857082B1 (en) Method of disc discrimination in optical disc device
JP4331589B2 (en) Optical recording device
JP2629676B2 (en) Optical disc playback device
US8085628B2 (en) Focus servo controlling method and apparatus and optical disk drive using the focus servo controlling method
KR100569539B1 (en) Method for discriminating disc class of optical record medium
KR100610673B1 (en) A method to distinguish the kind of optical disk
US8576683B2 (en) Disk decision method and optical disk drive using the disk decision method
JP4064271B2 (en) Optical pickup inspection device and inspection method
JPH05325187A (en) Optical disk apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12