JPH01253309A - Level shift circuit - Google Patents

Level shift circuit

Info

Publication number
JPH01253309A
JPH01253309A JP63080661A JP8066188A JPH01253309A JP H01253309 A JPH01253309 A JP H01253309A JP 63080661 A JP63080661 A JP 63080661A JP 8066188 A JP8066188 A JP 8066188A JP H01253309 A JPH01253309 A JP H01253309A
Authority
JP
Japan
Prior art keywords
cmos
circuit
dimensions
type
level shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63080661A
Other languages
Japanese (ja)
Other versions
JPH0691442B2 (en
Inventor
Akio Tanaka
昭生 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63080661A priority Critical patent/JPH0691442B2/en
Publication of JPH01253309A publication Critical patent/JPH01253309A/en
Publication of JPH0691442B2 publication Critical patent/JPH0691442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

PURPOSE:To reduce the element area as well as the power consumption by using a CMOS circuit where the drains of n and p type MOS FETs are con nected to each other at two stages respectively and decreasing relatively the dimensions of one of both CMOS circuits that has the smaller load connected to the drain. CONSTITUTION:A 2nd CMOS consisting of MOS FET MN2 and MP2 has its dimensions nXN1 and nXP1 equal to (n) times as much as the dimensions XN1 and XP1 of a 1st CMOS consisting of MOS FET MN1 and MP1. As a result, the fact that (load capacity CL1>> parasitic capacity CP1) is satisfied and there fore both FET MN1 and MP1 can be driven fast enough despite their small dimensions. Furthermore, the through currents of both MN1 and MP1 are re duced owing to their small dimensions. As a result, the power consumption is reduced together with the big reduction of the element area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はある電圧振幅の信号を、別の電圧振幅の信号に
変換するレベルシフト回路に関し、特にフラットパネル
等を駆動するために低電圧のロジック信号を高電圧のフ
ラットパネル駆動信号に変換する高耐圧ICのレベルシ
フト回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a level shift circuit that converts a signal with a certain voltage amplitude into a signal with a different voltage amplitude. The present invention relates to a level shift circuit for a high voltage IC that converts a logic signal into a high voltage flat panel drive signal.

〔従来の技術〕[Conventional technology]

従来この種のレベルシフト回路は、第3図に例を示す様
にN型MOSFETとP型MOSFETのドレイン同士
を接続した1つのCMOS回路と素子寸法(いわゆるデ
イメンジョン)が等しいもう1つのCMOS回路を用意
し、一方のCMOS回路のP型MOSFETのゲートを
他方のCMOS回路の共通ドレインにそれぞれ交互に接
続し、N型MOSFETのそれぞれのゲートに反対の極
性の低電圧信号を入力し、ドレインから高電圧信号を取
り出していた。
Conventionally, this type of level shift circuit consists of one CMOS circuit in which the drains of an N-type MOSFET and a P-type MOSFET are connected together, and another CMOS circuit having the same element size (so-called dimension), as shown in FIG. Prepare a circuit, alternately connect the gates of the P-type MOSFETs of one CMOS circuit to the common drain of the other CMOS circuit, input a low voltage signal of opposite polarity to each gate of the N-type MOSFET, and connect the gates of the P-type MOSFETs of one CMOS circuit to the common drain of the other CMOS circuit. A high voltage signal was extracted from the

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の技術では、それぞれのCMOSのN型と
P型のデイメンジョンは異なるが、2つの0MO8で対
応するもの同士は同じものである。
In the conventional technology described above, although the dimensions of the N type and P type of each CMOS are different, the corresponding ones in the two 0MO8s are the same.

ケート長り、ゲート幅W等のデイメンジョンは、N型と
P型のMOS FETでは電流能力が違うため、一般に
ある1つのCMOS回路ではN型P型相互のデイメンジ
ョン比は変えている。通常、この種のレベルシフト回路
は第3図に示す様に一方の共通ドレインを出力に取り出
すか、別のCMOS回路のゲートに接続し、もう1方の
共通ドレインは外に接続しない。この様に2段のCMO
Sにおいてそれぞれ共通ドレインにつながる負荷が異る
ため、2段の0MO8を同じデイメンジョンにした場合
、重い負荷を十分駆動できる様にデイメンジョンを決め
るため、軽い負荷の0MO8に対しては大きすぎて無駄
となり、素子面積が増加する。
Since the current capacity of N-type and P-type MOS FETs is different in dimensions such as gate length and gate width W, the dimension ratio of N-type and P-type is generally different in a single CMOS circuit. . Normally, in this type of level shift circuit, one common drain is taken out as an output or connected to the gate of another CMOS circuit, as shown in FIG. 3, and the other common drain is not connected to the outside. In this way, two-tier CMO
Since the loads connected to the common drain in each S are different, if the two stages of 0MO8 are made to have the same dimension, the dimension is determined so that it can sufficiently drive a heavy load, so it will be larger than the light load 0MO8. This results in waste and increases the device area.

又、信号の変化時にP型からN型へ向って貫通電流が流
れるが、デイメンジョンが大きい程この電流が大きいた
めに、余分に大きいデイメンジョンは、消費電力の増大
につながる。
Further, when a signal changes, a through current flows from the P type to the N type, and the larger the dimension, the larger this current, so an extra large dimension leads to an increase in power consumption.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のレベルシフト回路は、N型とP型のMOS  
FETのドレイン同士をつないだCMOS回路を2段用
意し、一方のCMOS回路のP型MOSFETのゲート
を他方のCMOS回路の共通ドレインにそれぞれ交互に
接続し、N型MOSFETのゲートに低電圧信号を入力
し、共通ドレインから高電圧信号を取り出すタイプのレ
ベルシフト回路において、2段のCMOS回路のうち、
ドレインにつながる負荷が小さい方のCMOS回路のデ
イメンジョンを相対的に小さく設定している。
The level shift circuit of the present invention includes N-type and P-type MOS
Two stages of CMOS circuits are prepared in which the drains of the FETs are connected together, and the gates of the P-type MOSFETs in one CMOS circuit are connected alternately to the common drain of the other CMOS circuit, and a low voltage signal is applied to the gate of the N-type MOSFET. In a type of level shift circuit that inputs a high voltage signal and takes out a high voltage signal from a common drain, one of the two stages of CMOS circuits is
The dimension of the CMOS circuit with a smaller load connected to the drain is set relatively small.

〔実施例〕〔Example〕

次に、図面を参照して、本発明をより詳細に説明する。 Next, the present invention will be explained in more detail with reference to the drawings.

第1図は本発明の一実施例の回路図である。MN 1 
、 MN 2はN型MOS FETであり、回路上ドレ
インに高電圧がかかるため、ドレインに低濃度層を入れ
るいわゆるオフセラ)MOS構造をとルコトで、ドレイ
ンの高耐圧化をはかっている。
FIG. 1 is a circuit diagram of an embodiment of the present invention. MN 1
, MN2 is an N-type MOS FET, and since a high voltage is applied to the drain in the circuit, a so-called off-cellar MOS structure is used in which a low concentration layer is placed in the drain to increase the withstand voltage of the drain.

MPI、MP2はP型MOSFETであり、回路上ドレ
インとゲートにも高電圧がかかるため、上記のオフセッ
ト構造をとる他に、ゲート酸化膜ヲ厚くシてゲートの高
耐圧化もはかっている。負荷容量C1は、外部につなが
る負荷か、次段の回路の等価的な容量を表わしている。
MPI and MP2 are P-type MOSFETs, and a high voltage is applied to the drain and gate in the circuit, so in addition to using the above-mentioned offset structure, the gate oxide film is thickened to increase the breakdown voltage of the gate. The load capacitance C1 represents a load connected to the outside or an equivalent capacitance of the next stage circuit.

通常MOSFETのゲート長りはプロセスで決まるため
、素子のデイメンジョンはゲート幅Wを変える。MOS
 FET  MNI、MPIで構成される第1の0MO
3のデイメンジョンXやIIXPIのn倍のデイメンジ
ョンn XNI r n XprをMOS  F’ET
MN2.MP2で構成される第2の0MO8(7)デイ
メンジョンとしている。nは負荷容it CL□と寄生
容ft Cp +との比でほぼ決まりn ”; CLl
 / Cplとなる。通常CLl> Cp+であるため
n>1となる。
Since the gate length of a MOSFET is usually determined by the process, the gate width W changes depending on the dimension of the device. M.O.S.
First 0MO consisting of FET MNI, MPI
3 dimension X or n times the dimension n XNI r n Xpr of IIXPI as MOS F'ET
MN2. The second 0MO8(7) dimension is composed of MP2. n is approximately determined by the ratio of the load capacitance it CL□ and the parasitic capacitance ft Cp +, and n''; CLl
/ Cpl. Normally, since CLl>Cp+, n>1.

x、、、X、、の絶対的な値は要求されるスピード、消
費電力MOSFETの電流能力等で決まる。
The absolute value of x, , , X, , is determined by the required speed, current capacity of the power consumption MOSFET, etc.

低電圧信号INと低電圧信号INはそれぞれ逆の極性の
信号で各端子3,4にそれぞれ入力される。今、信号I
Nが論理レベルL、信号INが“′H″の時、MOS 
FET  MNIはオフ、MOS  FET  MN2
はオンとなりMOS  FETMPIのゲート電位が下
がり、MOS  FETMPIがオンとなり、MOS 
 FET  MPIのドレイン電位が上昇してMOS 
 FET  MP2をオフさせて、高電圧信号の端子5
が“H”となる。逆に、信号下Xを゛H゛′、信号IN
を“L”とすると高電圧信号の端子5は“L”となる。
The low voltage signal IN and the low voltage signal IN are input to each terminal 3 and 4 as signals of opposite polarity, respectively. Now signal I
When N is logic level L and signal IN is "'H", MOS
FET MNI is off, MOS FET MN2
turns on, the gate potential of MOS FET MPI decreases, MOS FET MPI turns on, and MOS
The drain potential of FET MPI rises and the MOS
Turn off FET MP2 and connect high voltage signal terminal 5.
becomes “H”. Conversely, signal lower X is ``H'', signal IN
When the voltage is set to "L", the high voltage signal terminal 5 becomes "L".

この様に低電圧信号IN、INによって端子5の高電圧
信号を制御する事ができる。
In this way, the high voltage signal at the terminal 5 can be controlled by the low voltage signals IN, IN.

前述したように、負荷容量CL 1)寄生容ft Cp
 1のためMOS FET  MNI、MPIのデイメ
ンジョンは小さくても十分速く駆動できる。MOSFE
T  MNIがオフからオンに変わる時、MOS  F
ET  MPIはまだオンになっているため、−時的に
オンオンの期間あり、MOS  FETMPI、MNI
を通る貫通電流が流れる。MOSFET  MNI、M
PIのデイメンジョンを小さくする事で、この貫通電流
を小さくし、消費電力を下げる事ができる。又、デイメ
ンジョンを小さくする事で大幅な素子面積の削減が可能
となる。
As mentioned above, load capacitance CL 1) Parasitic capacitance ft Cp
1, so even if the dimensions of the MOS FETs MNI and MPI are small, they can be driven sufficiently fast. MOSFE
When T MNI changes from off to on, MOS F
Since ET MPI is still on - there is a period of on-on, MOS FET MPI, MNI
A through current flows through the MOSFET MNI, M
By reducing the dimension of PI, this through current can be reduced and power consumption can be reduced. Further, by reducing the dimension, it is possible to significantly reduce the element area.

第2図は本発明の他の実施例の回路図である。FIG. 2 is a circuit diagram of another embodiment of the present invention.

第1図の実施例と同様にMOS  FET  MN3゜
MN4.MP3.MP4のドレインは全て高耐圧化し、
MOS  FET  MN3とMN4)1ゲートも高耐
圧化している。この実施例ではP型MOSFET側に低
電圧信号を入力するため、負の高電圧信号に変換する事
ができる。第1図の実施例と同様に低消費電力で小型の
レベルシフト回路が構成できる。
Similar to the embodiment shown in FIG. 1, MOS FETs MN3°MN4. MP3. All drains of MP4 have high voltage resistance,
MOS FET MN3 and MN4) 1 gate also has a high breakdown voltage. In this embodiment, since a low voltage signal is input to the P-type MOSFET side, it can be converted into a negative high voltage signal. Similar to the embodiment shown in FIG. 1, a small level shift circuit with low power consumption can be constructed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は第1図の実施例ではMO
S FET  MNI、MPI、MN2.MP2のデイ
メンジョンをドレインにつながる容量に合わせて、寄生
容量程度の小さな容量がつながるMOS  FET  
MNI、MPIのデイメンジョンは小さくし、大きな負
荷容量がつながるMOS FET  MN2.MP2の
デイメンジョンは大きくする事で、あるスピードを得る
最適のデイメンジョンが構成でき、従来技術のレベルシ
フト回路に比べ大幅な素子面積の削減と消費電力の低下
が実現できる。
As explained above, in the embodiment of FIG.
S FET MNI, MPI, MN2. Match the dimension of MP2 to the capacitance connected to the drain, and connect a MOS FET with a small capacitance equivalent to a parasitic capacitance.
The dimensions of MNI and MPI are small, and the MOS FET MN2 is connected to a large load capacity. By increasing the dimension of MP2, an optimal dimension for achieving a certain speed can be configured, and a significant reduction in element area and power consumption can be realized compared to level shift circuits of conventional technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の等価回路図、第2図は本発
明の他の実施例の等価回路図、第3図は従来の回路の等
価回路図を示す。 MN1〜6・・・・・・N型MOSFET%MP1〜6
・・・・・・P型MOSFET%CPI〜CP!・・・
・・・寄生容量、OLI〜CL3・・・・・・負荷容量
。 1・・・・・・グラウンド、2・・・・・・高電圧電源
、3・・・・・・低電圧信号丁瓦、4・・・・・・低電
圧信号IN、5・・・・・・高電圧信号、6・・・・・
・グラウンド、7・・・・・・高電圧負電源、8・・・
・・・低電圧信号IN、9・・・・・・低電圧信号IN
、10・・・・・・高電圧信号、11・・・・・・グラ
ウンド、12・・・・・・高電圧電源、13・・・・・
・低電圧信号IN、14・・・・・・低電圧信号下に、
15・・・・・・高電圧信号。 代理人 弁理士  内 原   晋 消/図 躬3図
FIG. 1 shows an equivalent circuit diagram of one embodiment of the present invention, FIG. 2 shows an equivalent circuit diagram of another embodiment of the invention, and FIG. 3 shows an equivalent circuit diagram of a conventional circuit. MN1~6...N-type MOSFET%MP1~6
・・・・・・P-type MOSFET%CPI~CP! ...
... Parasitic capacitance, OLI ~ CL3 ... Load capacitance. 1...Ground, 2...High voltage power supply, 3...Low voltage signal tile, 4...Low voltage signal IN, 5... ...High voltage signal, 6...
・Ground, 7... High voltage negative power supply, 8...
...Low voltage signal IN, 9...Low voltage signal IN
, 10... High voltage signal, 11... Ground, 12... High voltage power supply, 13...
・Low voltage signal IN, 14...Under the low voltage signal,
15...High voltage signal. Agent: Patent Attorney Shinsuke Uchihara/Tuman 3

Claims (1)

【特許請求の範囲】[Claims] N型MOSFETとP型MOSFETのドレイン同士を
つないだCMOS回路を2段用意し、一方のCMOS回
路の一導電型MOSFETのゲートを他方のCMOS回
路の共通ドレインにそれぞれ交互に接続し、反対導電型
MOSFETのゲートにある電圧振幅の信号を入力し、
共通ドレインから別の電圧振幅の信号を取り出すレベル
シフト回路において、2段のCMOS回路のうちドレイ
ンにつながる負荷が小さい方のCMOS回路の素子寸法
を相対的に小さくする事を特徴とするレベルシフト回路
Two stages of CMOS circuits are prepared in which the drains of an N-type MOSFET and a P-type MOSFET are connected, and the gates of the MOSFETs of one conductivity type in one CMOS circuit are alternately connected to the common drain of the other CMOS circuit, and the gates of the MOSFETs of one conductivity type in one CMOS circuit are connected alternately to the common drain of the other CMOS circuit. Input the voltage amplitude signal at the gate of the MOSFET,
A level shift circuit that takes out signals of different voltage amplitudes from a common drain, the level shift circuit characterized by making the element size of the CMOS circuit with a smaller load connected to the drain relatively small among two stages of CMOS circuits. .
JP63080661A 1988-03-31 1988-03-31 Level shift circuit Expired - Lifetime JPH0691442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63080661A JPH0691442B2 (en) 1988-03-31 1988-03-31 Level shift circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080661A JPH0691442B2 (en) 1988-03-31 1988-03-31 Level shift circuit

Publications (2)

Publication Number Publication Date
JPH01253309A true JPH01253309A (en) 1989-10-09
JPH0691442B2 JPH0691442B2 (en) 1994-11-14

Family

ID=13724545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080661A Expired - Lifetime JPH0691442B2 (en) 1988-03-31 1988-03-31 Level shift circuit

Country Status (1)

Country Link
JP (1) JPH0691442B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007477A1 (en) * 2001-07-12 2003-01-23 Sanyo Electric Co.,Ltd. Level converter circuit
US7323923B2 (en) 2004-08-30 2008-01-29 Matsushita Electric Industrial Co., Ltd. Driver circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486670A (en) * 1982-01-19 1984-12-04 Intersil, Inc. Monolithic CMOS low power digital level shifter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486670A (en) * 1982-01-19 1984-12-04 Intersil, Inc. Monolithic CMOS low power digital level shifter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007477A1 (en) * 2001-07-12 2003-01-23 Sanyo Electric Co.,Ltd. Level converter circuit
US7078934B2 (en) 2001-07-12 2006-07-18 Sanyo Electric Co., Ltd. Level conversion circuit
US7323923B2 (en) 2004-08-30 2008-01-29 Matsushita Electric Industrial Co., Ltd. Driver circuit

Also Published As

Publication number Publication date
JPH0691442B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US4092548A (en) Substrate bias modulation to improve mosfet circuit performance
JP2623934B2 (en) Current detection circuit
US4240039A (en) MOS Differential amplifier
US5550486A (en) Circuit and method for providing a known logic state at insufficient supply voltage
JPH01253309A (en) Level shift circuit
JPH03132115A (en) Semiconductor integrated circuit
JPH0918328A (en) Voltage level shifting circuit
JPS63253425A (en) Bus driving circuit
JPH07105709B2 (en) Voltage conversion circuit
JPH02114718A (en) Output buffer circuit
US6049226A (en) Level converter
JPH0385918A (en) Large current/high speed driver circuit
JP2002100978A (en) Bipolar level shift circuit
JPH0220922A (en) Bi-mos type logic circuit
JP3031090B2 (en) Output port circuit
JP2655913B2 (en) FET semiconductor integrated circuit
JPH06244710A (en) Outputting circuit for semiconductor integrated circuit
JPH0377421A (en) Hysteresis circuit
JP2550942B2 (en) CMOS type logic integrated circuit
JPH0420529B2 (en)
JPH0666137U (en) D / A converter
JPH02174315A (en) Low voltage analog switch circuit
JP3092641B2 (en) Semiconductor memory circuit
CN2289349Y (en) Floating transmission gate
JPH10341148A (en) Bipolar level shift circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 14