JPH0124868B2 - - Google Patents

Info

Publication number
JPH0124868B2
JPH0124868B2 JP60154882A JP15488285A JPH0124868B2 JP H0124868 B2 JPH0124868 B2 JP H0124868B2 JP 60154882 A JP60154882 A JP 60154882A JP 15488285 A JP15488285 A JP 15488285A JP H0124868 B2 JPH0124868 B2 JP H0124868B2
Authority
JP
Japan
Prior art keywords
electrode
gas
reaction layer
particle size
diaphragm assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60154882A
Other languages
Japanese (ja)
Other versions
JPS6217193A (en
Inventor
Yoshihiko Shirakawa
Satoru Motoo
Choichi Furuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIRAKAWA SEISAKUSHO KK
Original Assignee
SHIRAKAWA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIRAKAWA SEISAKUSHO KK filed Critical SHIRAKAWA SEISAKUSHO KK
Priority to JP60154882A priority Critical patent/JPS6217193A/en
Publication of JPS6217193A publication Critical patent/JPS6217193A/en
Publication of JPH0124868B2 publication Critical patent/JPH0124868B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、水溶液の電気分解装置や燃料電池な
どの電極に好適に用いられるガス透過性を有する
電極・隔膜組立体に関するものである。 「従来の技術およびその問題点」 水溶液の電気分解等に用いられる電解装置は、
従来、溶液が貯えられる容器と、この容器内に設
けられた陰極および陽極と、これら陽極、陰極に
生じた電解生成物の混合を防止するために両極間
に設けられた隔膜とからなるものであつた。 そして、この種の電解装置の隔膜には、一般に
アスベスト等が圧縮成形されてなるものが用いら
れている。 ところが、アスベストは発ガン性を有する等の
問題が指摘されており、このような隔膜を備えた
電解装置の設置には、様々な制限が伴なう不満が
あつた。 また、このような隔膜を備えた電解装置にあつ
ては、高圧のガスを生産しようとして高圧下で電
解を行うと、陽極から発生するガスの量と陰極か
ら発生するガスの量の差により生じる圧力差の制
御が困難となり、陽極、陰極に発生したガスが隔
膜を通して混合する問題があつた。 「発明の目的」 本発明は上記事情に鑑みてなされたもので、高
い反応効率を達成できると共に、良好なガス透過
能力をも兼ね備えた電極・隔膜組立体を提供する
ことを目的とする。 「問題点を解決するための手段」 本発明の電極・隔膜組立体は、微粒子が結合さ
れてなりかつガス透過性があつて不透水性の多孔
性膜と、該多孔性膜の表面に設けられた反応層と
からなる電極・隔膜組立体であつて、前記反応層
が、親水性カーボン粉末および撥水性カーボン粉
末がバインダーにより結合されてなる多孔質なシ
ート状支持体と、このシート状支持体中に担持さ
れた触媒とにより形成されていることを特徴とす
るものである。 「作用」 本発明の電極・隔膜組立体は、優れたガス透過
能力と、高い反応効率とを兼ね備えたものとな
る。 本発明者らは、その理由を次にように考察して
いる。 本発明の電極・隔膜組立体の反応層をなすシー
ト状支持体は、多孔質なものであり広い表面積を
有している。この反応層をなすシート状支持体中
には溶液を吸着して反応に供する親水性カーボン
粉末が分散されているので、溶液は親水性カーボ
ン粉末を伝わつて反応層内にまで浸透して反応に
あずかることとなる。 そのうえ、本発明の電極・隔膜組立体において
は、反応層をなすシート状支持体中に親水性のカ
ーボン粉末と撥水性のカーボン粉末とが分散して
いるので、反応層に侵入した溶液には撥水性カー
ボン粉末に撥ねられ親水性カーボン粉末に吸着さ
れる力が作用する。このため、反応層の空孔中に
電解液が浸透した状態にあつても、反応層中はガ
ス流通に必要な適当な空げきが容易に形成される
得る状態となる。その結果、本発明の電極・隔膜
組立体は、良好なガス透過能を発揮する。そして
このようにガスが円滑に流通するので、多孔質な
シート状支持体からなる反応層の広い表面積が有
効に利用され、高い反応効率が達成される。 「実施例」 以下、図面を参照して本発明の電極・隔膜組立
体を詳しく説明する。 第1図は、本発明の電極・隔膜組立体の第一実
施例を示すもので、図中符号1は多孔性膜、符号
2は反応層である。 この例の電極・隔膜組立体の多孔性膜1は、導
電性を有す微粒子(以下、導電性微粒子と略称す
る)が結合されてなる多孔性であつて不透水性の
層である。 この多孔性膜1に形成される孔は、口径0.5μm
以下、好ましくは800Å以下の連続した孔である
ことが望ましい。孔の口径が0.5μmを越えると多
孔性膜1は、気体状態の分子だけでなく液体状態
の分子をも透過し得るものとなり、気液分離機能
が低下する不都合を生じる。 また、多孔性膜1の空孔率は40%〜80%程度で
あることが望ましい。多孔性膜1の空孔率が80%
を越えると、電極・隔膜組立体の耐圧強度が不十
分となり、空孔率が40%未満になると多孔性膜1
のガス透過速度が低下し分解生成ガスを効率良く
放出できなくなるので、いずれの場合も好ましく
ない。 この多孔性膜1をなす導電性微粒子の材料に
は、鉄、アルミニウム、銀、銅等の金属、無定形
炭素、黒鉛等の炭素、ジルコニアセラミツクス、
β−アルミナセラミツクス、ホウ素化合物[ラン
タンボライド(LaB6)、チタンボライド
(TiB2)]等の導電性セラミツクスなど種々のも
のを用いることができる。その中でも、撥水性と
耐食性を有する炭素を用いると、得られる電極・
隔膜組立体が長寿命でかつ良好な耐薬品性を有す
るものとなるので好ましい。 この導電性微粒子としては、粒径0.1μm以下も
のが好適に用いられる。粒径が0.1μmを越える
と、多孔性膜1に口径の大きな孔が形成される不
都合を生じる。 多孔性膜1をなすこれら導電性微粒子は、有機
高分子化合物などからなるバインダーを介して、
あるいは焼結等により結合されている。 前記バインダーとしての有機高分子化合物に
は、フツ素樹脂、ケイ樹脂、ポリエチレン、ポリ
プロピレン、ポリアクリロニトリル、ポリ塩化ビ
ニル、ポリカーボネート、ポリエチレンテレフタ
レート等種々の合成樹脂材料を利用することがで
きる。中でもポリテトラフルオロエチレン
(PTFE)、ポリクロロトリフルオロエチレン、ポ
リビニリデンフルオライド、四フツ化エチレン−
六フツ化プロピレン共重合体等のフツ素樹脂、そ
の中でも特にPTFEは、酸にもアルカリにも侵さ
れない優れた耐食性を有すると共に優れた撥水性
を有し、得られる電極・隔膜組立体が長寿命でか
つ耐薬品性を有するものとなるので、好ましく用
いられる。このように有機高分子化合物を用いて
導電性微粒子を結合する場合、有機高分子化合物
の添加量は、有機高分子化合物にPTFF、導電性
微粒子にカーボンブラツクを用いた場合を例にと
ると、通常、それらの合計量に対する重量比で
PTFEが10%〜60%程度とされる。有機高分子化
合物の添加量が60%を越えると、形成される多孔
性膜1の電気抵抗が大きくなるうえ、多孔性膜1
のガス透過性が悪化する。また、添加量が10%未
満になると導電性微粒子の結合が不十分になり、
多孔性膜1の強度が低下する。 この多孔性膜1は、厚さ0.3mm〜2mm程度に形
成されることが望ましい。この多孔性膜1の厚さ
が2mmを越えると、多孔性膜1のガス透過速度が
低下する不都合が生じ、0.3mm未満になると、多
孔性膜1の強度が低下する不都合が生じる。 この多孔性膜1の表面には、前記反応層2が形
成されている。 この反応層2は、多孔質なシート状支持体中に
触媒が担持せしめられてなるものである。 この反応層2のシート状支持体は、親水性のカ
ーボン粉末と撥水性のカーボン粉末とが混合分散
されたもので、親水性の部分と撥水性の部分が網
目状に微細に分布した構造となつている。 前記撥水性のカーボン粉末の具体例としては、
デンカブラツク(商品名;電気化学工業社製)の
ような、アセチレンを熱分解することにより製造
されるアセチレンブラツクを挙げることができ
る。 また親水性のカーボン粉末の具体例としては、
VulcanXC−72R(商品名:バルカンキヤボツト
社製)のような、ガス油を不完全燃焼させること
により製造されたフアーネスブラツクを挙げるこ
とができる。 アセチレンブラツクとフアーネスブラツクとを
比較すると、その表面状態が異なつている。アセ
チレンブラツクは、炭化が充分で表面のグラフア
イト化が進み不純物が少ないため、優れた撥水性
を示す。これに対しフアーネスブラツクは製法上
表面の炭化が不充分で、表面に−OH基、=O基
等の親水基が多く存在しており、親水性を示す。 これらカーボン粉末には、粒径0.5μm以下もの
が好適に用いられる。粒径が0.5μmを越えると、
反応層2に口径の大きな孔が形成される不都合を
生じる。 これた親水性および撥水性カーボン粉末は、バ
インダによつて結合されている。このバインダー
としては、上記多孔性膜1で挙げたバインダーと
しての有機高分子化合物と同様に種々のものを利
用できる。 このシート状支持体の孔の口径は、0.5μm〜
0.01μm程度とされ、反応層2の空孔率は40%〜
80%程度とされることが望ましい。孔の口径が
0.5μmを越えると、反応層2の強度が低下する。
また、口径が0.01μm未満になると反応層2に溶
液が浸透しにくくなり、反応層2の表面のみしか
電気分解等の反応に寄与せず、反応効率が低下す
る不都合が生じる。 また、反応層2をなすシート状支持体の空孔率
が80%を越えると、得られる反応層2は耐圧強度
が不十分なものとなり好ましくない。空孔率が40
%未満になると十分な量の触媒を担持せしめるこ
とができず好ましくない。 このシート状支持体中には触媒が担持されてい
る。このように触媒を担持せしめる方法として
は、触媒が溶かされた溶液(触媒溶液)を、シー
ト表面に塗布あるいはスプレーしてシート内に浸
透せしめ、この後これを乾燥する方法が簡便であ
る。このようにすると、反応層2の内部に触媒を
担持させることができる。 反応層2をなす触媒としては、電気分解等の化
学反応を促進するニツケル(Ni)、コバルト
(Co)、鉄(Fe)等の鉄族元素あるいは、白金
(Pt)、ルテニウム(Ru)、金(Au)、銀(Ag)、
銅(Cu)、クロム(Cr)、マンガン(Mn)、パラ
ジウム(Pd)等の貴金属元素あるいはそれらの
酸化物またはそれらの合金等からなる触媒など各
種のものを利用できる。中でも、水溶液等の電気
分解には、Ni、Pt、Ruなどからなる触媒が、電
解効率を大幅に向上し得る点で、好ましく用いら
れる。 この反応層2は、厚さが約1.0mm以下に形成さ
れることが望ましい。この反応層2の厚さが1.0
mmを越えると、反応層2で生成されたガスが多孔
性膜1へ透過し難くなる不都合が生じる。 次に、本発明の電極・隔膜組立体の製造方法の
一例を説明する。 まず、平均粒径0.042μmの撥水性のカーボンブ
ラツク70重量部と、平均粒径0.25μmのPTFE30
重量部とを十分混合して混合物Aを作成した。ま
た、親水性のカーボン粉末(VulcanXC−72R)
70重量部と、平均粒径0.25μmのPTFEとを十分
混合して混合物Bを作成した。ついでこれら混合
物A、BをA:B=4:6の比で混合し、有機溶
媒(ナフサ)を加えて、均一に混練した。これを
加圧して厚さ0.4mmのシートAを成形した。この
シートAは、後に反応層2のシート状支持体とな
るものである。 これとは別に、平均粒径0.042μmの撥水性のカ
ーボンブラツク70重量部と平均粒径0.25μmの
PTFE30重量部を十分混合した混合物Cを作成
し、これに有機溶媒(ナフサ)加えペースト状に
し、均一になるように十分混練した。このものを
加圧して、厚さ2.5mmのシートBを成形した。こ
のシートBは、後に多孔性膜となるものである。 このように成形された2種類のシートA、Bを
重ね合わせてローラで圧接して一体に接合しつつ
厚さ0.9mmのシートとした。このものを乾燥して
溶媒を揮散させ、ついで280℃の加熱炉中で熱処
理した。次に、このものを380℃で所定時間ホツ
トプレスして、厚さ0.8mmのシート状に成形した。
ついで、上記シートAにより形成された部分(反
応層2のシート状支持体に相当する部分)に、触
媒が溶かされた溶液(触媒溶液)を、シート内に
浸透するように塗布した。 こうして、親水性カーボン粉末と撥水性カーボ
ン粉末とからなるシート状支持体中に触媒が担持
された反応層を有する電極・隔膜組立体が得られ
る。 なお、本発明の電極・隔膜組立体は、上記実施
例に限られるものではない。例えば、この電極・
隔膜組立体には必要により金属網を貼着できる。
金属網を貼着する場合、その位置は、多孔性膜1
の表面、反応層2の表面、多孔性膜1と反応層2
との間のいずれであつてもよい。この金属網とし
ては、銅等の電気伝導性の良い金属からなるもの
が好適に用いられる。また、金属網のメツシユは
30〜100程度であることが望ましく、金属網をな
す金属繊維には径100μm〜500μm程度のものが
好適に用いられる。 このような金属網の貼着は、例えば上記シート
A、Bを重ね合わせる際に適宜な位置に金属網を
セツトし、これをホツトプレスすることにより行
なわれる。 実験例 1 本発明の電極・隔膜組立体を用いて常温型水素
−酸素燃料電池を作成し、本発明の効果を確認し
た。 第2図は、試作した燃料電池の概略構成を示す
ものである。この装置は、電解液流路21と水素
室22と酸素室23とが並列に設けられてなるも
ので、電解液流路21と水素室22の間は電極・
隔膜組立体Aで、電解液流路21と酸素室23と
の間は電極・隔膜組立体Bでそれぞれ仕切られて
いる。また各組立体A,Bは、反応層2が電解液
流路21側に面するように設けられている。ま
た、組立体A,B間の距離は1mmに設定されてい
る。 この実験に用いられた電極・隔膜組立体A,B
の仕様は以下の通りである。 () 電極・隔膜組立体A 構造:厚さ0.1mmの反応層2と厚さ0.5mmの多孔
性膜1と銅網とが順次積層されてなる3層構
造。 面積:900cm2 (a) 反応層2 組成:カーボン粉末(平均粒径0.038μm)
(親水性:撥水性=1:1) 70重量部 PTFE(平均粒径0.25μm) 30重量部 触媒:白金系、平均粒径50Å (b) 多孔性膜1 組成:撥水性カーボン粉末(平均粒径0.042μ
m) 70重量部 PTFE(平均粒径0.25μm) 30重量部 空孔率:65% 孔の口径:平均450Å () 電極・隔膜組立体B 構造:厚さ0.1mmの反応層2と厚さ0.5mmの多孔
性膜1と銅網とが順次積層されてなる3層構
造。 面積:900cm2 (a) 反応層2 組成:カーボン粉末(平均粒径0.048μm)
(親水性:撥水性=1:1) 70重量部 PTFE(平均粒径0.25μm) 30重量部 触媒:ニツケル系、平均粒径300Å (b) 多孔性膜1 組成:撥水性カーボン粉末(平均粒径0.042μ
m) 65重量部 PTFE(平均粒径0.25μm) 35重量部 空孔率:65% 孔の口径:平均450Å 尚、上記撥水性カーボン粉末には、市販のデン
カブラツク(電気化学工業社製)を用い、親水性
カーボン粉末にはVulcanXC−72R(バルカンキ
ヤボツト社製)を用いた(以下の実験においても
同様)。 比較の為に、反応層2が撥水性カーボンのみで
形成された点のみが異なる電極・隔膜組立体を用
いた燃料電池(比較例1)と、反応層2が親水性
カーボンのみで形成された点のみが異なる電極・
隔膜組立体を用いた燃料電池(比較例2)を製作
した。 これらの燃料電池を次のように運転して、電圧
−電流特性を調べた。 運転は、電解液流路21に水酸化カリウム
(KOH)を20wt%溶液を0.12/分、2.2Kg/
cm2・G(ゲージ圧)で供給し、水素室22に圧力
0.05Kg/cm2・Gの水素を1.0/分で供給し、酸
素室23に圧力0.05Kg/cm2・Gの酸素を毎分0.5
(標準状態)供給して行つた。 結果を第3図に示す。 この結果、撥水性カーボン粉末と親水性カーボ
ン粉末とからなる本発明の電極・隔膜組立体を用
いると、反応効率が顕著に向上することが確認さ
れた。これは本発明の電極・隔膜組立体が良好な
ガス透過能を有しているため、水素ガスおよび酸
素ガスが電極・隔膜組立体A,B内に速やかに侵
入して電極反応に供される為と思われる。 実験例 2 本発明の電極・隔膜組立体を利用したガス分離
精製装置3を試作し、空気からの酸素の分離を行
つた。 第4図は、試作したガス分離精製装置3の概略
構成を示すものである。この装置は、原料ガス室
4と溶液流通室5とガス回収室6とが並列に設け
られてなるもので、原料ガス室4と溶液流通室5
との間は電極・隔膜組立体Aで、ガス回収室6と
溶液流通室5との間は電極・隔膜組立体Bでそれ
ぞれ仕切られている。また、電極・隔膜組立体
A,Bは、それぞれ反応層2,2が溶液流通室5
側に面するように取り付けられている。また組立
体A,B間の距離は1mmに設定されている。 この実験には、実験例1と同一の電極・隔膜組
立体A,Bを用いた。 このガス分離精製装置3の溶液流通室5に、水
酸化カリウム(KOH)の20wt%溶液を0.12/
分、2.2Kg/cm2・G(ゲージ圧)で供給した。ま
た、原料ガス室4に0.01Kg/cm2・Gの空気を80
/分で供給した。そして、組立体Aを陰極、組
立体Bを陽極とし、これら組立体A,B間に水の
電解に必要な電圧(1.25V)よりも低い電圧
0.96Vと、電流450Aを印加した。 以上の条件で装置を運転したところ、ガス回収
室6から純度99.99%、圧力2Kg/cm2・G(約
3atm)の酸素が毎分1.56(標準状態)得られ
た。 ついで、上記水酸化カリウム溶液の代わりに、
20wt%水酸化ナトリウム溶液を用いて同様の実
験を行つたところ、標準状態で1.55/分の酸素
(純度99.99%)を分離することができた。 本発明の電極・隔膜組立体は強い耐圧強度(約
20Kg/cm2以上)を有するので、本発明の電極・隔
膜組立体を備えたガス分離精製装置3は、溶液流
通室5の圧力を高く維持し得るものとなる。 またこの装置では、電極・隔膜組立体A,Bが
良好なガス透過能を有するので、溶液流通室5の
圧力とほぼ等しい圧力のガスが得られた。このた
め、溶液流通室5の圧力を高めることにより、高
圧の酸素を多量に生産することができる。 実験例 3 実験例2と同一構造のガス分離精製装置3を用
いて、水素ガスの精製を行つた。 この実験に用いられた電極・隔膜組立体A,B
の仕様は以下の通りである。 () 電極・隔膜組立体A 構造:厚さ0.1mmの反応層2と厚さ0.5mmの多孔
性膜1と銅膜とが順次積層されてなる3層構
造。 面積:900cm2 (a) 反応層2 組成:カーボン70重量部、平均粒径0.038μm
(撥水性:親水性=1:1) PTFE30重量部、平均粒径0.25μm 触媒:白金系、粒径50Å (b) 多孔性膜1 組成:撥水性カーボン70重量部、(平均粒径
0.042μm) PTFE30重量部、平均粒径0.25μm 空孔率:64% 孔の口径:平均440Å () 電極・隔膜組立体B 構造:厚さ0.1mmの反応層2と厚さ0.5mmのガス
浸透層1と銅網とが順次積層されてなる3層
構造。 面積:900cm2 (a) 反応層2 組成:カーボン70重量部、平均粒径0.038μm
(撥水性:親水性=1:1) PTFE30重量部、平均粒径0.25μm 触媒:白金系、粒径50Å (b) 多孔性膜1 組成:撥水性カーボン70重量部、(平均粒径
0.042μm) PTFE30重量部、平均粒径0.25μm 空孔率:64% 孔の口径:平均440Å このような電極・隔膜組立体A,Bが取り付け
られたガス分離精製装置3の溶液流通室5に5重
量%の希硫酸溶液を0.2/分、2.2Kg/cm2・Gで
供給した。また、原料ガス室4に酸素と窒素を含
む純度99%の水素ガスを0.01Kg/cm2・G、8/
分で供給した。そして、組立体Aを陽極、組立体
Bを陰極とし、組立体A,B間に電圧0.2V(この
値は水電解に最低必要な電圧1.25Vよりも低い)
と、電流900Aを印加した。 以上の条件で装置を運転したところ、ガス回収
室6から純度99.999%、圧力2Kg/cm2・Gの水素
ガスが標準状態に換算して毎分6.26得られた。 この装置において、標準状態で1m3の水素ガス
を精製するのに要したエネルギーは0.48KW・hr
であつた。これに対して、従来のパラジウム膜を
利用した水素精製の場合は1.0KW・hr/m3、深
冷水素精製の場合は1.2KW・hr/m3であり、本
発明の電極・隔膜組立体を備えたガス分離精製装
置3によれば水素ガスの精製を効率良く行えるこ
とが確認できた。 実験例 4 本発明の電極・隔膜組立体を利用したガス発生
装置を試作して、水素ガスと酸素ガスを生産し
た。 第5図は、試作したガス発生装置7の概略構成
を示すものである。この装置は、溶液流通室8の
両側に発生ガス回収室9,10が設けられてなる
もので、溶液流通室8と発生ガス回収室9,10
と間はそれぞれ電極・隔膜組立体A,Bで仕切ら
れている。電極・隔膜組立体A,Bは、それぞれ
反応層2,2が溶液流通室8側に面するように取
り付けられ、膜A,B間の距離は1mmに設定され
ている。 この実験に用いられた電極・隔膜組立体A,B
の仕様は以下の通りである。 () 電極・隔膜組立体A 構造:厚さ0.1mmの反応層2と厚さ0.5mmの多孔
性膜1と銅網とが順次積層されてなる3層構
造。 面積:900cm2 (a) 反応層2 組成:カーボン65重量部、平均粒径0.042μm
(撥水性:親水性=1:1) PTFE35重量部、平均粒径0.25μm 触媒:RuO2系、粒径100Å (b) 多孔性膜1 組成:撥水性カーボン70重量部、(平均粒径
0.042μm) PTFE30重量部、平均粒径0.25μm 空孔率:65% 孔の口径:平均460Å () 電極・隔膜組立体B 構造:厚さ0.1mmの反応層2と厚さ0.5mmの多孔
性膜1と銅網とが順次積層されてなる3層構
造。 面積:900cm2 (a) 反応層2 組成:カーボン70重量部、平均粒径0.038μm
(撥水性:親水性=1:1) PTFE30重量部、平均粒径0.25μm 触媒:白金系、粒径50Å (b) 多孔性膜1 組成:撥水性カーボン70重量部、(平均粒径
0.042μm) PTFE30重量部、平均粒径0.25μm 空孔率:65% 孔の口径:平均450Å このような電極・隔膜組立体A,Bが取り付け
られたガス発生装置7の溶液流通室8に20mol%
の希硫酸溶液を0.12/分、2.2Kg/cm2・Gで供
給しつつ、電極・隔膜組立体A,B間に電圧
1.8V、電流900Aを印加した。この際、組立体A
を陽極、組立体Bを陽極とした。 以上の条件で装置を運転したところ、発生ガス
回収室9から酸素ガスを毎分3.13(標準状態
下)、発生ガス回収室10から水素ガスを毎分
6.25(標準状態下)づつ得ることができた。 ついで、上記硫酸溶液の代わりに、アルカリ溶
液(25wt%水酸化カリウム溶液)、中性溶液
(20wt%硫酸ナトリウム溶液)等を用いて同様の
実験を行つたところ、同様に酸素ガス、水素ガス
を効率良く生産することができた。 実験例 5 実験例4のガス発生装置7を用いて、炭酸ガス
と水素ガスを生産した。 この実験に用いられた電極・隔膜組立体A,B
の仕様は以下の通りである。 () 電極・隔膜組立体A 構造:厚さ0.1mmの反応層2と厚さ0.5mmの多孔
性膜1と銅網とが順次積層されてなる3層構
造。 面積:900cm2 (a) 反応層2 組成:カーボン70重量部、(平均粒径0.042μ
m)(撥水性:親水性=1:1) PTFE30重量部、平均粒径0.25μm 触媒:粒径50Åの白金系触媒および粒径100
ÅのRuO2系触媒 (b) 多孔性膜1 組成:撥水性カーボン70重量部、(平均粒径
0.042μm) PTFE30重量部、平均粒径0.25μm 空孔率:65% 孔の口径:平均450Å () 電極・隔膜組立体B 構造:厚さ0.1mmの反応層2と厚さ0.5mmのガ多
孔性膜1と銅網とが順次積層されてなる3層
構造。 面積:900cm2 (a) 反応層2 組成:カーボン70重量部、平均粒径0.038μm
(撥水性:親水性=1:1) PTFE30重量部、平均粒径0.25μm 触媒:白金系、粒径50Å (b) 多孔性膜1 組成:撥水性カーボン70重量部、(平均粒径
0.042μm) PTFE30重量部、平均粒径0.25μm 空孔率:65% 孔の口径:平均450Å まず、0.5mol/希硫酸溶液にメタノールを
10vol%混合した原料溶液を作成した。そして、
ガス発生装置7の溶液流通室8にこの原料溶液を
0.1/分、2.0Kg/cm2・Gで供給しつつ、電極・
隔膜組立体A,B間に電圧0.6〜0.7V、電流450A
を印加した。この際、組立体Aを陽極、組立体B
を陰極とした。また、原料溶液の温度は65℃であ
つた。 以上の条件で装置を運転したところ、発生ガス
回収室9から純度99.9%、圧力1.5Kg/cm2・Gの
炭酸ガスを標準状態に換算して毎分1.03、発生
ガス回収室10から純度99.9%、圧力1.5Kg/
cm2・Gの水素ガスを標準状態に換算して毎分6.24
得ることができた。 この装置にあつては、メタノールが減極作用を
果たすので、電力使用量を大幅に低減できた。 「発明の効果」 本発明の電極・隔膜組立体の反応層は、親水性
のカーボン粉末と撥水性のカーボン粉末とが混合
分散した状態で結合固着されてなる多孔質のシー
ト状支持体中に触媒が担持されたものなので、多
孔質であり広い表面積を有している。この反応層
をなすシート状支持体中には溶液を吸着して反応
に供する親水性カーボン粉末が分散されているの
で、溶液は親水性カーボン粉末を伝わつて反応層
内にまで浸透し、反応にあずかることとなる。 そのうえ、本発明の電極・隔膜組立体において
は、反応層をなすシート状支持体中に親水性のカ
ーボン粉末と撥水性のカーボン粉末とが分散して
いるので、反応層に侵入した溶液には撥水性カー
ボン粉末に撥ねられ親水性カーボン粉末に吸着さ
れる力が作用する。このため、反応層の空孔中に
電解液が浸透した状態にあつても、反応層中はガ
ス流通に必要な空げきが容易に形成される得る状
態となつている。 従つて本発明の電極・隔膜組立体は、良好なガ
ス透過能を発揮する。そしてこのようにガスが円
滑に流通するので、多孔質なシート状支持体から
なる反応層の広い表面積が有効に利用され、高い
反応効率が達成される。よつて、本発明の電極・
隔膜組立体は、良好なガス透過性と高い反応効率
を兼備したものとなる。 また本発明の電極・隔膜組立体は、前述のよう
にガス透過性を発揮するものなので、良好なガス
透過性を維持しつつ、カーボンの充填密度をより
高めることが可能である。従つて、本発明の電
極・隔膜組立体は、電流密度を100〜500A/dm2
と大幅に向上し得るものとなる。(従来の一般的
な水電解装置にあつては、10〜20A/dm2程度で
あつた。) また、本発明の電極・隔膜組立体は、各種試験
の結果、強い耐圧強度を有するものであることが
確認された(20Kg/cm2以上)。このように本発明
の電極・隔膜組立体は強い耐圧強度と良好なガス
透過能を有するので、これを備えたガス分離精製
装置あるいはガス発生装置は、溶液流通室の圧力
を高く維持して、高圧のガスを多量に精製・生産
することができるものとなる。またこれらの装置
にあつては、電解液に圧力を加えることにより、
各極から高圧のガスを混合することなく得ること
ができるから、ガスの昇圧装置として利用するこ
とも可能である。 またさらに、本発明の電極・隔膜組立体は良好
なガス透過能を有するので、電解処理に使用され
た場合、生成されたガスの気泡で表面が覆われて
しまうことがなく、減極が防止され、高い電流効
率を実現できる。
"Industrial Application Field" The present invention relates to an electrode/diaphragm assembly having gas permeability that is suitably used as an electrode for an aqueous solution electrolyzer, a fuel cell, or the like. "Conventional technology and its problems" Electrolyzers used for electrolysis of aqueous solutions, etc.
Conventionally, it consists of a container in which a solution is stored, a cathode and an anode provided within this container, and a diaphragm provided between the two electrodes to prevent mixing of electrolytic products generated at the anode and cathode. It was hot. The diaphragm of this type of electrolytic device is generally made of compression molded material such as asbestos. However, problems such as asbestos being carcinogenic have been pointed out, and the installation of electrolyzers equipped with such diaphragms has been dissatisfied with various restrictions. In addition, in an electrolyzer equipped with such a diaphragm, when electrolysis is performed under high pressure to produce high-pressure gas, the difference between the amount of gas generated from the anode and the amount of gas generated from the cathode occurs. It became difficult to control the pressure difference, and there was a problem that gas generated at the anode and cathode mixed through the diaphragm. ``Object of the Invention'' The present invention was made in view of the above circumstances, and an object of the present invention is to provide an electrode/diaphragm assembly that can achieve high reaction efficiency and also has good gas permeability. "Means for Solving the Problems" The electrode/diaphragm assembly of the present invention comprises a gas-permeable and water-impermeable porous membrane in which fine particles are bonded together, and a porous membrane formed on the surface of the porous membrane. an electrode/diaphragm assembly consisting of a porous sheet-like support made of a hydrophilic carbon powder and a water-repellent carbon powder bound together by a binder; It is characterized by being formed by a catalyst supported in the body. "Function" The electrode/diaphragm assembly of the present invention has both excellent gas permeation ability and high reaction efficiency. The present inventors consider the reason as follows. The sheet-like support forming the reaction layer of the electrode/diaphragm assembly of the present invention is porous and has a large surface area. Hydrophilic carbon powder, which adsorbs the solution and uses it for reaction, is dispersed in the sheet-like support forming this reaction layer, so the solution travels through the hydrophilic carbon powder and permeates into the reaction layer, causing the reaction. It will be a partaker. Furthermore, in the electrode/diaphragm assembly of the present invention, hydrophilic carbon powder and water-repellent carbon powder are dispersed in the sheet-like support forming the reaction layer, so that the solution that has entered the reaction layer is The force of being repelled by the water-repellent carbon powder and adsorbed by the hydrophilic carbon powder acts. Therefore, even if the electrolytic solution permeates into the pores of the reaction layer, appropriate pores necessary for gas circulation can be easily formed in the reaction layer. As a result, the electrode/diaphragm assembly of the present invention exhibits good gas permeability. Since the gas flows smoothly in this way, the large surface area of the reaction layer made of the porous sheet-like support is effectively utilized, and high reaction efficiency is achieved. "Example" Hereinafter, the electrode/diaphragm assembly of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a first embodiment of the electrode/diaphragm assembly of the present invention, in which reference numeral 1 represents a porous membrane and reference numeral 2 represents a reaction layer. The porous membrane 1 of the electrode/diaphragm assembly of this example is a porous and water-impermeable layer formed by bonding conductive fine particles (hereinafter abbreviated as conductive fine particles). The pores formed in this porous membrane 1 have a diameter of 0.5 μm.
Hereinafter, it is desirable that the pores are continuous, preferably 800 Å or less. When the diameter of the pores exceeds 0.5 μm, the porous membrane 1 becomes permeable not only to molecules in a gaseous state but also to molecules in a liquid state, resulting in a disadvantage that the gas-liquid separation function is deteriorated. Further, the porosity of the porous membrane 1 is preferably about 40% to 80%. The porosity of porous membrane 1 is 80%
If the porosity exceeds 40%, the pressure resistance of the electrode/diaphragm assembly becomes insufficient, and if the porosity becomes less than 40%, the porous membrane 1
Either case is unfavorable because the gas permeation rate of the gas decreases and decomposed gas cannot be efficiently released. Materials for the conductive particles forming the porous membrane 1 include metals such as iron, aluminum, silver, and copper, amorphous carbon, carbon such as graphite, zirconia ceramics,
Various materials can be used, such as conductive ceramics such as β-alumina ceramics and boron compounds [lanthanum boride (LaB 6 ), titanium boride (TiB 2 )]. Among them, carbon, which has water repellency and corrosion resistance, can be used to obtain electrodes and
This is preferred because the diaphragm assembly has a long life and good chemical resistance. As the conductive fine particles, those having a particle size of 0.1 μm or less are preferably used. If the particle size exceeds 0.1 .mu.m, large pores will be formed in the porous membrane 1, causing the disadvantage. These conductive fine particles forming the porous membrane 1 are bonded through a binder made of an organic polymer compound, etc.
Alternatively, they are bonded by sintering or the like. As the organic polymer compound as the binder, various synthetic resin materials such as fluororesin, silicone resin, polyethylene, polypropylene, polyacrylonitrile, polyvinyl chloride, polycarbonate, and polyethylene terephthalate can be used. Among them, polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene, polyvinylidene fluoride, and tetrafluoroethylene
Fluororesins such as propylene hexafluoride copolymer, especially PTFE, have excellent corrosion resistance that is not attacked by acids or alkalis, and also has excellent water repellency, and the resulting electrode/diaphragm assembly can last for a long time. It is preferably used because it has a long life and chemical resistance. When bonding conductive fine particles using an organic polymer compound in this way, the amount of the organic polymer compound to be added is, for example, when PTFF is used as the organic polymer compound and carbon black is used as the conductive fine particles. Usually in weight ratio to their total amount
PTFE is said to be about 10% to 60%. When the amount of the organic polymer compound added exceeds 60%, the electrical resistance of the porous film 1 to be formed increases, and the porous film 1
gas permeability deteriorates. In addition, if the amount added is less than 10%, the binding of conductive fine particles will be insufficient,
The strength of the porous membrane 1 decreases. This porous membrane 1 is desirably formed to have a thickness of approximately 0.3 mm to 2 mm. If the thickness of the porous membrane 1 exceeds 2 mm, the gas permeation rate of the porous membrane 1 will be reduced, and if it is less than 0.3 mm, the strength of the porous membrane 1 will decrease. The reaction layer 2 is formed on the surface of the porous membrane 1. This reaction layer 2 is formed by supporting a catalyst on a porous sheet-like support. The sheet-like support of the reaction layer 2 is a mixture of hydrophilic carbon powder and water-repellent carbon powder, and has a structure in which hydrophilic parts and water-repellent parts are finely distributed in a network. It's summery. Specific examples of the water-repellent carbon powder include:
Examples include acetylene black produced by thermally decomposing acetylene, such as Denka Black (trade name; manufactured by Denki Kagaku Kogyo Co., Ltd.). Further, specific examples of hydrophilic carbon powder include:
Examples include furnace blacks manufactured by incomplete combustion of gas oil, such as VulcanXC-72R (trade name: manufactured by Vulcan Cabot Co., Ltd.). When acetylene black and furnace black are compared, their surface conditions are different. Acetylene black exhibits excellent water repellency because it is sufficiently carbonized, the surface becomes graphite, and there are few impurities. On the other hand, furnace black has insufficient carbonization on its surface due to its manufacturing method, and has many hydrophilic groups such as -OH groups and ═O groups on its surface, thus exhibiting hydrophilic properties. These carbon powders preferably have a particle size of 0.5 μm or less. If the particle size exceeds 0.5μm,
This results in the inconvenience that large-diameter pores are formed in the reaction layer 2. These hydrophilic and water-repellent carbon powders are bound together by a binder. As this binder, various materials can be used, similar to the organic polymer compound as the binder mentioned in the porous membrane 1 above. The pore diameter of this sheet-like support is 0.5 μm ~
The porosity of the reaction layer 2 is approximately 0.01 μm, and the porosity of the reaction layer 2 is approximately 40%.
It is desirable that it be around 80%. The diameter of the hole is
If it exceeds 0.5 μm, the strength of the reaction layer 2 will decrease.
Furthermore, if the diameter is less than 0.01 μm, it becomes difficult for the solution to penetrate into the reaction layer 2, and only the surface of the reaction layer 2 contributes to reactions such as electrolysis, resulting in a disadvantage that the reaction efficiency decreases. Furthermore, if the porosity of the sheet-like support constituting the reaction layer 2 exceeds 80%, the resulting reaction layer 2 will have insufficient pressure resistance, which is undesirable. Porosity is 40
If it is less than %, a sufficient amount of catalyst cannot be supported, which is not preferable. A catalyst is supported in this sheet-like support. A simple method for supporting the catalyst in this manner is to apply or spray a solution containing the catalyst (catalyst solution) onto the surface of the sheet so that it permeates into the sheet, and then dry it. In this way, the catalyst can be supported inside the reaction layer 2. The catalyst forming the reaction layer 2 may be iron group elements such as nickel (Ni), cobalt (Co), or iron (Fe), or platinum (Pt), ruthenium (Ru), or gold, which promote chemical reactions such as electrolysis. (Au), silver (Ag),
Various catalysts can be used, including catalysts made of noble metal elements such as copper (Cu), chromium (Cr), manganese (Mn), and palladium (Pd), their oxides, or their alloys. Among these, catalysts made of Ni, Pt, Ru, etc. are preferably used for electrolysis of aqueous solutions, etc., since they can significantly improve electrolysis efficiency. This reaction layer 2 is desirably formed to have a thickness of about 1.0 mm or less. The thickness of this reaction layer 2 is 1.0
If it exceeds mm, a problem arises in that the gas generated in the reaction layer 2 becomes difficult to permeate into the porous membrane 1. Next, an example of a method for manufacturing the electrode/diaphragm assembly of the present invention will be explained. First, 70 parts by weight of water-repellent carbon black with an average particle size of 0.042 μm and PTFE30 with an average particle size of 0.25 μm.
Mixture A was prepared by sufficiently mixing parts by weight. In addition, hydrophilic carbon powder (VulcanXC−72R)
Mixture B was prepared by thoroughly mixing 70 parts by weight of PTFE with an average particle size of 0.25 μm. These mixtures A and B were then mixed at a ratio of A:B=4:6, an organic solvent (naphtha) was added, and the mixture was uniformly kneaded. This was pressurized to form a sheet A having a thickness of 0.4 mm. This sheet A will later become a sheet-like support for the reaction layer 2. Separately, 70 parts by weight of water-repellent carbon black with an average particle size of 0.042 μm and 70 parts by weight of water-repellent carbon black with an average particle size of 0.25 μm
A mixture C was prepared by sufficiently mixing 30 parts by weight of PTFE, an organic solvent (naphtha) was added thereto to form a paste, and the mixture was sufficiently kneaded to become uniform. This material was pressurized to form a sheet B having a thickness of 2.5 mm. This sheet B will later become a porous membrane. The two types of sheets A and B thus formed were overlapped and pressed together with rollers to form a sheet having a thickness of 0.9 mm. This product was dried to evaporate the solvent, and then heat-treated in a heating oven at 280°C. Next, this material was hot pressed at 380° C. for a predetermined time to form a sheet with a thickness of 0.8 mm.
Next, a solution in which a catalyst was dissolved (catalyst solution) was applied to the portion formed by the sheet A (corresponding to the sheet-like support of the reaction layer 2) so as to permeate into the sheet. In this way, an electrode/diaphragm assembly having a reaction layer in which a catalyst is supported on a sheet-like support made of hydrophilic carbon powder and water-repellent carbon powder is obtained. Note that the electrode/diaphragm assembly of the present invention is not limited to the above embodiments. For example, this electrode
A metal mesh can be attached to the diaphragm assembly if necessary.
When pasting a metal mesh, the position is the porous membrane 1
, surface of reaction layer 2, porous membrane 1 and reaction layer 2
It may be any between. As this metal net, one made of a metal with good electrical conductivity such as copper is suitably used. In addition, the mesh of metal mesh is
The diameter is preferably about 30 to 100, and metal fibers forming the metal mesh preferably have a diameter of about 100 to 500 μm. Such adhesion of the metal net is carried out, for example, by setting the metal net at an appropriate position when superimposing the sheets A and B, and hot-pressing the same. Experimental Example 1 A normal temperature hydrogen-oxygen fuel cell was created using the electrode/diaphragm assembly of the present invention, and the effects of the present invention were confirmed. FIG. 2 shows a schematic configuration of a prototype fuel cell. This device has an electrolyte flow path 21, a hydrogen chamber 22, and an oxygen chamber 23 provided in parallel, and between the electrolyte flow path 21 and the hydrogen chamber 22 is an electrode.
In the diaphragm assembly A, the electrolyte flow path 21 and the oxygen chamber 23 are partitioned off by an electrode/diaphragm assembly B, respectively. Further, each of the assemblies A and B is provided so that the reaction layer 2 faces the electrolyte flow path 21 side. Further, the distance between the assemblies A and B is set to 1 mm. Electrode/diaphragm assemblies A and B used in this experiment
The specifications are as follows. () Electrode/diaphragm assembly A Structure: Three-layer structure in which a reaction layer 2 with a thickness of 0.1 mm, a porous membrane 1 with a thickness of 0.5 mm, and a copper mesh are sequentially laminated. Area: 900cm 2 (a) Reaction layer 2 Composition: Carbon powder (average particle size 0.038μm)
(Hydrophilicity: Water repellency = 1:1) 70 parts by weight PTFE (average particle size 0.25 μm) 30 parts by weight Catalyst: Platinum-based, average particle size 50 Å (b) Porous membrane 1 Composition: Water-repellent carbon powder (average particle size Diameter 0.042μ
m) 70 parts by weight PTFE (average particle size 0.25μm) 30 parts by weight Porosity: 65% Pore diameter: Average 450Å () Electrode/diaphragm assembly B Structure: Reaction layer 2 with a thickness of 0.1mm and a thickness of 0.5mm A three-layer structure in which a porous membrane 1 of mm diameter and a copper net are sequentially laminated. Area: 900cm 2 (a) Reaction layer 2 Composition: Carbon powder (average particle size 0.048μm)
(Hydrophilicity: Water repellency = 1:1) 70 parts by weight PTFE (average particle size 0.25 μm) 30 parts by weight Catalyst: Nickel-based, average particle size 300Å (b) Porous membrane 1 Composition: Water-repellent carbon powder (average particle size Diameter 0.042μ
m) 65 parts by weight PTFE (average particle size 0.25 μm) 35 parts by weight Porosity: 65% Pore diameter: average 450 Å For the above water-repellent carbon powder, commercially available Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd.) was used. The hydrophilic carbon powder used was Vulcan For comparison, there is a fuel cell (Comparative Example 1) using an electrode/diaphragm assembly that differs only in that the reaction layer 2 is formed only of water-repellent carbon, and a fuel cell (comparative example 1) in which the reaction layer 2 is formed only of hydrophilic carbon. Electrodes with different points only
A fuel cell (Comparative Example 2) using the diaphragm assembly was manufactured. These fuel cells were operated as follows to examine voltage-current characteristics. During operation, a 20wt% solution of potassium hydroxide (KOH) was added to the electrolyte flow path 21 at 0.12/min, 2.2Kg/
cm 2・G (gauge pressure), and pressure is supplied to the hydrogen chamber 22.
Hydrogen at a pressure of 0.05 Kg/cm 2 G is supplied at a rate of 1.0/min, and oxygen at a pressure of 0.05 Kg/cm 2 G is supplied to the oxygen chamber 23 at a rate of 0.5 Kg/cm 2 G per minute.
(Standard condition) I supplied it. The results are shown in Figure 3. As a result, it was confirmed that the reaction efficiency was significantly improved by using the electrode/diaphragm assembly of the present invention comprising water-repellent carbon powder and hydrophilic carbon powder. This is because the electrode/diaphragm assembly of the present invention has good gas permeability, so hydrogen gas and oxygen gas quickly enter the electrode/diaphragm assemblies A and B and are subjected to electrode reactions. It seems to be for a reason. Experimental Example 2 A gas separation and purification device 3 using the electrode/diaphragm assembly of the present invention was prototyped, and oxygen was separated from air. FIG. 4 shows a schematic configuration of a prototype gas separation and purification device 3. This device has a raw material gas chamber 4, a solution distribution chamber 5, and a gas recovery chamber 6 provided in parallel.
The gas recovery chamber 6 and the solution distribution chamber 5 are separated by an electrode/diaphragm assembly B. Further, in the electrode/diaphragm assemblies A and B, the reaction layers 2 and 2 are connected to the solution distribution chamber 5, respectively.
It is mounted facing the side. Further, the distance between the assemblies A and B is set to 1 mm. In this experiment, the same electrode/diaphragm assemblies A and B as in Experimental Example 1 were used. A 20wt% solution of potassium hydroxide (KOH) is added at a rate of 0.12% to the solution distribution chamber 5 of this gas separation and purification device 3.
2.2 kg/cm 2 ·G (gauge pressure). In addition, air of 0.01Kg/cm 2・G is added to the raw material gas chamber 4 at 80
/min. Then, assembly A is used as a cathode and assembly B is used as an anode, and a voltage lower than the voltage (1.25V) required for water electrolysis is applied between these assemblies A and B.
A voltage of 0.96V and a current of 450A were applied. When the device was operated under the above conditions, the purity was 99.99% and the pressure was 2 kg/cm 2 G (approx.
3atm) of oxygen was obtained at a rate of 1.56 (standard conditions) per minute. Then, instead of the above potassium hydroxide solution,
When a similar experiment was conducted using a 20wt% sodium hydroxide solution, oxygen (purity 99.99%) could be separated at a rate of 1.55/min under standard conditions. The electrode/diaphragm assembly of the present invention has strong pressure resistance (approximately
20 Kg/cm 2 or more), the gas separation and purification device 3 equipped with the electrode/diaphragm assembly of the present invention can maintain a high pressure in the solution distribution chamber 5. Furthermore, in this apparatus, since the electrode/diaphragm assemblies A and B have good gas permeability, a gas having a pressure almost equal to the pressure in the solution flow chamber 5 was obtained. Therefore, by increasing the pressure in the solution distribution chamber 5, a large amount of high-pressure oxygen can be produced. Experimental Example 3 Hydrogen gas was purified using the gas separation and purification device 3 having the same structure as Experimental Example 2. Electrode/diaphragm assemblies A and B used in this experiment
The specifications are as follows. () Electrode/diaphragm assembly A Structure: Three-layer structure in which a reaction layer 2 with a thickness of 0.1 mm, a porous membrane 1 with a thickness of 0.5 mm, and a copper film are sequentially laminated. Area: 900cm 2 (a) Reaction layer 2 Composition: 70 parts by weight of carbon, average particle size 0.038μm
(Water repellency: hydrophilicity = 1:1) 30 parts by weight of PTFE, average particle size 0.25 μm Catalyst: Platinum-based, particle size 50 Å (b) Porous membrane 1 Composition: 70 parts by weight of water-repellent carbon, (average particle size
0.042μm) PTFE 30 parts by weight, average particle size 0.25μm Porosity: 64% Pore diameter: Average 440Å () Electrode/diaphragm assembly B Structure: 0.1mm thick reaction layer 2 and 0.5mm thick gas permeation A three-layer structure in which layer 1 and a copper net are laminated in sequence. Area: 900cm 2 (a) Reaction layer 2 Composition: 70 parts by weight of carbon, average particle size 0.038μm
(Water repellency: hydrophilicity = 1:1) 30 parts by weight of PTFE, average particle size 0.25 μm Catalyst: Platinum-based, particle size 50 Å (b) Porous membrane 1 Composition: 70 parts by weight of water-repellent carbon, (average particle size
0.042 μm) PTFE 30 parts by weight, average particle size 0.25 μm Porosity: 64% Pore diameter: Average 440 Å A 5% by weight dilute sulfuric acid solution was supplied at 0.2/min and 2.2 Kg/cm 2 ·G. In addition, hydrogen gas containing oxygen and nitrogen with a purity of 99% is added to the raw material gas chamber 4 at a rate of 0.01Kg/cm 2・G, 8/
Supplied in minutes. Then, assembly A is used as an anode and assembly B is used as a cathode, and the voltage between assemblies A and B is 0.2V (this value is lower than the minimum voltage of 1.25V required for water electrolysis).
Then, a current of 900A was applied. When the apparatus was operated under the above conditions, hydrogen gas with a purity of 99.999% and a pressure of 2 kg/cm 2 ·G was obtained from the gas recovery chamber 6 at 6.26 times per minute in terms of standard conditions. With this equipment, the energy required to purify 1m3 of hydrogen gas under standard conditions is 0.48KW・hr
It was hot. On the other hand, in the case of hydrogen purification using conventional palladium membrane, the power consumption is 1.0KW・hr/m 3 , and in the case of cryogenic hydrogen purification, it is 1.2KW・hr/m 3 , and the electrode/diaphragm assembly of the present invention It has been confirmed that the gas separation and purification device 3 equipped with the above can efficiently purify hydrogen gas. Experimental Example 4 A gas generator using the electrode/diaphragm assembly of the present invention was prototyped to produce hydrogen gas and oxygen gas. FIG. 5 shows a schematic configuration of a prototype gas generator 7. This device has generated gas recovery chambers 9 and 10 provided on both sides of a solution distribution chamber 8.
and are separated by electrode/diaphragm assemblies A and B, respectively. The electrode/diaphragm assemblies A and B are attached so that the reaction layers 2 and 2 face the solution flow chamber 8, respectively, and the distance between the membranes A and B is set to 1 mm. Electrode/diaphragm assemblies A and B used in this experiment
The specifications are as follows. () Electrode/diaphragm assembly A Structure: Three-layer structure in which a reaction layer 2 with a thickness of 0.1 mm, a porous membrane 1 with a thickness of 0.5 mm, and a copper mesh are sequentially laminated. Area: 900cm 2 (a) Reaction layer 2 Composition: 65 parts by weight of carbon, average particle size 0.042μm
(Water repellency: hydrophilicity = 1:1) 35 parts by weight of PTFE, average particle size 0.25 μm Catalyst: RuO 2 system, particle size 100 Å (b) Porous membrane 1 Composition: 70 parts by weight of water-repellent carbon, (average particle size
0.042 μm) 30 parts by weight of PTFE, average particle size 0.25 μm Porosity: 65% Pore diameter: Average 460 Å () Electrode/diaphragm assembly B Structure: 0.1 mm thick reaction layer 2 and 0.5 mm thick porosity A three-layer structure in which the membrane 1 and the copper mesh are sequentially laminated. Area: 900cm 2 (a) Reaction layer 2 Composition: 70 parts by weight of carbon, average particle size 0.038μm
(Water repellency: hydrophilicity = 1:1) 30 parts by weight of PTFE, average particle size 0.25 μm Catalyst: Platinum-based, particle size 50 Å (b) Porous membrane 1 Composition: 70 parts by weight of water-repellent carbon, (average particle size
0.042 μm) PTFE 30 parts by weight, average particle size 0.25 μm Porosity: 65% Pore diameter: Average 450 Å %
While supplying dilute sulfuric acid solution at 0.12/min at 2.2Kg/cm 2 G, a voltage is applied between electrode/diaphragm assembly A and B.
1.8V and a current of 900A were applied. At this time, assembly A
was used as the anode, and assembly B was used as the anode. When the apparatus was operated under the above conditions, oxygen gas was supplied from the generated gas recovery chamber 9 at 3.13 times per minute (under standard conditions), and hydrogen gas was supplied from the generated gas recovery chamber 10 at 3.13 minutes per minute.
6.25 (under standard conditions) could be obtained. Next, we conducted a similar experiment using an alkaline solution (25wt% potassium hydroxide solution), a neutral solution (20wt% sodium sulfate solution), etc. instead of the sulfuric acid solution, and found that oxygen gas and hydrogen gas were also We were able to produce efficiently. Experimental Example 5 Using the gas generator 7 of Experimental Example 4, carbon dioxide gas and hydrogen gas were produced. Electrode/diaphragm assemblies A and B used in this experiment
The specifications are as follows. () Electrode/diaphragm assembly A Structure: Three-layer structure in which a reaction layer 2 with a thickness of 0.1 mm, a porous membrane 1 with a thickness of 0.5 mm, and a copper mesh are sequentially laminated. Area: 900cm 2 (a) Reaction layer 2 Composition: 70 parts by weight of carbon, (average particle size 0.042μ
m) (Water repellency: Hydrophilicity = 1:1) PTFE 30 parts by weight, average particle size 0.25 μm Catalyst: Platinum catalyst with particle size 50 Å and particle size 100
(b) Porous membrane 1 Composition: 70 parts by weight of water-repellent carbon, (average particle size
0.042μm) 30 parts by weight of PTFE, average particle size 0.25μm Porosity: 65% Pore diameter: Average 450Å () Electrode/diaphragm assembly B Structure: 0.1mm thick reaction layer 2 and 0.5mm thick pores It has a three-layer structure in which a transparent film 1 and a copper net are sequentially laminated. Area: 900cm 2 (a) Reaction layer 2 Composition: 70 parts by weight of carbon, average particle size 0.038μm
(Water repellency: hydrophilicity = 1:1) 30 parts by weight of PTFE, average particle size 0.25 μm Catalyst: Platinum-based, particle size 50 Å (b) Porous membrane 1 Composition: 70 parts by weight of water-repellent carbon, (average particle size
0.042μm) 30 parts by weight of PTFE, average particle size 0.25μm Porosity: 65% Pore diameter: Average 450Å First, add methanol to 0.5mol/diluted sulfuric acid solution.
A raw material solution containing 10 vol% mixture was prepared. and,
This raw material solution is introduced into the solution distribution chamber 8 of the gas generator 7.
While supplying at 0.1/min, 2.0Kg/cm 2・G, the electrode
Voltage 0.6 to 0.7V between diaphragm assembly A and B, current 450A
was applied. At this time, assembly A is the anode, assembly B
was used as the cathode. Further, the temperature of the raw material solution was 65°C. When the device was operated under the above conditions, carbon dioxide gas with a purity of 99.9% and a pressure of 1.5 kg/cm 2 G was released from the generated gas recovery chamber 9 at a rate of 1.03 per minute in standard conditions, and from the generated gas recovery chamber 10 with a purity of 99.9%. %, pressure 1.5Kg/
Converting cm2・G of hydrogen gas to the standard state is 6.24 per minute.
I was able to get it. In this device, since methanol has a depolarizing effect, it was possible to significantly reduce power consumption. "Effects of the Invention" The reaction layer of the electrode/diaphragm assembly of the present invention is formed in a porous sheet-like support formed by bonding and fixing hydrophilic carbon powder and water-repellent carbon powder in a mixed and dispersed state. Since it supports a catalyst, it is porous and has a large surface area. Hydrophilic carbon powder, which adsorbs the solution and uses it for reaction, is dispersed in the sheet-like support that forms this reaction layer, so the solution passes through the hydrophilic carbon powder and permeates into the reaction layer, causing the reaction to take place. It will be a partaker. Furthermore, in the electrode/diaphragm assembly of the present invention, hydrophilic carbon powder and water-repellent carbon powder are dispersed in the sheet-like support forming the reaction layer, so that the solution that has entered the reaction layer is The force of being repelled by the water-repellent carbon powder and adsorbed by the hydrophilic carbon powder acts. Therefore, even if the electrolytic solution permeates into the pores of the reaction layer, the voids necessary for gas circulation can be easily formed in the reaction layer. Therefore, the electrode/diaphragm assembly of the present invention exhibits good gas permeability. Since the gas flows smoothly in this way, the large surface area of the reaction layer made of the porous sheet-like support is effectively utilized, and high reaction efficiency is achieved. Therefore, the electrode of the present invention
The membrane assembly has both good gas permeability and high reaction efficiency. Furthermore, since the electrode/diaphragm assembly of the present invention exhibits gas permeability as described above, it is possible to further increase the carbon packing density while maintaining good gas permeability. Therefore, the electrode/diaphragm assembly of the present invention has a current density of 100 to 500 A/dm 2
This can be significantly improved. (In conventional general water electrolysis equipment, it was about 10 to 20 A/ dm2 .) Furthermore, the electrode/diaphragm assembly of the present invention has a high pressure resistance as a result of various tests. It was confirmed that there was (more than 20Kg/cm 2 ). As described above, since the electrode/diaphragm assembly of the present invention has strong pressure resistance and good gas permeability, a gas separation and purification device or a gas generation device equipped with the same can maintain a high pressure in the solution flow chamber. This makes it possible to refine and produce large quantities of high-pressure gas. In addition, in these devices, by applying pressure to the electrolyte,
Since high-pressure gas can be obtained from each electrode without mixing, it can also be used as a gas pressure booster. Furthermore, since the electrode/diaphragm assembly of the present invention has good gas permeability, when used in electrolytic treatment, the surface will not be covered with generated gas bubbles, preventing depolarization. high current efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電極・隔膜組立体の一実施例
を示す断面図、第2図は実験例1で用いた水素−
酸素燃料電池の構造を示す概略図、第3図は実験
例1で得られた結果を示す電圧−電流特性のグラ
フ、第4図および第5図はそれぞれ本発明の電
極・隔膜組立体を利用したガス発生装置を示す概
略構成図である。 1……多孔性膜、2……反応層。
FIG. 1 is a sectional view showing one embodiment of the electrode/diaphragm assembly of the present invention, and FIG.
A schematic diagram showing the structure of an oxygen fuel cell, FIG. 3 is a graph of voltage-current characteristics showing the results obtained in Experimental Example 1, and FIGS. 4 and 5 each use the electrode/diaphragm assembly of the present invention. 1 is a schematic configuration diagram showing a gas generator according to the present invention. 1... Porous membrane, 2... Reaction layer.

Claims (1)

【特許請求の範囲】 1 微粒子が結合されてなりかつガス透過性があ
つて不透水性の多孔性膜と、該多孔性膜の表面に
設けられた反応層とからなる電極・隔膜組立体で
あつて、 前記反応層が、親水性カーボン粉末および撥水
性カーボン粉末がバインダーにより結合されてな
る多孔質なシート状支持体と、このシート状支持
体中に担持された触媒とにより形成されているこ
とを特徴とする電極・隔膜組立体。
[Claims] 1. An electrode/diaphragm assembly comprising a gas-permeable and water-impermeable porous membrane in which fine particles are bonded, and a reaction layer provided on the surface of the porous membrane. The reaction layer is formed of a porous sheet-like support formed by bonding hydrophilic carbon powder and water-repellent carbon powder with a binder, and a catalyst supported on the sheet-like support. An electrode/diaphragm assembly characterized by the following.
JP60154882A 1985-07-13 1985-07-13 Gas permeable membrane Granted JPS6217193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154882A JPS6217193A (en) 1985-07-13 1985-07-13 Gas permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154882A JPS6217193A (en) 1985-07-13 1985-07-13 Gas permeable membrane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62328802A Division JPH0668157B2 (en) 1987-12-25 1987-12-25 Gas permeable membrane manufacturing method

Publications (2)

Publication Number Publication Date
JPS6217193A JPS6217193A (en) 1987-01-26
JPH0124868B2 true JPH0124868B2 (en) 1989-05-15

Family

ID=15594014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154882A Granted JPS6217193A (en) 1985-07-13 1985-07-13 Gas permeable membrane

Country Status (1)

Country Link
JP (1) JPS6217193A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483501A (en) * 1987-09-25 1989-03-29 Shirakawa Seisakusho Kk Hydrogen purifying device
JPS6483503A (en) * 1987-09-28 1989-03-29 Shirakawa Seisakusho Kk Oxygen concentrating device
JP2890486B2 (en) * 1989-06-20 1999-05-17 松下電器産業株式会社 Fuel electrode catalyst for liquid fuel cell and method for producing the same
JPH07211323A (en) * 1994-01-25 1995-08-11 Matsushita Electric Ind Co Ltd Air electrode, manufacture thereof, and air battery using the electrode
JP2691247B2 (en) * 1994-02-25 1997-12-17 バブコック日立株式会社 Shooting training equipment
JP4742395B2 (en) * 1999-08-03 2011-08-10 株式会社エクォス・リサーチ Air electrode for fuel cell
JP2003132900A (en) * 2001-10-22 2003-05-09 Ube Ind Ltd Metal dispersed carbon film structure, fuel cell electrode, electrode joint body, and fuel cell
JP2003151565A (en) * 2001-11-08 2003-05-23 Nissan Motor Co Ltd Electrode for fuel cell and fuel cell using it
ITMI20060726A1 (en) * 2006-04-12 2007-10-13 De Nora Elettrodi S P A ELECTRIC DIFFUSION ELECTRODE FOR CELLS WITH ELECTROLYTE DISCHARGE
JP2007123284A (en) * 2006-12-19 2007-05-17 Ube Ind Ltd Metal dispersed carbon film structure, electrode for fuel cell, electrode assembly, and fuel cell
JP2013253269A (en) * 2012-06-05 2013-12-19 Sharp Corp Carbon dioxide reduction device
JP2013253270A (en) * 2012-06-05 2013-12-19 Sharp Corp Carbon dioxide reduction device
GB201322494D0 (en) * 2013-12-19 2014-02-05 Johnson Matthey Fuel Cells Ltd Catalyst layer
JP2018090838A (en) * 2016-11-30 2018-06-14 昭和シェル石油株式会社 Carbon dioxide reduction apparatus
JPWO2018182006A1 (en) * 2017-03-31 2019-11-07 旭化成株式会社 Diaphragm, electrolytic cell, and hydrogen production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133386A (en) * 1982-09-07 1984-07-31 Asahi Glass Co Ltd Manufacture of gas diffusing electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133386A (en) * 1982-09-07 1984-07-31 Asahi Glass Co Ltd Manufacture of gas diffusing electrode

Also Published As

Publication number Publication date
JPS6217193A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
CA1179630A (en) Halide electrolysis in cell with catalytic electrode bonded to hydraulically permeable membrane
US20020068213A1 (en) Multiple layer electrode for improved performance
JPH0124868B2 (en)
WO2001039307B1 (en) Direct methanol cell with circulating electrolyte
JPH10512922A (en) Bidirectional ion exchange medium support for water electrolyzers.
JP2009513820A (en) Membrane electrode assembly for water electrolysis
WO1996005336A1 (en) Electrochemical device for removal and regeneration of oxygen and method
JPH07296818A (en) Polymer solid electrolyte fuel cell electrode and joint of same with polymer solid electrolyte
EP3543377A1 (en) Apparatus for producing organic hydride and method for producing organic hydride
US5536379A (en) Gas diffusion electrode
US20220333257A1 (en) Organic hydride production device
JPH0631457B2 (en) Multilayer structure for electrode-membrane assembly and electrolysis method using same
JPH0668157B2 (en) Gas permeable membrane manufacturing method
JP2020122172A (en) Water electrolysis laminate and water electrolysis apparatus using the same
JP2840753B2 (en) Ozone electrolytic production method
JP3078570B2 (en) Electrochemical electrode
JPH09510571A (en) Electrochemical cell containing carbon fiber paper coated with catalytic metal particles
JPS61230266A (en) New gas diffusion electrode
JPH0570716B2 (en)
AU687884B2 (en) Electrochemical device for removal and regeneration of oxygen and method
JPH11241196A (en) Solid high molecular electrolyte-catalyst combined electrode
JP2024053494A (en) Electrodes, membrane electrode assemblies, electrochemical cells, stacks, electrolyzers
JP2024055578A (en) Electrodes, membrane electrode assemblies, electrochemical cells, stacks, electrolyzers
CA3238313A1 (en) Structural design of an electrochemical cell
KR20210058106A (en) Purification method of hydrogen produced through hydroelectrolysis using palladium-containing hydrogen separation membrane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term