JPH01246519A - Dustproofing device for optical parts - Google Patents

Dustproofing device for optical parts

Info

Publication number
JPH01246519A
JPH01246519A JP7329088A JP7329088A JPH01246519A JP H01246519 A JPH01246519 A JP H01246519A JP 7329088 A JP7329088 A JP 7329088A JP 7329088 A JP7329088 A JP 7329088A JP H01246519 A JPH01246519 A JP H01246519A
Authority
JP
Japan
Prior art keywords
dry air
cylindrical body
optical parts
cylinder
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7329088A
Other languages
Japanese (ja)
Inventor
Toshiaki Miyazaki
宮崎 俊秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7329088A priority Critical patent/JPH01246519A/en
Publication of JPH01246519A publication Critical patent/JPH01246519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To protect optical parts against sticking of dust and dirt contained in the ambient atmosphere by utilizing a cylindrical body having double structures to form a toric outflow port and adjusting the quantity of the dry air to be discharged to a specific value. CONSTITUTION:The dry air is supplied to the gap B formed to a circumferential shape through plural pieces of supply ports 6 circumferentially at equal intervals on the outside cylinder 4 having a cylindrical shape so that this dry air leaks from between the open end part of the inside cylinder and the optical parts to fill the inside of the cylindrical body. The dry air forms the flow heading toward the outside over the entire area of the cylindrical body 5 when the flow rate of the dry air is so adjusted that the Reynolds number attains 200<=Re<=500. The stagnation of very slight fine powder is then merely generated in the central part at the outlet of the inside cylinder 5 and the infiltration thereof into the deep inside part is obviated. Sticking of the dust in the ambient atmosphere to the optical parts is thereby averted and the degradation in output and the deterioration of the optical parts are prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はレーザ加工装置に使用される光学部品を防塵す
るための構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a structure for dustproofing optical components used in laser processing equipment.

(従来の技術) 従来より炭酸ガスレーザなどの高出力レーザを利用した
加工装置が共されている。この様な加工装置においては
、使用される塵埃や、加工するワークから発生する粉塵
などが光学部品に付着するとレーザ光の吸収率が高まり
、レーザ光の伝達が阻害されて加工機の能力を低下させ
たり、光学部品の寿命を低下させる。光学部品の中でも
レーザ発振器の出力ウィンドーやビームスプリッタ−な
どの透過性の誘電体は自由な冷却構造を採りにくいので
、粉塵が付着してしまった場合には熱レンズ効果が発生
する。ここでこの熱レンズ効果とは、光学部品がレーザ
光を吸収することにより熱応力を発生して実質的に光学
レンズのような作用を生じさせ、レーザ光の伝達特性を
損なってしまう現象を言う。
(Prior Art) Processing devices that utilize high-power lasers such as carbon dioxide lasers have been commonly used. In such processing equipment, if dust used or generated from the workpiece adheres to the optical parts, the absorption rate of laser light will increase, hindering the transmission of laser light and reducing the performance of the processing machine. or reduce the life of optical components. Among optical components, transparent dielectric materials such as the output window of a laser oscillator and a beam splitter are difficult to form a free cooling structure, so if dust adheres to them, a thermal lens effect occurs. Thermal lens effect here refers to a phenomenon in which optical components absorb laser light and generate thermal stress, essentially acting like an optical lens and impairing the transmission characteristics of laser light. .

従って、出力ウィンドーやビームスプリッタ−などは発
振器のケース内や専用の箱の中に収納されているので、
これを完全に防塵構造とすることによりこの様な現象を
防止することも考えられるが、これらのケースや箱には
レーザ光を通過させるための穴が必要であることから、
密閉する様な構造は不可能である。
Therefore, the output window, beam splitter, etc. are housed inside the oscillator case or in a special box.
It may be possible to prevent this phenomenon by making it completely dust-proof, but since these cases and boxes require holes for the laser light to pass through,
A hermetically sealed structure is impossible.

従って従来より、光学部品に塵埃や粉塵を付着させない
ための対策として一般に光学部品の周囲にドライエアを
流す方法がとられている。この方法は、第7図に示すよ
うに図示しないレーザ発振容器に光学部品1を取付ける
ためのマウント2の反対側に円筒材11を取付けている
。円筒材11にはドライエア供給口12を有しており、
調整バルブ7を介して図示しないドライエア供給源から
円筒材11内部にドライエアを供給する。
Therefore, conventionally, as a measure to prevent dust and dust from adhering to optical components, a method of flowing dry air around optical components has generally been taken. In this method, as shown in FIG. 7, a cylindrical member 11 is attached to the opposite side of a mount 2 for attaching the optical component 1 to a laser oscillation container (not shown). The cylindrical member 11 has a dry air supply port 12,
Dry air is supplied to the inside of the cylindrical member 11 from a dry air supply source (not shown) via the regulating valve 7 .

(発明が解決しようとする課題) ところがドライエアを光学部品の周囲に流す方法におい
ても、単に吹流しただけでは光学部品を塵埃や粉塵の付
着から完全に防止できるものではないことが経験的に知
られている。この理由としてドライエアを単に吹流した
場合には、第8図に示すようにドライエアが周囲の塵埃
や粉塵を含む雰囲気を巻込んでしまうことが考えられる
。レーザ加工機を長期に安定して稼働させる上では、雰
囲気中の塵埃や粉塵の巻込み、ひいてはこれらの光学部
品への付着はできるだけ完全に防止しなければならない
(Problem to be Solved by the Invention) However, even in the method of flowing dry air around optical components, it is known from experience that simply blowing dry air cannot completely prevent optical components from adhering to dust and dust. ing. One possible reason for this is that when dry air is simply blown, the dry air entrains surrounding dust and an atmosphere containing dust, as shown in FIG. In order to operate a laser processing machine stably over a long period of time, it is necessary to completely prevent dust and dust from getting into the atmosphere and, ultimately, from adhering to optical components.

これより本発明においては、光学部品を周囲の雰囲気に
含まれる塵埃や粉塵の付着から保護することにより、出
力の低下や光学部品の劣化を防止できる光学部品の防塵
装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a dustproof device for optical components that can prevent a decrease in output and deterioration of optical components by protecting the optical components from adhesion of dust and dust contained in the surrounding atmosphere. do.

[発明の構成] (課題を解決するための手段) すなわち本発明は、断面がコの字形状をなす様に二重円
筒の一端の周間を閉塞して円周状に空隙を形成して、こ
の二重円筒の外筒が内筒よりも突出してなる様に円筒体
を構成し、光学部品の一方の面側にこの円筒体の開放端
側の外側筒をマウントを介して取付ける。そして、円筒
体の外筒にドライエアの供給口を複数個等間隔に設け、
この供給口を介して円周状の空隙にドライエア供給装置
によりドライエアを供給する様にした構成に特徴を有す
る。
[Structure of the Invention] (Means for Solving the Problems) That is, the present invention is characterized in that a gap is formed circumferentially by closing the circumference of one end of a double cylinder so that the cross section forms a U-shape. The cylindrical body is constructed such that the outer cylinder of the double cylinder protrudes beyond the inner cylinder, and the outer cylinder on the open end side of the cylindrical body is attached to one surface of the optical component via a mount. Then, a plurality of dry air supply ports are provided at equal intervals on the outer cylinder of the cylindrical body,
The present invention is characterized by a structure in which dry air is supplied to the circumferential gap through this supply port by a dry air supply device.

(作 用) 上述した構成により本発明においては、ドライエア供給
装置から円筒体の外筒に設けられた供給口を介して円周
状に形成された空隙にドライエアを供給し、このドライ
エアが内筒の開放端部と光学部品との間からもれだして
円筒体内を満たす。
(Function) With the above-described configuration, in the present invention, dry air is supplied from the dry air supply device to the circumferentially formed gap through the supply port provided in the outer cylinder of the cylindrical body, and this dry air is supplied to the inner cylinder. It leaks from between the open end of the lens and the optical component and fills the cylindrical body.

従って、周囲の雰囲気に含まれる粉塵や塵埃が内筒に入
り込んで光学部品に塵埃が付着することがなくなるので
、出力の低下や光学部品の劣化を防止することが可能に
なる。
Therefore, dust and dirt contained in the surrounding atmosphere will not enter the inner cylinder and adhere to the optical components, making it possible to prevent a decrease in output and deterioration of the optical components.

(実施例) 以下に本発明の第一実施例を第1図を参照して説明する
。同図は出力ウィンドーに取付けた防塵装置の断面図で
ある。1は光学部品としての出力ウィンドーでマウント
2を介して図示しないレーザ発振器に取付けられている
。そして、マウント2のレーザ発振器と反対側に円筒体
3が取付けられる。円筒体3は出力ウィンドー1に固定
される外筒4と、この内側に出力ウィンドー1と反対の
径大部5aで外筒4に気密に保持され、外筒4との間に
所定の間隔を有して円周状の空隙Aを形成する内筒5と
からなる。内筒5は外筒4よりも軸方向長さが短く出力
ウィンドー1との間には所定の隙間Bを有している。ま
た、外筒4には清浄な乾燥空気(ドライエア)の供給口
6が複数個、周方向等間隔に設けられ、ドライエア調整
バルブ7を介して図示しないドライエア供給源に接続さ
れている。
(Example) A first example of the present invention will be described below with reference to FIG. This figure is a sectional view of the dustproof device attached to the output window. Reference numeral 1 denotes an output window as an optical component, which is attached via a mount 2 to a laser oscillator (not shown). Then, the cylindrical body 3 is attached to the side of the mount 2 opposite to the laser oscillator. The cylindrical body 3 has an outer cylinder 4 fixed to the output window 1, and a large diameter part 5a opposite to the output window 1 inside the outer cylinder 4, which is airtightly held by the outer cylinder 4, and has a predetermined interval between the outer cylinder 4 and the outer cylinder 4. and an inner cylinder 5 forming a circumferential gap A. The inner cylinder 5 has a shorter axial length than the outer cylinder 4, and has a predetermined gap B between it and the output window 1. Further, a plurality of supply ports 6 for clean dry air (dry air) are provided in the outer cylinder 4 at equal intervals in the circumferential direction, and are connected to a dry air supply source (not shown) via a dry air adjustment valve 7.

以下に上述した実施例の作用について説明する。The operation of the embodiment described above will be explained below.

図示しないドライエア供給源から供給されるドライエア
は供給口6がら空隙Aに送られ、ここから円輪状に設け
られた隙間Bの全体からほぼ均一に送出され、内筒5内
に充満しながら出力ウィンドー1側から図面の左方へと
向かって流れてゆく。
Dry air supplied from a dry air supply source (not shown) is sent to the gap A through the supply port 6, and from there is sent out almost uniformly from the entire gap B provided in an annular shape, filling the inner cylinder 5 and filling the output window. It flows from side 1 towards the left side of the drawing.

このドライエアが流れていく状態を条件を変ながら実験
した結果を第2図乃至第5図を参照しながら以下に説明
する。一般に流れはレイノルズ数(Re)によってその
性質が定義付けられ、代表長さである円筒5の内径dと
、流速Uと、動粘性係数νにより表される以下の関係に
よって変化する。
The results of experiments conducted under various conditions in which dry air flows will be described below with reference to FIGS. 2 to 5. In general, the properties of a flow are defined by the Reynolds number (Re), and vary depending on the following relationship expressed by the inner diameter d of the cylinder 5, which is a representative length, the flow velocity U, and the kinematic viscosity coefficient ν.

Re    −ud/  ν 発明者等は微粉末で混濁した液体中に第1図に示した防
塵装置を浸漬し、清水を吹き流す実験を行った。この実
験結果は流れの類似則により気体流においても同様の効
果が得られるものである。
Re -ud/v The inventors conducted an experiment in which the dustproof device shown in FIG. 1 was immersed in a liquid turbid with fine powder, and fresh water was blown away. This experimental result shows that similar effects can be obtained in gas flows due to the flow similarity law.

第2図はRe<200の場合であり、円周状の空隙Aか
ら隙間Bを介して内筒5内に送出される清水の流入が少
なすぎるため内筒5内の流れが局在化し、混濁液の内筒
5内への流れが発生して出力ウィンドー1の表面への粉
塵の付着が避けられない。
FIG. 2 shows the case where Re<200, and the flow inside the inner cylinder 5 is localized because the inflow of fresh water sent into the inner cylinder 5 from the circumferential gap A through the gap B is too small. A flow of the turbid liquid into the inner cylinder 5 occurs, and adhesion of dust to the surface of the output window 1 is unavoidable.

また、Re>500の場合には第3図に示す様に、円周
状の空隙Aから隙間Bを介して内筒5内に送出される清
水の流入速度が早すぎるため、内筒5内の流れが外部に
向かって流れる周囲流と内部に向かって流れる中央回帰
流が発生し、この中央回帰流によって混濁液が円筒5内
へ流入してしまい出力ウィンドー1の表面への粉塵の付
着が避けられない。
In addition, in the case of Re>500, as shown in FIG. A peripheral flow that flows outward and a central return flow that flows inward are generated, and this central return flow causes the turbid liquid to flow into the cylinder 5 and prevent dust from adhering to the surface of the output window 1. Inevitable.

そして、200≦Re≦500の場合には、第4図に示
すように内筒5の全域に亘って外部へ向かう流れとなり
、内筒5の出口中央部にごくわずか微粉末の淀みが生じ
るだけで内深部への侵入を防止できるので、出力ウィン
ドー1の表面付近は清浄な流れのまま保護される。従っ
て、この条件の下での実施が最も望ましい。
When 200≦Re≦500, as shown in FIG. 4, the flow is directed to the outside over the entire area of the inner cylinder 5, and only a small amount of fine powder stagnates at the center of the outlet of the inner cylinder 5. Since the flow can be prevented from entering deep inside, the area near the surface of the output window 1 is protected while remaining clean. Therefore, implementation under these conditions is most desirable.

さらに、清水の流入する空隙Aへの流れを均一化するた
め供給口6の配置は円周方向に等間隔で配置されること
が望ましい。これは、例えば供給口6を1ケ所のみとし
て実験を行ったところ、レイノルズ数Reがいかなる値
であっても出力ウィンドー1を粉塵から保護出来る範囲
はなく、供給口6が2個の時に良好だった範囲において
も第5図の様に流れが局在化し、周囲の混濁液が内筒5
の内部へ侵入してしまうことから明らかである。
Furthermore, in order to equalize the flow of fresh water into the gap A, it is desirable that the supply ports 6 be arranged at equal intervals in the circumferential direction. For example, when we conducted an experiment with only one supply port 6, we found that no matter what the Reynolds number Re was, there was no range in which the output window 1 could be protected from dust. Even in the range where the flow is localized as shown in Figure 5, the surrounding turbid liquid flows into the inner cylinder 5.
This is clear from the fact that it invades the inside of the computer.

前述したようにこの実験結果は、流れの類似則により気
体流においても同様の効果が得られるものである。従っ
て、以上説明した様に2重構造の円筒体を利用して円輪
状の流出口を形成し、調整バルブ7によってそれぞれの
供給口から排出されるドライエアの量を等しくなる様に
調整することにより周囲の雰囲気中の粉塵から出力ウィ
ンドー1を保護できる。そして、このときの条件として
、レイノルズ係数Reが200≦Re≦500であるこ
とが最も望ましく、出力ウィンドー1をほぼ完全に保護
できる。
As mentioned above, this experimental result shows that similar effects can be obtained in gas flows due to the flow similarity law. Therefore, as explained above, by forming an annular outflow port using a double-layered cylindrical body and adjusting the amount of dry air discharged from each supply port using the adjustment valve 7 so that the amount of dry air is equalized. The output window 1 can be protected from dust in the surrounding atmosphere. The most desirable condition at this time is that the Reynolds coefficient Re is 200≦Re≦500, and the output window 1 can be almost completely protected.

次に第二実施例について第6図を参照して説明する。同
図は第一実施例の第1図で示した内筒5を外筒4側に保
持される内筒5aとマウント2側の内筒5bの2つに分
割したもので、このような構成によっても上述した第一
実施例と同様の作用効果が得られる。
Next, a second embodiment will be described with reference to FIG. This figure shows the inner tube 5 shown in FIG. 1 of the first embodiment divided into two parts: an inner tube 5a held on the outer tube 4 side and an inner tube 5b on the mount 2 side. Also, the same effects as in the first embodiment described above can be obtained.

尚、上述した実施例においては出力ウィンドーに適用し
た例を用いて説明したがこの他ビームスプリッタ−など
の同様の光学部品にも適宜適用可能である。
In the above-mentioned embodiments, an example in which the present invention was applied to an output window was explained, but the present invention can also be appropriately applied to other similar optical components such as a beam splitter.

[発明の効果コ 以上説明した通り本発明によれば、ドライエア供給装置
から円筒体の外筒に設けられた供給口を介して円周状に
形成された空隙にドライエアを供給し、このドライエア
が内側筒の開放端部と光学部品との間からもれだして円
筒体内はドライエアにより満たされるので、光学部品に
周囲の雰囲気中の粉塵が付着することがなくなるので、
出力の低下や光学部品の劣化を防止することが可能にな
る。
[Effects of the Invention] As explained above, according to the present invention, dry air is supplied from the dry air supply device to the circumferentially formed gap through the supply port provided in the outer cylinder of the cylindrical body, and this dry air is Since dry air leaks from between the open end of the inner cylinder and the optical component and the cylinder is filled with dry air, dust from the surrounding atmosphere will not adhere to the optical component.
It becomes possible to prevent a decrease in output and deterioration of optical components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例の断面図、第2図乃至第4
図は第一実施例による実験結果の説明図、第5図はドラ
イエア供給口がひとつの場合の実験結果の説明図、第6
図は本発明の第二実施例の断面図、第7図は従来例の断
面図、第8図は従来例の作用説明図である。 1・・・出力ウィンドー、 2・・・マウント、3・・
・円筒体、 4・・・外筒、 5・・・内筒、6・・・
供給口、 7・・・調整バルブ。 @1図 δ 第21!l δ 第3図 第4図
FIG. 1 is a sectional view of the first embodiment of the present invention, and FIGS.
The figure is an explanatory diagram of the experimental results according to the first embodiment, Figure 5 is an explanatory diagram of the experimental results when there is one dry air supply port, and the sixth
The figure is a sectional view of the second embodiment of the present invention, FIG. 7 is a sectional view of the conventional example, and FIG. 8 is an explanatory diagram of the operation of the conventional example. 1...Output window, 2...Mount, 3...
・Cylindrical body, 4...Outer cylinder, 5...Inner cylinder, 6...
Supply port, 7...adjustment valve. @1 figure δ 21st! l δ Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 断面がコの字形状をなす様に二重円筒の一端の筒間を閉
塞して円周状に空隙を形成し、前記二重円筒の外側筒が
内側筒よりも突出してなる円筒体と、 この円筒体の外側筒にドライエアの供給口を複数個等間
隔で設け、この供給口を介して前記円周状の空隙にドラ
イエアを供給するドライエア供給装置とを具備してなり
、 光学部品にマウントを介して前記円筒体の開放端側の外
側筒を取付けることを特徴とする光学部品の防塵装置。
[Claims] A gap is formed circumferentially by closing the space between the cylinders at one end of the double cylinder so that the cross section forms a U-shape, and the outer cylinder of the double cylinder protrudes more than the inner cylinder. a cylindrical body, and a dry air supply device that provides a plurality of dry air supply ports at equal intervals in the outer tube of the cylindrical body and supplies dry air to the circumferential gap through the supply ports. A dustproof device for an optical component, characterized in that an outer cylinder on the open end side of the cylindrical body is attached to the optical component via a mount.
JP7329088A 1988-03-29 1988-03-29 Dustproofing device for optical parts Pending JPH01246519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7329088A JPH01246519A (en) 1988-03-29 1988-03-29 Dustproofing device for optical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7329088A JPH01246519A (en) 1988-03-29 1988-03-29 Dustproofing device for optical parts

Publications (1)

Publication Number Publication Date
JPH01246519A true JPH01246519A (en) 1989-10-02

Family

ID=13513871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7329088A Pending JPH01246519A (en) 1988-03-29 1988-03-29 Dustproofing device for optical parts

Country Status (1)

Country Link
JP (1) JPH01246519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291390A (en) * 1993-04-02 1994-10-18 Hitachi Ltd Gas laser equipment
KR100984808B1 (en) * 2002-12-05 2010-10-04 드라카 파이버 테크놀로지 비. 브이. Method of manufacturing an optical fibre
US7855832B2 (en) * 2005-11-28 2010-12-21 Thales Optical instrument comprising an entrance cavity in which a mirror is placed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291390A (en) * 1993-04-02 1994-10-18 Hitachi Ltd Gas laser equipment
KR100984808B1 (en) * 2002-12-05 2010-10-04 드라카 파이버 테크놀로지 비. 브이. Method of manufacturing an optical fibre
US7855832B2 (en) * 2005-11-28 2010-12-21 Thales Optical instrument comprising an entrance cavity in which a mirror is placed

Similar Documents

Publication Publication Date Title
US4196775A (en) Shock-mounted, liquid cooled cold plate assembly
CA2105743C (en) Electrostatic discharge control during jet spray
CA2396643A1 (en) Optical machining device
US6449107B2 (en) Optical beam scanning device
EP2956714B1 (en) Methods and apparatus for use with extreme ultraviolet light having contamination protection
JPH01246519A (en) Dustproofing device for optical parts
US4560289A (en) Spindle mounting assembly with squeeze film damping
US4896247A (en) Robot vision cooling/protection system
US3553726A (en) Vibrometer with sealed magnet capsule
JPH06167670A (en) Air cooling type dust-proof camera housing
US4439862A (en) Rigid laser mirror mount and protection assembly
US5268919A (en) Gas laser oscillating device
JPS61244081A (en) Metal ion laser
EP0883029B1 (en) Exposure apparatus
US5151916A (en) Electric discharge tube for gas laser
CA2043512A1 (en) Gas laser apparatus
US6470037B1 (en) Stimulated brillouin scattering cell housing
US3101412A (en) Spore growth prevention in optical instruments
US2406211A (en) Bubble cell
JPS5766682A (en) Mounting device for solid state laser rod
JPH053355A (en) Solid-state laser medium
JP2784706B2 (en) Gas laser device
JPH0237710B2 (en)
JPS6126275A (en) Cooling device for laser optical component
JPS55132088A (en) Semiconductor laser device