JPH01246307A - Manufacture of fine metal particle having non-porosity - Google Patents

Manufacture of fine metal particle having non-porosity

Info

Publication number
JPH01246307A
JPH01246307A JP7270588A JP7270588A JPH01246307A JP H01246307 A JPH01246307 A JP H01246307A JP 7270588 A JP7270588 A JP 7270588A JP 7270588 A JP7270588 A JP 7270588A JP H01246307 A JPH01246307 A JP H01246307A
Authority
JP
Japan
Prior art keywords
molten metal
tundish
metal
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7270588A
Other languages
Japanese (ja)
Inventor
Kensuke Hidaka
日高 謙介
Kanichi Tanaka
田中 完一
Mikihiko Matsuura
松浦 幹彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP7270588A priority Critical patent/JPH01246307A/en
Publication of JPH01246307A publication Critical patent/JPH01246307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably manufacture fine metal particle having nonporosity and small particle size at good yield by pouring molten metal into a tundish having fine hole at bottom part and giving the specific vibration to the whole tundish. CONSTITUTION:The molten metal is poured into the tundish having fine hole at the bottom part. Successively, the vibration containing vertical component having >=30times/sec number of the vibration and >=0.1mm amplitude is given to the whole tundish. By this method, the molten metal is forcedly flowed out from the above fine hole and also cut into piece and dripped. This dropped molten drips are cooled and solidified into the water vessel arranged at lower part and collected. By this method, the fine metal particle having non-porosity and <=about 2mm particle size and narrow particle size distribution is stably obtd. at high yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉末冶金用、ろう行用、ショットピーニング
用などに使用される無気孔金属細粒の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing poreless metal fine particles used for powder metallurgy, brazing, shot peening, and the like.

〔従来の方法] 従来、金属細粒の製造方法は、金属粉末の製造方法と同
様、ガス又は水アトマイズ法によっている。この方法は
、タンディツシュ底部の細孔からの溶融金属流を、高圧
ガス流又は高圧水流によって噴霧し、粒状化した後、分
級して所定の粒径の金属細粒を得るものである。しかし
ながら、この方法で得られる金属細粒は内部に空孔があ
る粒子が多数存在し、無気孔な細粒を得るためには複雑
な選別工程が必要である。さらに、アトマイズ法によっ
て得られる金属粒はその粒度中が広いため、ねらいとす
る細粒を得る分級収率はかなり低い。
[Conventional Method] Conventionally, the method for manufacturing fine metal particles is based on a gas or water atomization method, similar to the method for manufacturing metal powder. In this method, the molten metal stream from the pores at the bottom of the tundish is atomized by a high-pressure gas stream or high-pressure water stream, granulated, and then classified to obtain fine metal particles of a predetermined particle size. However, the metal fine particles obtained by this method include many particles with pores inside, and a complicated sorting process is required to obtain pore-free fine particles. Furthermore, since the metal particles obtained by the atomization method have a wide range of particle sizes, the classification yield for obtaining the targeted fine particles is quite low.

以上のごとく、アトマイズ法で無気孔細粒を得る収率は
、前記の分級及び選別によって著しく低くなるという欠
点がある。
As mentioned above, there is a drawback that the yield of non-porous fine particles obtained by the atomization method is significantly lowered by the above-mentioned classification and sorting.

また、金属ショットの製造方法として特開昭61−11
7205に開示されているごとく、■タンディツシュ底
部に多数の細孔を設け、溶融金属流を細くする。
In addition, as a method for manufacturing metal shot, JP-A-61-11
As disclosed in No. 7205, (1) A large number of pores are provided at the bottom of the tundish to narrow the molten metal flow.

■ねらいとするショツト粒径に応じて、細孔径及びタン
ディツシュ内の?容湯ヘッドをコントロールする。
■Depending on the target shot particle size, the pore size and the size of the tundish are determined. Controls the hot water head.

■タンディツシュ全体を左右動させるか、又は回転運動
させて、溶融金属流に剪断力を与え、溶融金属流を不連
続流とする。
■ Move the entire tundish horizontally or rotate it to apply shearing force to the molten metal flow, making the molten metal flow a discontinuous flow.

■不連続化した溶融金属流液滴を水中に落し、凝固させ
てショットとする。
■Discontinuous molten metal droplets are dropped into water and solidified to form a shot.

という方法がある。この方法では、得られた金属粒の内
部空孔は少なく、しかも、ねらいとする粒径の金属粒を
比較的高い収率で製造することができる。しかしながら
、この方法は、ショットの粒径が2〜5IIIllの粗
粒を製造するのに適しており、本発明の目的とする粒径
がおよそ2IIIm以下の細粒を製造するには、タンデ
ィツシュの細孔径をさらに小さくせねばならない。この
ため、細孔から溶融金属がうまく流出しなかったり、ま
た、流出しても極めて不安定であったりして安定した製
造ができないという欠点がある。
There is a method. In this method, the obtained metal particles have few internal pores, and metal particles having a target particle size can be produced at a relatively high yield. However, this method is suitable for producing coarse particles with a shot particle size of 2 to 5IIIm, and in order to produce fine particles with a particle size of about 2IIIm or less, which is the objective of the present invention, it is necessary to The pore size must be further reduced. For this reason, the molten metal does not flow out properly from the pores, or even if it does flow out, it is extremely unstable, making stable production impossible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記従来の方法の欠点を解決しようとするも
ので、無気孔で、しかも粒径が約2mm以下の金属細粒
を収率よ(、かつ安定して製造できる方法を提供とよう
とするものである。
The present invention aims to solve the above-mentioned drawbacks of the conventional methods, and provides a method that can produce fine metal particles with a high yield (and stability) without pores and with a particle size of about 2 mm or less. That is.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、底部に最高を有するタンディツシュに、溶融
金属を流入し、タンディツシュ全体に、振動数30回/
sec以上、振巾0.1ma+以上の垂直成分を含む振
動を与え、タンディツシュ底部の細孔より溶融金属を強
制流出させるとともに垂直方向に分断して、滴下させる
ことを特徴とする無気孔金属細粒の製造方法である。
The present invention involves flowing molten metal into a tundish having a highest point at the bottom, and passing the molten metal through the tundish at a frequency of 30 vibrations/
Non-porous metal fine particles characterized by applying vibrations containing a vertical component of sec or more and amplitude 0.1 ma+ or more to force the molten metal to flow out from the pores at the bottom of the tundish, split it in the vertical direction, and cause it to drip. This is a manufacturing method.

〔作用〕[Effect]

次に、本発明の方法に限定した理由について述べる。 Next, the reason for limiting the method to the method of the present invention will be described.

本発明の目的の1つは無気孔金属粒を得ることである。One of the objectives of the present invention is to obtain pore-free metal particles.

本発明者らは、アトマイズ法による金属粒の製造方法を
検討した結果、空孔粒子の生成機構は、概ね次のとおり
であることがわかった。
The present inventors investigated a method for producing metal particles by an atomization method, and as a result, it was found that the generation mechanism of pore particles is generally as follows.

即ち、噴霧された溶融粒子が、気体中を飛行しながら凝
固する過程の初期段階で、粒子の表面層のみ固化し、内
部がまだ溶融状態を保つ時期がある。
That is, in the initial stage of the process in which the sprayed molten particles solidify while flying through the gas, there is a period when only the surface layer of the particles solidifies, while the inside remains in a molten state.

この状態での粒子飛行速度が大きいときは、飛行粒子の
背面(飛行方向の後方)に負圧が生じ、この負圧により
、粒子内部の溶融金属が粒子外部に吸引され、2次噴霧
される。その結果、内部に空孔ができ、外側が粒子形骸
を残した空孔粒子が生成される0粒径が0.2 am以
上の溶融粒子では、前記の表面固化・内部溶融の状態が
起こりやすく、しかも粒径が大きいほど、噴霧時に与え
られた初速の減速度合いが小さいため、高速飛行を維持
することなどで、微細な金属粉末などに比べ、空孔粒子
の発生率が非常に高くなる。
When the particle flight speed is high in this state, negative pressure is generated on the back side of the flying particles (rearward in the direction of flight), and this negative pressure draws the molten metal inside the particles to the outside of the particles, resulting in secondary spraying. . As a result, molten particles with a particle size of 0.2 am or more, where voids are formed inside and void particles remain on the outside, are likely to undergo the above-mentioned surface solidification and internal melting state. Moreover, the larger the particle size, the smaller the degree of deceleration of the initial velocity given during atomization, so when maintaining high-speed flight, the generation rate of void particles is much higher than with fine metal powder.

以上のことから、無気孔金属粒子を得るには、溶融粒子
の飛行速度をできるだけ遅くすればよいという推定がな
りたつ。溶融金属粒子の飛行速度を最も遅くする方法と
して、溶融金属粒子を自然落下させる方法がある。そこ
で、本発明者らは、タンディツシュ底部に細孔を設け、
それに溶融金属を注入して自然落下させる方法を検討し
た。その結果、この方法で得られる金属粒は推定したと
おり、内部に空孔はほとんどないことが611 L’2
された。
From the above, it can be assumed that in order to obtain non-porous metal particles, the flight speed of the molten particles should be made as slow as possible. A method for slowing down the flight speed of molten metal particles is to allow the molten metal particles to fall naturally. Therefore, the present inventors created pores at the bottom of the tundish,
We investigated a method of injecting molten metal into it and letting it fall naturally. As a result, it was found that the metal particles obtained by this method had almost no pores inside, as expected.611 L'2
It was done.

なお、この方法では、落下粒子が完全に凝固するには、
相当長い距離を必要とするため、装置の高さを相当高く
する必要がある。そこで、装置が高くなるのを防ぐため
、ある程度粒子表面が固化した後、水中に落下させて完
全に凝固させて捕集を行うことにした。この方法によっ
ても金属粒の内部空孔はほとんどないものが得られるこ
とがわかった。
In addition, in this method, in order for the falling particles to solidify completely,
Since a fairly long distance is required, the height of the device must be increased considerably. Therefore, in order to prevent the height of the device from becoming too high, we decided to collect the particles after the surface of the particles had solidified to some extent, then dropped them into water to completely solidify them. It was found that this method also produced metal grains with almost no internal pores.

次に、本発明の目的のもう1つは、約2mm以下の金属
細粒を収率よ(、かつ安定して製造できるようにするこ
とである。本発明者らは、前記タンディツシュ底部に種
々の径の細孔を設け、溶融金属を注入して自然落下させ
る実験を行った。その結果、細孔径が31111φ以上
では溶融金属は容易に流出するが、細孔径が3111m
φ以下になると溶融金属の流出は不安定となり、特に2
mn+ φ以下になると溶融金属の流出が途絶えること
が多く見られた。
Next, another object of the present invention is to enable fine metal particles of approximately 2 mm or less to be produced in a high yield (and stably). An experiment was conducted in which a pore with a diameter of
Below φ, the flow of molten metal becomes unstable, especially at 2
It was observed that the outflow of molten metal often stopped when the temperature was below mn+φ.

また、この方法で得られる金属粒子径(Dp)と細孔径
(Do)との関係を調べた結果、概ね、Do < Dp
 < 3D。
In addition, as a result of investigating the relationship between the metal particle diameter (Dp) obtained by this method and the pore diameter (Do), it was found that Do < Dp
<3D.

であることがわかった。It turned out to be.

上記の金属粒の粒度中は、アトマイズ法に比べがなり狭
くなっているものの、まだ多少の広がりがある。また、
タンディツシュ底部の細孔から、溶融金属が安定して流
出できる最小径は3mn+φであることから、この方法
で得られる金属粒の最小のものは3〜91程度のものと
なり、目的とする粒径2mm φ以下の細粒は得られな
い。
Although the particle size of the metal particles mentioned above is narrower than that of the atomization method, there is still some spread. Also,
Since the minimum diameter at which molten metal can stably flow out from the pores at the bottom of the tundish is 3 mm + φ, the smallest metal particles obtained by this method are about 3 to 91, which is the target particle size of 2 mm. Fine grains smaller than φ cannot be obtained.

そこで、本発明者らは、タンディツシュ底部の細孔径が
2wa+ φ以下でも溶融金属を安定して流出させるこ
とができ、かつ細粒が得られる条件について検討をおこ
なった。
Therefore, the present inventors investigated conditions under which molten metal could be stably flowed out even if the pore diameter at the bottom of the tundish was 2 wa+φ or less, and fine particles could be obtained.

まづ、細孔径を小さくしていくと、溶融金属の流出が停
止する条件について考察してみる。第1図のモデルで、
溶湯金属が流出するか停止するかの限界の細孔径Dcに
おける釣り合い状態を考えるとき、溶融金属を流出させ
ようとする力Fは、溶融金属が流出しようとする細孔側
面との粘性抵抗力Rと細孔底面に形成される溶融金属の
表面張力Tの合力に等しい。即ち、 F = R十T −−−−−−−−−−−・・・−一−
−−−■が成り立つ。ここで、 F=πDc”hρg ・・−・■ R−νπDc l  −−−−−−・−・−・■、T=
 TπDc  ゛−−−−−−−−−−−−−■ρ:溶
融金属の比重 g:重力の加速度 シ:細孔側面との単位長さ当たりの粘性抵抗力T:細孔
底周面での単位長さ当りの表面張力であるから、■、■
、■を0式に代入して、整理すると、 hρ    g が得られる、0式において、gは定数、また、溶融金属
の材質が決まれば、シ、T、δも定数となるので、Dc
を小さくするためには、rを小さくするか、hを大きく
するしかない。しかしながら、上記のことを行うには、
タンディツシュの強度等から実用上限界があり、実際に
は、Dcは2m−φ前後となる。Dcを2III−φ以
下にすること−即ち、2+m φ以下の細孔径で溶融金
属を安定して流出させること−ができない。
First, let's consider the conditions under which the outflow of molten metal stops when the pore diameter is made smaller. In the model shown in Figure 1,
When considering the equilibrium state at the limit pore diameter Dc at which the molten metal flows out or stops, the force F that tries to cause the molten metal to flow out is equal to the viscous resistance force R with the side surface of the pore where the molten metal attempts to flow out. It is equal to the resultant force of T and the surface tension T of the molten metal formed at the bottom of the pore. That is, F = R1T −−−−−−−−−−−...−1−
−−−■ holds true. Here, F=πDc”hρg ・−・■ R−νπDc l −−−−−−・−・−・■, T=
TπDc ゛−−−−−−−−−−−−■ρ: Specific gravity of molten metal g: Acceleration of gravity S: Viscous resistance force per unit length with the pore side surface T: At the bottom peripheral surface of the pore Since the surface tension per unit length of
By substituting , ■ into the equation 0 and sorting it out, hρ g is obtained. In the equation 0, g is a constant. Also, once the material of the molten metal is determined, C, T, and δ are also constants, so Dc
In order to reduce , there is no choice but to reduce r or increase h. However, to do the above,
There is a practical limit due to the strength of the tundish, and in reality, Dc is around 2 m-φ. It is not possible to reduce Dc to 2III-φ or less, that is, to stably flow out the molten metal with a pore diameter of 2+mφ or less.

次に、0式において、Dcは下向の加速度成分gに逆比
例していることに注目し、若し、下向の加速度成分をg
より大きくすることができれば、Dcを小さくすること
−即ち、21II11 φ以下の細孔径で溶融金属を安
定して流出させること−ができるはずである。以上のこ
とから、垂直成分を含む振動を与えることを考えてみる
。解析を容易にするため、垂直面内で半径a、加速度ω
で等連日運動を与えたときの、垂直方向の時間tにおけ
る加速度成分は、 dt” となる。これが、前記0式のgに加算されるので、垂直
円運動の振動を与えたときの、時間tにおける見掛けの
釣り合い細孔径Dctは、 hρ となる。ここで、見掛けの釣り合い細孔径Dctは、実
際に存在するものではなく、時間tにおける口ctがD
cに等しいときに釣り合い状態が保たれることを意味し
、OctがDcより太き(なると溶融金属の流出が起り
、OctがDcよりも小さくなると、溶融金属の流出が
止まることを意味する。
Next, in Equation 0, note that Dc is inversely proportional to the downward acceleration component g.
If it can be made larger, it should be possible to make Dc smaller, that is, to stably flow out the molten metal with a pore diameter of 21II11φ or less. Based on the above, let's consider applying vibrations that include a vertical component. To facilitate analysis, radius a and acceleration ω in the vertical plane
The acceleration component at time t in the vertical direction when given equal daily motion is dt''. Since this is added to g in the above equation 0, the time when given the vibration of vertical circular motion is The apparent equilibrium pore diameter Dct at time t is hρ.Here, the apparent equilibrium pore diameter Dct does not actually exist, and the apparent equilibrium pore diameter Dct at time t is D.
When Oct is equal to Dc, it means that an equilibrium state is maintained, and when Oct is thicker than Dc, the molten metal will flow out, and when Oct is smaller than Dc, the molten metal will stop flowing out.

そこで、 aω2二g になるよう、a、ωを選択することにより、0式%式% とすることができる。即ち、時間t、においては溶融金
属は流出し、時間t2においては流出が停止するように
することができる。このことを言いかえると、第2図に
示すごとく、溶融金属には強制的な流出効果と垂直方向
への分断力がω/2πの一定周期で繰り返し働くことに
なる。その結果、一定量の溶融金属が細孔から押出され
、分断されて滴下する。従って、得られる細粒の粒径は
非常によく揃ったものになる。さらに、細孔径が一定で
も、振動数を変化させることにより、ねらいとする細粒
径をコントロールすることができる。図−3に、細孔径
1.5mmφ、振巾0.211II11、振動方向30
゜(水平面に対して)の一定とし、振動数を変化させた
ときに得られる、純銅粒の粒度分布を示す。
Therefore, by selecting a and ω such that aω22g, it is possible to obtain the following equation. That is, the molten metal can flow out at time t, and stop flowing out at time t2. In other words, as shown in FIG. 2, a forced outflow effect and a vertical breaking force act repeatedly on the molten metal at a constant cycle of ω/2π. As a result, a certain amount of molten metal is forced out of the pores, broken up and dripped. Therefore, the particle sizes of the resulting fine particles are very uniform. Furthermore, even if the pore size is constant, the targeted fine particle size can be controlled by changing the vibration frequency. In Figure 3, the pore diameter is 1.5 mmφ, the vibration width is 0.211II11, and the vibration direction is 30.
The figure shows the particle size distribution of pure copper grains obtained when the vibration frequency is kept constant (relative to the horizontal plane) and the vibration frequency is varied.

第3図かられかるごとく、振動数が増加するに従って、
得られる純銅粒の粒度は細かい方に移行するが、いずれ
の振動数においても、ある粒径を中心にして粒度が揃っ
ていることがわかる。
As shown in Figure 3, as the frequency increases,
Although the particle size of the obtained pure copper grains shifts to the finer side, it can be seen that the particle size is uniform around a certain particle size at any frequency.

本発明において、振動数30回/sec以上、振巾0.
1mm以上の垂直成分を含む振動に限定した理由は、こ
れ以下では、振動の効果かえられないためである。
In the present invention, the frequency of vibration is 30 times/sec or more, the amplitude is 0.
The reason why vibrations are limited to those containing a vertical component of 1 mm or more is that the effect of vibration cannot be changed below this value.

このことは、垂直方向の振動の加速度成分が0式かられ
かるごとく、その最大値はaω2によって決まる。従っ
て、 aω” = −(2πf)2 ・・・−・■X:振巾 f:振動数 であるから、■式にx−0,01(ca+)、  f=
30(1/5ec)を代入すると、 aω” ”= 177 (cm/sec”)となる、こ
れはg =980(cm/sec”)に比べ、あまり大
きな値でないことからみても明白である。
This means that the acceleration component of the vibration in the vertical direction is determined by the equation 0, and its maximum value is determined by aω2. Therefore, aω” = −(2πf)2 ・・・−・■X: amplitude f: frequency, so in formula ■, x-0,01(ca+), f=
When 30 (1/5 ec) is substituted, aω""=177 (cm/sec"), which is obvious from the fact that this is not a very large value compared to g=980 (cm/sec").

以上、垂直成分を含む振動を説明の都合上、円運動につ
いてのみ触れたが、振動波形は特に限定せず、例えば、
パルス状波形、三角波形、鋸歯状波形の振動を与えても
全く同様の効果は得られる。
Above, for convenience of explanation, we have only mentioned circular motion of vibrations that include vertical components, but the vibration waveform is not particularly limited; for example,
Exactly the same effect can be obtained by applying vibration in a pulsed waveform, triangular waveform, or sawtooth waveform.

なお、振動数及び振巾の上限はタンディツシュの材質、
厚さ、即ち、タンディツシュの強度、または振動源及び
付帯装置の限界等により決まるものであり、本発明の本
質的技術思想によるものではないので、その上限は規定
しなかった。
In addition, the upper limit of the frequency and amplitude depends on the material of the tanditshu,
The upper limit is not specified because it is determined by the thickness, that is, the strength of the tundish, or the limits of the vibration source and auxiliary equipment, etc., and is not based on the essential technical idea of the present invention.

以下、本発明の実施例と比較例を示す。Examples of the present invention and comparative examples are shown below.

〔実施例・比較例〕[Example/Comparative example]

ニッケルろう(BNi−2)の溶湯から細粒を製造する
実験を行った。表1に、本発明の方法(Nlll−4)
と比較例として本発明の方法の範囲外の条件(Nα5〜
7)について、その条件と結果を示す。
An experiment was conducted to produce fine particles from molten nickel wax (BNi-2). Table 1 shows the method of the present invention (Nllll-4)
and a comparative example under conditions outside the range of the method of the present invention (Nα5~
Regarding 7), the conditions and results are shown below.

この製造実験では、タンディツシュは内径50n+mφ
、深さ150mmのアルミナルツボを用い、底部中央に
細孔を1個有するものとした。振動源は阻1〜6につい
ては電磁式バイブレータを、Nα7については機械的な
駆動装置を用いた。ニッケルろう(BNi−2)の溶湯
を予め、電気炉中、Ar雰囲気で1400“Cに加熱し
、タンディツシュに注湯した。また、溶湯のヘッドは約
100+amに保つよう注湯量を調節した。
In this manufacturing experiment, the inner diameter of the tundish was 50n+mφ.
An alumina crucible with a depth of 150 mm was used, and one pore was provided at the center of the bottom. As the vibration source, an electromagnetic vibrator was used for Nos. 1 to 6, and a mechanical drive device was used for No. 7. Molten nickel solder (BNi-2) was heated in advance to 1400"C in an Ar atmosphere in an electric furnace and poured into a tundish. The amount of molten metal poured was adjusted so that the head of the molten metal was maintained at about 100 am.

ルツボ底部の細孔から滴下した溶滴は、その下に設けた
水槽中で冷却し捕集した。ここでルツボ底部と水槽水面
までの距離は約1n+とした。
The droplets that dripped from the pores at the bottom of the crucible were cooled and collected in a water tank provided below. Here, the distance between the bottom of the crucible and the water surface of the tank was approximately 1n+.

表1から明らかなように、本発明の方法では8〜16メ
ツシユの細粒が安定して製造でき、かつ、高い収率を示
しているのに対し、比較例に示す条件の方法では、製造
が全くできないか、またできても非常に不安定であり、
その収率も極めて低いことがわかる。
As is clear from Table 1, the method of the present invention can stably produce fine particles of 8 to 16 meshes and shows a high yield, whereas the method with the conditions shown in the comparative example It is either not possible at all, or it is very unstable even if it is possible.
It can be seen that the yield is also extremely low.

また、本発明の方法で得られた、ニッケルろう(BNi
−2)8〜16メツシユ細粒の断面を調べたところ、内
部空孔はほとんど認められなかった。
Further, nickel solder (BNi
-2) When the cross section of 8 to 16 mesh fine grains was examined, almost no internal pores were observed.

〔発明の効果〕〔Effect of the invention〕

以上、実施例で述べたごとく、本発明の方法は、従来技
術でなし得なかった、無気孔細粒を高収率で、しかも安
定して製造することができる。
As described above in the Examples, the method of the present invention can stably produce non-porous fine particles at a high yield, which has not been possible using conventional techniques.

従って、その経済的効果は極めて大きい。Therefore, its economic effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融金属がタンディツシュ内で釣り合い状態と
なる模式図、第2図は本発明の方法による溶融金属細粒
の生成を示す模式図、第3図は本発明によって得られる
細粒の粒度分布と振動数との関係を示す1例である。
Fig. 1 is a schematic diagram showing that molten metal is in an equilibrium state in a tundish, Fig. 2 is a schematic diagram showing the generation of molten metal fine particles by the method of the present invention, and Fig. 3 is a schematic diagram showing the particle size of the fine particles obtained by the present invention. This is an example showing the relationship between distribution and frequency.

Claims (1)

【特許請求の範囲】[Claims] (1)底部に細孔を有するタンディッシュに、溶融金属
を注入し、タンディッシュ全体に、振動数30回/se
c以上、振巾0.1mm以上の垂直成分を含む振動を与
え、タンディッシュ底部の細孔より溶融金属を強制流出
させるとともに垂直方向に分断して、滴下させることを
特徴とする無気孔金属細粒の製造方法。
(1) Inject molten metal into a tundish with pores at the bottom, and apply vibrations to the entire tundish at a frequency of 30 times/se.
A non-porous metal pore characterized by applying vibrations including a vertical component with a vibration width of 0.1 mm or more and forcing the molten metal to flow out from the pores at the bottom of the tundish, dividing it in the vertical direction, and causing it to drip. Method of manufacturing grains.
JP7270588A 1988-03-25 1988-03-25 Manufacture of fine metal particle having non-porosity Pending JPH01246307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7270588A JPH01246307A (en) 1988-03-25 1988-03-25 Manufacture of fine metal particle having non-porosity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7270588A JPH01246307A (en) 1988-03-25 1988-03-25 Manufacture of fine metal particle having non-porosity

Publications (1)

Publication Number Publication Date
JPH01246307A true JPH01246307A (en) 1989-10-02

Family

ID=13497035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7270588A Pending JPH01246307A (en) 1988-03-25 1988-03-25 Manufacture of fine metal particle having non-porosity

Country Status (1)

Country Link
JP (1) JPH01246307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228612A (en) * 1992-12-17 1994-08-16 Deutsche Forsch & Vers Luft Raumfahrt Ev Method and device for producing small metal spheres nearly equal in diameter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615762U (en) * 1979-07-10 1981-02-10
JPS5615762A (en) * 1979-07-16 1981-02-16 Greatbatch W Method and device for controlling growth of tissue
JPS62253705A (en) * 1986-04-25 1987-11-05 Mitsubishi Heavy Ind Ltd Production of metal shot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615762U (en) * 1979-07-10 1981-02-10
JPS5615762A (en) * 1979-07-16 1981-02-16 Greatbatch W Method and device for controlling growth of tissue
JPS62253705A (en) * 1986-04-25 1987-11-05 Mitsubishi Heavy Ind Ltd Production of metal shot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228612A (en) * 1992-12-17 1994-08-16 Deutsche Forsch & Vers Luft Raumfahrt Ev Method and device for producing small metal spheres nearly equal in diameter

Similar Documents

Publication Publication Date Title
US5183493A (en) Method for manufacturing spherical particles out of liquid phase
US4631013A (en) Apparatus for atomization of unstable melt streams
Chun et al. Droplet-based manufacturing
Orme et al. Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications
Passow et al. Spray deposition of a Sn-40 Wt Pct Pb alloy with uniform droplets
EP0000926A1 (en) Method and apparatus for producing flakes from molten material
Takagi et al. Preparation of monosized copper micro particles by pulsated orifice ejection method
US20020005606A1 (en) Apparatus for manufacturing solder balls
US4971133A (en) Method to reduce porosity in a spray cast deposit
JPS63503468A (en) Molten material granulation equipment
EP4034320B1 (en) Device for atomizing a melt stream by means of a gas
JP6565941B2 (en) Method for producing soft magnetic iron powder
US4355057A (en) Formation of alloy powders through solid particle quenching
JPH01246307A (en) Manufacture of fine metal particle having non-porosity
US4014964A (en) Process for making metal powder using a laser
Bogno et al. Single fluid atomization fundamentals
JPH0426701A (en) Manufacture of fine gold ball
US20240066593A1 (en) Metallic powders and methods therefor
JPH03281707A (en) Manufacture of fine lead balls
Folio et al. Centrifugal atomisation of metallic alloys in inductive plasma onto cooled disc
JPH0346523B2 (en)
JP2000328111A (en) Manufacture of small metal ball, and device therefor
EP4019166A1 (en) Atomisation of metallic melts using carbonated water
JPS60162703A (en) Production of metallic powder
JPH06346114A (en) Metal powder producing device and its usage