JPH01246371A - Manufacture of oxide superconducting film - Google Patents

Manufacture of oxide superconducting film

Info

Publication number
JPH01246371A
JPH01246371A JP63019557A JP1955788A JPH01246371A JP H01246371 A JPH01246371 A JP H01246371A JP 63019557 A JP63019557 A JP 63019557A JP 1955788 A JP1955788 A JP 1955788A JP H01246371 A JPH01246371 A JP H01246371A
Authority
JP
Japan
Prior art keywords
substrate
cuo
superconducting
layer
cuo layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63019557A
Other languages
Japanese (ja)
Inventor
Hisaaki Okazaki
岡崎 久晃
Shuichi Shibata
修一 柴田
Takao Kimura
隆男 木村
Takeshi Kitagawa
毅 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63019557A priority Critical patent/JPH01246371A/en
Publication of JPH01246371A publication Critical patent/JPH01246371A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To use even Al2O3, BeO, etc., as a substrate by forming a thin superconducting oxide film on a CuO layer previously formed on a substrate and providing a composition increased in CuO content to subject crystals to C-axial orientation on the substrate. CONSTITUTION:For example, Cu alkoxide is applied to a substrate (e.g., of Al2O3, BeO, or SrTiO3) and then heat treatment is applied to the above, by which a CuO layer is formed on the substrate surface. Subsequently, a thin oxide film of Ln-R-Cu-O type (where Ln and R represent Y or lanthanide-series elements and alkaline earth metal elements, respectively) is formed on the above CuO layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種の素子に適用可能な、酸化物超伝導膜の
作製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an oxide superconducting film that can be applied to various devices.

[従来技術] 現在、超伝導膜の作製技術としてプラズマ溶射法、蒸着
法およびスパッタ法などのような気相法、スクリーン法
およびスビーナ法などのように基板の上に超伝導材料を
塗布する方法が検討されている。
[Prior art] At present, superconducting film manufacturing techniques include vapor phase methods such as plasma spraying, vapor deposition, and sputtering, and methods of applying superconducting material onto a substrate such as screen method and subina method. is being considered.

[発明が解決しようとする課題] しかしながら、これらの方法はそれぞれいくつかの問題
点を有している。
[Problems to be Solved by the Invention] However, each of these methods has several problems.

例えば、蒸着法およびスパッタ法で作った膜の組成は原
料の組成とは異なることが多く、また、膜形成後加熱処
理を行う必要がある。
For example, the composition of films made by vapor deposition and sputtering methods often differs from the composition of the raw materials, and it is also necessary to perform heat treatment after film formation.

また、スクリーン法では、例えばLnBa2Cu307
−×(LnはYまたはランタノイド元素)超伝導膜をセ
ラミックス基板上に形成すると、電流の流れる結晶軸。
In addition, in the screen method, for example, LnBa2Cu307
-x (Ln is Y or a lanthanide element) When a superconducting film is formed on a ceramic substrate, the crystal axis through which current flows.

、bを基板に対して平行に配向させることができず、こ
のため臨界電流値を大きくとることができないという問
題点があった。
, b cannot be oriented parallel to the substrate, and therefore a large critical current value cannot be obtained.

さらに、Al2O3あるいはSrTiO3を基板とする
場合、加熱処理するとぎに塗布した超伝導材料と基板材
料との反応により組成ずれを起こし、超伝導相を形成す
ることが出来ないなどという問題も生じ、使用すること
のできる基板も限られていた。
Furthermore, when Al2O3 or SrTiO3 is used as a substrate, there is a problem that a composition shift occurs due to a reaction between the applied superconducting material and the substrate material after heat treatment, making it impossible to form a superconducting phase. There were also a limited number of substrates that could be used.

本発明の目的は、上述の問題点を解決し、スクリーン法
、スプレー法およびスピーチ法等によって、基板上に超
伝導材料を塗布し、これを加熱処理する際に結晶配向を
起こさせ、かつ、超伝導材料を塗布する基板の種類を広
げることができる酸化物超伝導膜の作製方法を提供する
ものである。
An object of the present invention is to solve the above-mentioned problems, to coat a superconducting material on a substrate by a screen method, a spray method, a speech method, etc., and to cause crystal orientation when heat-treating the superconducting material, and The present invention provides a method for producing an oxide superconducting film that can expand the types of substrates on which superconducting materials can be applied.

[課題を解決するための手段] このような目的を達成するために、本発明は、基板上に
CuO層を少なくとも一層形成し、CuO層上にLn−
R−Cu−0系(LnはYまたはランタノイド元素、R
はアルカリ土類金属元素)からなる酸化物薄膜を形成す
ることを特徴とするものである。
[Means for Solving the Problem] In order to achieve such an object, the present invention forms at least one CuO layer on a substrate, and Ln-
R-Cu-0 system (Ln is Y or a lanthanoid element, R
is characterized by forming an oxide thin film consisting of an alkaline earth metal element).

[作 用] 本発明は、基板上にCuO層を少なくとも一層形成後、
その上にLn−R−Cu−0系からなる酸化物薄膜を形
成することを特徴とするもので、この方法により、以下
の利点が明らかになった。
[Function] In the present invention, after forming at least one CuO layer on a substrate,
This method is characterized by forming an oxide thin film of Ln-R-Cu-0 system thereon, and the following advantages have been revealed by this method.

■ CuO層を最初に形成することにより、CuOが多
い超伝導材料組成になり、このため、イツトリウム安定
化ジルコニア(YSZ)等のようなセラミックス基板上
で超伝導薄膜を、C軸が基板に垂直になる方向に配向さ
せることができる。
■ Forming the CuO layer first results in a CuO-rich superconducting material composition, which allows the superconducting thin film to be deposited on a ceramic substrate such as yttrium stabilized zirconia (YSZ) with the C axis perpendicular to the substrate. It can be oriented in the direction of

このように配向する理由は必ずしも明確ではないが、C
uが多い組成では、配向する傾向の強いことが本発明者
により確認されている。すなわち、CuO,BaOおよ
びY2O3の融点がそれぞれ1232℃、 1923℃
および2440℃であることを考えると、CuOが最も
早く反応を起こし、配向の原因になるものと思われる。
The reason for this orientation is not necessarily clear, but C
The present inventor has confirmed that a composition with a large amount of u has a strong tendency to be oriented. That is, the melting points of CuO, BaO, and Y2O3 are 1232°C and 1923°C, respectively.
Considering that the temperature is 2440° C., it is thought that CuO reacts most quickly and becomes the cause of orientation.

■従来、塗布などの手段で薄膜を形成すると、超伝導材
料であるLn−R−Cu−0と基板との反応が起こるた
めに用いることができなかった基板でも、CuO層を基
板表面に設けることにより、これが保護膜として働き、
その上に超伝導相を形成で参る。
■ Conventionally, forming a thin film by means such as coating could not be used because a reaction between the superconducting material Ln-R-Cu-0 and the substrate occurred, but a CuO layer is provided on the surface of the substrate. This acts as a protective film,
A superconducting phase is then formed on top of that.

[実施例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

衷J0江1 まず、CuのアルコキシドであるCu (OC2H5)
 2にエチレングリコールを添加してペースト状にした
ものを、スクリーン法によってYSZ基板上に塗布し、
これを温度を変えて加熱処理した。第1図はysz基板
とCuOとの反応状態を、X線回折装置で測定した結果
を示す。ここでは、特にCuOとYsz基板との反応性
を見るため、YSZとCuOの回折ピークが近接してい
る部分を図示している。加熱処理の温度を上げるにした
がい、CuOピークに比較してYSZのピークが増加し
ていることから、YSZ基板とCuOの反応が進行して
いることを示唆している。しかし、950℃以下の高温
処理では、YSZとCuOのピークは別々に分離して現
れており、望ましくない化合物は形成されていないこと
がわかった。
First, Cu alkoxide of Cu (OC2H5)
A paste made by adding ethylene glycol to 2 was applied onto the YSZ substrate by a screen method.
This was heat treated at different temperatures. FIG. 1 shows the results of measuring the reaction state between the ysz substrate and CuO using an X-ray diffraction device. Here, in order to particularly examine the reactivity between CuO and the Ysz substrate, a portion where the diffraction peaks of YSZ and CuO are close to each other is illustrated. As the heat treatment temperature increases, the YSZ peak increases compared to the CuO peak, suggesting that the reaction between the YSZ substrate and CuO is progressing. However, in the high-temperature treatment at 950° C. or lower, the peaks of YSZ and CuO appeared separately, indicating that no undesirable compounds were formed.

次に、YBa2Cu30Xの組成になるように秤量した
超伝導材料をCuO@の上に、さらに塗布した。これを
950℃30分の条件で加熱処理したサンプルのX線回
折図を、第2図に示す。本図において()内の数字は結
晶の面指数を表している。第2図から明らかなように、
基板上にYBa2Cu307−Xの結晶がC軸配向して
いることがわかる。これらの膜の抵抗の温度変化を、四
端子法により測定し、Tc”85K”??低抵抗なるこ
とを確認した。
Next, a superconducting material weighed so as to have a composition of YBa2Cu30X was further applied onto the CuO@. An X-ray diffraction diagram of a sample heat-treated at 950° C. for 30 minutes is shown in FIG. In this figure, the numbers in parentheses represent the surface index of the crystal. As is clear from Figure 2,
It can be seen that the crystals of YBa2Cu307-X are C-axis oriented on the substrate. The temperature change in the resistance of these films was measured using the four-terminal method, and Tc "85K"? ? It was confirmed that the resistance was low.

衷10辻ス まず、Al2O,基板(純度92t)の上にCuのアル
コキシドCu (OCJs) 2を塗布し、850℃で
加熱処理し、基板表面にCuO層を形成した。次に、そ
の上にYBa2Cu30.ペーストを塗布し、950℃
で30分間加熱処理した。第3図は、このサンプルのX
線回折を示す。本図においては、超伝導結晶相YBa2
Cu30y−xのみのピークが見られる。
First, Cu alkoxide Cu (OCJs) 2 was applied onto an Al2O substrate (purity 92t) and heat treated at 850°C to form a CuO layer on the substrate surface. Next, YBa2Cu30. Apply paste and heat to 950℃
The mixture was heat-treated for 30 minutes. Figure 3 shows the X of this sample.
Shows line diffraction. In this figure, the superconducting crystal phase YBa2
A peak of only Cu30y-x is seen.

一方、Al2O3基板に直接YBa2Cu、、Oxペー
ストを塗布し、950℃で加熱処理したサンプルのX線
回折を第4図に示す。この図には、Al2O3。
On the other hand, FIG. 4 shows the X-ray diffraction of a sample in which YBa2Cu, Ox paste was directly applied to an Al2O3 substrate and heat-treated at 950°C. In this figure, Al2O3.

YBa2CLIsO2−xのピーク、および同定できな
い多くのピークが混在しており、超伝導特性も確認する
ことができなかった。
The YBa2CLIsO2-x peak and many unidentified peaks were mixed, and superconducting properties could not be confirmed.

去妻IIユ まず、一つの表面を露出し他の面をセラミックス系接着
剤でカバーしたCu金属板を、酸素を含有する雰囲気下
で加熱処理(900℃、1時間)し、露出表面を酸化し
てCuO層を形成した。次に、このCuO層の上にYB
a、Cu30.のそル比になるように秤量混合したペー
ストを塗布し、900℃30分間、酸素τ囲気下で加熱
処理を施し、その後徐冷した。
First, a Cu metal plate with one surface exposed and the other surface covered with a ceramic adhesive was heat treated (900°C, 1 hour) in an oxygen-containing atmosphere to oxidize the exposed surface. A CuO layer was formed. Next, YB is placed on top of this CuO layer.
a, Cu30. The pastes were weighed and mixed so as to have the same ratio as above, and then heat-treated at 900° C. for 30 minutes in an atmosphere of oxygen τ, and then slowly cooled.

第5図はこのサンプルのX線回折を示す。第5図に見ら
れるように、超伝導相YBa、Cu30..が成長して
おり、CuO層を表面に形成することにより、Cu金属
板も、基板として使用できることが明らかになった。ま
た、この結果は、CuO膜がYBa2Cu、0×を加熱
処理する間、拡散等により超伝導相の形成に悪い影響を
与えることがないことを示している。
Figure 5 shows the X-ray diffraction of this sample. As seen in FIG. 5, superconducting phases YBa, Cu30. .. It has become clear that a Cu metal plate can also be used as a substrate by forming a CuO layer on the surface. This result also shows that the CuO film does not have a negative effect on the formation of a superconducting phase due to diffusion or the like during the heat treatment of YBa2Cu, 0x.

以上の実施例においては、Y−Ba−Cu−0系超伝導
体を例にとって説明したが、他のLn−R−Cu−0系
でも同様に基板表面にCuO層を形成し、その上に超伝
導材料を塗布し、加熱することによって本発明の実施例
の効果は確認できるので、広く他の組成に適用できるこ
とはもちろんである。
In the above embodiments, the Y-Ba-Cu-0 based superconductor was used as an example, but for other Ln-R-Cu-0 based superconductors, a CuO layer is similarly formed on the substrate surface, and a CuO layer is formed on the substrate surface. Since the effects of the embodiments of the present invention can be confirmed by applying a superconducting material and heating it, it is of course applicable to a wide range of other compositions.

[発明の効果] 以上説明したように、本発明においては、基板上にCu
O層を少なくとも一層形成し、その上に超伝導酸化物薄
膜を形成するようにしたので、基板上に結晶をC軸配向
させることができ、しかも、従来は超伝導材料との反応
のために用いることができなかったAl2O,、BeO
および5rTi03も基板として使用することができる
という効果がある。
[Effects of the Invention] As explained above, in the present invention, Cu is deposited on the substrate.
By forming at least one O layer and forming a superconducting oxide thin film on top of it, the crystals can be oriented along the C axis on the substrate. Al2O, BeO that could not be used
and 5rTi03 can also be used as a substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の第1の実施例によるX線
回折を示す図、 第3図は本発明の第2の実施例によるX線回′折を示す
図、 第4図は本発明の第2の実施例との比較を示すためのX
線回折図、 第5図は本発明の第3の実施例によるX線回折を示す図
である。 特許出願人  日本電信電話株式会社
1 and 2 are diagrams showing X-ray diffraction according to the first embodiment of the present invention, FIG. 3 is a diagram showing X-ray diffraction according to the second embodiment of the present invention, and FIG. 4 is a diagram showing X-ray diffraction according to the second embodiment of the present invention. X to show comparison with the second embodiment of the invention
Ray Diffraction Diagram, FIG. 5 is a diagram showing X-ray diffraction according to the third embodiment of the present invention. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 1)基板上にCuO層を少なくとも一層形成し、該Cu
O層上にLn−R−Cu−O系(LnはYまたはランタ
ノイド元素、Rはアルカリ土類金属元素)からなる酸化
物薄膜を形成することを特徴とする酸化物超伝導膜の作
製方法。
1) Form at least one CuO layer on the substrate, and
A method for producing an oxide superconducting film, which comprises forming an oxide thin film of Ln-R-Cu-O system (Ln is Y or a lanthanide element, R is an alkaline earth metal element) on an O layer.
JP63019557A 1988-02-01 1988-02-01 Manufacture of oxide superconducting film Pending JPH01246371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63019557A JPH01246371A (en) 1988-02-01 1988-02-01 Manufacture of oxide superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63019557A JPH01246371A (en) 1988-02-01 1988-02-01 Manufacture of oxide superconducting film

Publications (1)

Publication Number Publication Date
JPH01246371A true JPH01246371A (en) 1989-10-02

Family

ID=12002616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63019557A Pending JPH01246371A (en) 1988-02-01 1988-02-01 Manufacture of oxide superconducting film

Country Status (1)

Country Link
JP (1) JPH01246371A (en)

Similar Documents

Publication Publication Date Title
CA1326976C (en) Superconducting member
JP2664066B2 (en) Superconducting thin film and method for producing the same
JP2711253B2 (en) Superconducting film and method for forming the same
EP0446789A2 (en) Method of preparing oxide superconducting film
JPH01246371A (en) Manufacture of oxide superconducting film
JPS63279527A (en) Manufacture of superconductor device
JPH0358488A (en) Planar josephson element and manufacturing method of the same
JPH02217306A (en) Production of oxide superconductor
JPS63279528A (en) Manufacture of superconductor device
JPH0375204A (en) Production of oxide superconductive film pattern
JPS63291485A (en) Manufacture of oxide superconducting circuit
JP2821885B2 (en) Superconducting thin film forming method
JPS63301424A (en) Manufacture of oxide superconductor membrane
JPH01111718A (en) Process for forming superconductive thin film
JPH01179779A (en) Method for protecting multi-ply oxide superconductor
JPH0240992A (en) Structure of superconductor wiring
JPS63310511A (en) High temperature superconductor membrane
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JPH01302752A (en) Integrated circuit package
JPH01219023A (en) Production of thin superconductor film
JPH01144519A (en) Oxide-based covering member for superconductor
JPH01126208A (en) Production of superconducting thin film
JPH01226183A (en) Manufacture of ceramic superconductor
JPH0417217A (en) Oxides superconducting film and manufacture thereof
JPH0244782A (en) Superconductive element and manufacture thereof