JPS62253705A - Production of metal shot - Google Patents

Production of metal shot

Info

Publication number
JPS62253705A
JPS62253705A JP9613386A JP9613386A JPS62253705A JP S62253705 A JPS62253705 A JP S62253705A JP 9613386 A JP9613386 A JP 9613386A JP 9613386 A JP9613386 A JP 9613386A JP S62253705 A JPS62253705 A JP S62253705A
Authority
JP
Japan
Prior art keywords
tundish
molten metal
shot
metal
fine holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9613386A
Other languages
Japanese (ja)
Inventor
Keiichi Yamamoto
恵一 山本
Takashi Yamane
山根 孝
Takashi Okamoto
隆志 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryomei Engineering Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Ryomei Engineering Co Ltd
Priority to JP9613386A priority Critical patent/JPS62253705A/en
Publication of JPS62253705A publication Critical patent/JPS62253705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To enable easy outflow of a molten metal even if the fine holes of a tundish is small and to produce small-diameter shot by specifying the excitation conditions over the entire part of the tundish to discharge the molten metal from the fine holes in the bottom. CONSTITUTION:The tundish 1 is a vessel to store the molten metal 3 and is provided with the many fine holes 2 for discharging the molten metal 3 in the bottom thereof. The tundish 1 is installed on a stand 9 supported by compression coil springs 8 and is united to an oscillating device 10 in order to efficiently oscillate the tundish. The entire part of the tundish 1 is oscillated at 40-100Hz frequency and 0.2-1.5mm amplitude. The molten metal flow 4 emitted from the fine holes 2 is thereby oscillated and splashed and is given shearing force to form discontinuous liquid drops which solidify to some extent during the fall in air. The liquid drops solidify further to a spherical shape when the liquid dropps fall into water 6 to form the metal shot 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋼材9w4板のスケール取り、塗装取り、或は
鋳鉄、鋳鋼の砂落しのために使用される金属ショットな
らびに金属グリッドの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing metal shot and metal grid used for scaling and removing paint from steel 9W4 plates, or removing sand from cast iron and cast steel. .

〔従来の技術〕[Conventional technology]

従来方法の概略図を第2図に示すように、タンディツシ
ュ(溶畠留め容器)■の底部に狙い。
As shown in Figure 2, which is a schematic diagram of the conventional method, aim at the bottom of the tandish (container for retaining slag).

とするショット粒径の大きさに応じて多数の細孔■を設
けかつタンディツシュ内の溶湯■のヘッド(溶湯の高さ
)をコントロールしてシヲット粒径を決定していた。
The shot particle size was determined by providing a large number of pores according to the desired shot particle size and controlling the head (height of the molten metal) of the molten metal in the tundish.

またタンディツシュ■は全体を左右動或は回転運動の如
く揺動させタンディツシュ■底部の細孔■よ垢梳出する
溶融金属流■に剪断力を与えて該溶融金属■を不連続と
して、タンディツシュ■の下方に水■を入れた水タンク
■の中へ滴下させて、凝集、凝固させて金属ショット粒
■を製造していた。尚容器■の底には製造した金属ショ
ット粒■が堆積され回収される。
In addition, the tanditsh ■ is oscillated as a whole in a side-to-side or rotational motion, and a shearing force is applied to the molten metal flow ■ which is combed out through the pores at the bottom of the tanditsh, making the molten metal discontinuous. Metal shot granules (■) were produced by dropping the mixture into a water tank (■) containing water (■) below the glass, coagulating and coagulating it. The produced metal shot grains (2) are deposited at the bottom of the container (2) and collected.

この時のタンディツシュの揺動条件は左右動の場合振巾
50〜200 M振動サイクル0.5〜1fIz程度で
あった。
The conditions for swinging the tundish at this time were a width of 50 to 200 M, a vibration cycle of about 0.5 to 1 fIz in the case of side-to-side movement.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

2〜5 mm (ピーク粒径は4−〇)の金属ショット
を製造する場合は従来方法が適していたが。
Conventional methods were suitable for producing metal shot of 2 to 5 mm (peak particle size: 4-0).

これより以下1例えば1.5〜8卸(ピーク粒径2M)
の金属ショット粒を製造するにはタンディツシュ底部の
細孔径を細くする必要がある。従来法の細孔は2.5 
mm X程度が限度でこれ以上細孔径を細くすると溶融
金属の表面張力等により細孔からの流出は困難であると
共に仮に流出した金属流が存在しても極わずかであり、
製造する金属ショットが非常に少ない(歩留りが低い)
等の欠点が生じていた。
Below 1, for example, 1.5 to 8 (peak particle size 2M)
In order to produce metal shot grains, it is necessary to reduce the pore diameter at the bottom of the tundish. The pore size of the conventional method is 2.5
If the pore diameter is made smaller than the limit of about mm
Very few metal shots are produced (low yield)
There were drawbacks such as:

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来法の欠点を解消するため、タンディツシュ
全体を振動装置により加振を与える手段を講じたもので
ある。
In order to eliminate the drawbacks of the conventional method, the present invention provides means for applying vibration to the entire tundish using a vibrating device.

すなわち本発明は、目的粒径の金属ショット粒径に応じ
た径の細孔を底部に多数有するタンディツシュを用いタ
ンディツシュ内の溶融金属の溶湯ヘッドを制御しながら
タンディツシュ底部の細孔より流出する溶融金属を水中
に滴下させ、溶融金属を凝集、凝固させ、金属ショット
を得る方法において。
That is, the present invention uses a tundish having a large number of pores at the bottom with a diameter corresponding to the particle size of the metal shot having a target particle size, and controls the head of the molten metal in the tundish while controlling the molten metal flowing out from the pores at the bottom of the tundish. In a method of obtaining metal shot by dropping molten metal into water to coagulate and solidify the molten metal.

■ タンディツシュ全体を振動装置により加振する事。■ Vibrating the entire tandish with a vibrating device.

■ 加振条件を周波数40〜100H2,振幅0.2〜
1.5肛とする事。
■ Vibration conditions are frequency 40~100H2, amplitude 0.2~
1.5 anus.

を特徴とする金属ショットの製造方法を提供するもので
ある。
The present invention provides a method for manufacturing metal shot characterized by the following.

〔作用〕[Effect]

タンディツシュ全体を振動装置で加振することにより、
溶融金属は細孔に入り込み易く充填しやすくなると共に
流出しやすくなる。(表面張力が小さくできる) また流出した溶融金属は振動により飛散され。
By vibrating the entire tandish with a vibrating device,
Molten metal easily enters and fills the pores, and also easily flows out. (Surface tension can be reduced.) Also, the molten metal that flows out is scattered by vibration.

非常に細かな溶融金属流になると共に溶融金属流に剪断
力が与えられ不連続流となる。
The molten metal flow becomes very fine and a shearing force is applied to the molten metal flow, resulting in a discontinuous flow.

ここで振動条件(振幅0.2〜1.5 ffl11.周
波数40〜100Hz)を決定した理由については以下
の点が挙げられる。
Here, the reasons why the vibration conditions (amplitude 0.2 to 1.5 ffl11, frequency 40 to 100 Hz) were determined are as follows.

1、 周波数が40Hz以下であると、たとえ振幅が0
.2〜1.5 rnrnであってもタンディツシュのノ
ズルから流出する溶融金属流はつらら状の連続流となり
、完全な不連続流とならない。
1. If the frequency is below 40Hz, even if the amplitude is 0
.. Even if the temperature is 2 to 1.5 rnrn, the molten metal flow flowing out from the nozzle of the tundish becomes an icicle-like continuous flow and does not become a completely discontinuous flow.

2、 また100H2以上であると本発明の効果は。2. Also, the effect of the present invention is greater than 100H2.

飽和状態となりたとえ200H2でも効果は変化しない
。耐火物或は、ノズルを破損する可能性が強いた゛め1
00H2以下が妥当である。
It becomes saturated and the effect does not change even at 200H2. There is a strong possibility of damaging the refractory or the nozzle.1
00H2 or less is appropriate.

3、振幅の決定条件は、0.2mm以下であると0項と
同様に金属流がつらら状の連続流になる。
3. The condition for determining the amplitude is that if the amplitude is 0.2 mm or less, the metal flow becomes an icicle-like continuous flow as in item 0.

また1、5 mm以上であると不連続流になるものの。Also, if it is 1.5 mm or more, discontinuous flow will occur.

■項と同様にタンディツシュ及びノズル等を破損する恐
れがあるため、0.2〜L、5vmの範囲に限定した。
As in item (2), there is a risk of damaging the tundish, nozzle, etc., so the range was limited to 0.2-L and 5vm.

〔実施例〕〔Example〕

本発明について第1図に基づき詳細に説明する。 The present invention will be explained in detail based on FIG.

タンディツシュ■は溶融金属■を溜める容器であり、タ
ンディツシュ■の底部には溶融金属■を流出させるため
の細孔■が多数設けられている。
The tandish (■) is a container for storing molten metal (2), and the bottom of the tandish (2) is provided with a number of pores (2) for allowing the molten metal (2) to flow out.

タンディツシュ■は振動を効率よく与えるため圧縮コイ
ルバネ■で支持されている架台■上に設置されている。
The tanditshu ■ is installed on a pedestal ■ supported by a compression coil spring ■ in order to apply vibration efficiently.

またタンディツシュ■は振動装置[相]と一体化されて
いる。
In addition, the tanditshu ■ is integrated with a vibration device [phase].

振動装置[相]により加振されたタンディツシュ■の底
部の細孔■より出た溶融金属流■は、振動により飛散し
、かつ剪断力が付加され不連続な流滴となる。この不連
続な溶融金属流■を冷却し凝固させるためタンディツシ
ュ■の下方に水■を入れた水タンク■が設けられている
The molten metal flow (2) exiting from the pores (2) at the bottom of the tundish (2) excited by the vibrating device (phase) is scattered by the vibration, and a shearing force is applied thereto, forming discontinuous droplets. In order to cool and solidify this discontinuous molten metal flow (2), a water tank (2) containing water (2) is provided below the tundish (2).

尚、溶融金属流■は空気中で落下中にある程度凝集し、
更に水中に落下した時球状に凝集する。この時水により
冷却され凝固し金属ショット■となる。
In addition, the molten metal flow ■ aggregates to some extent while falling in the air,
Furthermore, when it falls into water, it aggregates into a spherical shape. At this time, it is cooled by water and solidified to become metal shot (■).

このようにして得られた金属ショット粒5は。The metal shot particles 5 obtained in this way are as follows.

水タンク■の底部に堆積し回収される。It is deposited at the bottom of the water tank ■ and collected.

尚2本発明の主体であるタンディツシュを振動させて溶
融金属をノズル孔より流出させ、ショットを得るために
は加振させる条件が重要である。
2. In order to obtain a shot by vibrating the tundish, which is the main subject of the present invention, and causing the molten metal to flow out of the nozzle hole, the conditions for vibration are important.

従って2本発明の作用、効果を得るためには振巾にかか
わらず周波数40Hz以下では不充分であシ、また2周
波数にかかわらず振巾0.2以下では不充分である。
Therefore, in order to obtain the functions and effects of the present invention, a frequency of 40 Hz or less is insufficient regardless of the amplitude, and an amplitude of 0.2 or less is insufficient regardless of the frequency.

一方1周波数がtoolIzを超過、及び振巾が1.5
閣程度以上となると9本発明の作用、効果は定常状B(
飽和状態)となり、またタンディツシュやノズルへの悪
影響(破損する)を考慮して。
On the other hand, one frequency exceeds toolIz and the amplitude is 1.5
When the temperature exceeds 90 degrees, the action and effect of the present invention are in the steady state B (
(saturated state), and also take into consideration the negative impact (damage) on the tundish and nozzle.

実用的には周波数は40Hz〜100H2,振巾は0.
2〜1.5 mmが適正である。
Practically speaking, the frequency is 40Hz to 100H2, and the amplitude is 0.
2 to 1.5 mm is appropriate.

〔実施例〕〔Example〕

実施例1゜ 粒径1.5〜3InI11の金属ショットの製造例につ
いて述べる。
Example 1 An example of manufacturing metal shot having a grain size of 1.5 to 3 InI11 will be described.

(1)溶融金属 0溶顯金属の化学組成 C: 0.12%、 Si : 0.82%、 Mn 
: 0,70%。
(1) Chemical composition of molten metal 0 molten metal C: 0.12%, Si: 0.82%, Mn
: 0.70%.

Al : 0.041% 残部Fe及び不純物(P、S
Al: 0.041% balance Fe and impurities (P, S
.

等) Oタンディツシュ内溶湯温度・・・1560〜1590
°CO溶融金属量・・・1も0n (2)タンディツシュ 0タンディツシュ底部の細孔ノズル径由1.41nm 
X Oタンディツシュ内溶湯ヘッド 150〜200 mm (175ttm平均)0タンデ
ィツシュ底部と冷却水槽の水面までの距離 約200鴫 (3)振動方法 0振動装置 アンバランスウェイト方式のバイブレータ−(最大加振
力3000kg )   2台0振動サイクル 60回/秒 0振巾 0.5 an (4)  圧縮フィルバネ コイル内径 70InlIlダ コイル外径 82tnnX 線径    12M夏 ばね定数  9.8 kg/■ (5)冷却水関係 0冷却水 市水 0水タンクの水位 約2000mm このような構成により球状の金属ショットを得た。この
場合歩留り(全ショットの重量に対する1、5〜3I[
1ffl径のショットの重量パーセント)は約95%と
極めて良好に製造が出来た。
etc.) Temperature of molten metal in O tundish...1560-1590
°CO molten metal amount...1 is also 0n (2) Tundish 0 pore nozzle diameter at the bottom of tundish 1.41 nm
X O Molten metal head in tundish 150 to 200 mm (175 ttm average) 0 Distance between the bottom of tundish and the water surface of the cooling water tank Approx. 200 (3) Vibration method 0 Vibration device Unbalanced weight type vibrator (Maximum excitation force 3000 kg) 2 units Zero vibration cycle 60 times/second Zero amplitude 0.5 an (4) Compression fill spring coil inner diameter 70InlIl Da coil outer diameter 82tnnX Wire diameter 12M Summer spring constant 9.8 kg/■ (5) Cooling water related Zero cooling water The water level of the city water tank was approximately 2000 mm. With this configuration, a spherical metal shot was obtained. In this case, the yield (1, 5 to 3 I [relative to the weight of the total shot)
The weight percentage of the shot having a diameter of 1 ffl was approximately 95%, indicating that the production was very good.

実施例2゜ 鋳鉄系ショットを製造する場合 (1)溶融金属の化学組成 C:3.5%、Si:0.20%、 Mn : 0.7
0%、 Fe残(2)溶融温度 1400℃)タンディツシュ内温度) (3)  振動条件 振@02閣 周波数 40Hz 尚、鋳鉄の場合、流動性が良いため、振幅0.2〜1.
5 mm 、周波数40〜100H2の範囲で全ショッ
トの製造可能、その他の条件は実施例1と同様。
Example 2゜Producing cast iron shot (1) Chemical composition of molten metal C: 3.5%, Si: 0.20%, Mn: 0.7
0%, remaining Fe (2) melting temperature 1400°C) internal temperature of tundish) (3) Vibration conditions vibration @02 cabinet frequency 40Hz In addition, in the case of cast iron, since it has good fluidity, the amplitude is 0.2 to 1.
5 mm, all shots can be manufactured within the frequency range of 40 to 100H2, and other conditions are the same as in Example 1.

実施例8゜ Ni−0r合金鋼ショットを製造する場合(1)成分 
SUS 804相当 (2)溶融温度 1560℃ (3)振動条件 振幅  0.5M 周波数 60Hz その他の条件は実施例1と同様 以上の実施例におけるノズル径はt、5mm夏であるが
このノズル径は製造するショットの大きさによって定ま
る。またそれによって振幅周波数を調整する必要がある
Example 8 When manufacturing Ni-0r alloy steel shot (1) Ingredients
Equivalent to SUS 804 (2) Melting temperature 1560°C (3) Vibration conditions Amplitude 0.5M Frequency 60Hz Other conditions are the same as Example 1 The nozzle diameter in the above example is t, 5mm summer, but this nozzle diameter was manufactured Determined by the size of the shot. It is also necessary to adjust the amplitude frequency accordingly.

〔発明の効果〕〔Effect of the invention〕

本発明のタンディツシュを振動装置により加振すること
によυ以下の効果が生ずる。
By vibrating the tundish of the present invention with a vibrating device, the following effects are produced.

1、 タンディツシュのノズル孔が小さくてモ溶湯は流
出しやすくなる。
1. The nozzle hole of the tundish is small and the molten metal easily flows out.

2、 従って小径のショット粒の製造が可能となる。2. Therefore, it is possible to produce small diameter shot grains.

3、 また、ノズル孔より流出する溶融金属流に振動に
よる剪断力が与えられ不連続流となるため、製造するシ
ョットの形状が良く、製品歩走シも極めて良好である。
3. Furthermore, since the molten metal flow flowing out of the nozzle hole is subjected to a shearing force due to vibrations and becomes a discontinuous flow, the shape of the manufactured shot is good and the product run is extremely good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例、第2図は従来の例である。 ■・・・タンディツシュ、■・・・ノズル孔(IIE孔
)。 ■・・・溶湯、■・・・溶融金属流、■・・・ンヨソト
粒。 ■・・・水、■・・・水タンク、■・・・圧縮コイルバ
ネ。
FIG. 1 shows an embodiment of the present invention, and FIG. 2 shows a conventional example. ■... Tanditshu, ■... Nozzle hole (IIE hole). ■... Molten metal, ■... Molten metal flow, ■... Nyosoto grains. ■...Water, ■...Water tank, ■...Compression coil spring.

Claims (1)

【特許請求の範囲】[Claims] 目的粒径の金属ショット粒径に応じた径の細孔を底部に
多数有するタンディッシュを用いタンディッシュ内の溶
融金属の溶湯ヘッドを制御しながらタンディッシュ底部
の細孔より流出する溶融金属を水中に滴下させ溶融金属
を凝集、凝固させ金属ショットを得る方法において、タ
ンディッシュ全体を周波数40〜100HZ、振巾0.
2〜1.5mmで加振する事を特徴とする金属ショット
の製造方法。
Metal shots with target particle size A tundish with a number of pores at the bottom of the tundish has a diameter corresponding to the particle size. While controlling the head of the molten metal in the tundish, the molten metal flowing out from the pores at the bottom of the tundish is poured into water. In this method, the entire tundish is heated at a frequency of 40 to 100 Hz and an amplitude of 0.5 Hz in a method of obtaining metal shots by coagulating and solidifying molten metal.
A method for producing metal shot, characterized in that it is vibrated at 2 to 1.5 mm.
JP9613386A 1986-04-25 1986-04-25 Production of metal shot Pending JPS62253705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9613386A JPS62253705A (en) 1986-04-25 1986-04-25 Production of metal shot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9613386A JPS62253705A (en) 1986-04-25 1986-04-25 Production of metal shot

Publications (1)

Publication Number Publication Date
JPS62253705A true JPS62253705A (en) 1987-11-05

Family

ID=14156892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9613386A Pending JPS62253705A (en) 1986-04-25 1986-04-25 Production of metal shot

Country Status (1)

Country Link
JP (1) JPS62253705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246307A (en) * 1988-03-25 1989-10-02 Fukuda Metal Foil & Powder Co Ltd Manufacture of fine metal particle having non-porosity
WO2013152946A1 (en) * 2012-04-13 2013-10-17 Techcom Gmbh A method for producing shot from melt, a device for carrying out same, a device for cooling melt fragments, and a die for producing shot from melt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246307A (en) * 1988-03-25 1989-10-02 Fukuda Metal Foil & Powder Co Ltd Manufacture of fine metal particle having non-porosity
WO2013152946A1 (en) * 2012-04-13 2013-10-17 Techcom Gmbh A method for producing shot from melt, a device for carrying out same, a device for cooling melt fragments, and a die for producing shot from melt

Similar Documents

Publication Publication Date Title
US5183493A (en) Method for manufacturing spherical particles out of liquid phase
CN105458264A (en) Added material manufacturing method under vibration condition
Chun et al. Droplet-based manufacturing
JP2005023424A (en) Process for producing material reinforced with nanoparticle and article formed thereby
Wisutmethangoon et al. Production of SAC305 powder by ultrasonic atomization
JPS62253705A (en) Production of metal shot
US4738712A (en) Metal forming
JP6132642B2 (en) Method for preparing semi-solid metal slurry
JP7206965B2 (en) Method and apparatus for manufacturing titanium ingot
WO1993013897A1 (en) Process for producing a spray of metal powder
JP2002096157A (en) Method of casting minute total isometric system structure
JPS61117205A (en) Production of metallic shot
JP3536559B2 (en) Method for forming semi-solid metal
JPH01247507A (en) Method for converting molten metal into drops
Bogno et al. Single Fluid Atomization Fundamentals
JP7211122B2 (en) titanium ingot
JP2001226705A (en) Method for manufacturing fine metallic ball and apparatus for manufacturing fine metallic ball
GB2174411A (en) Metal forming e.g. casting, process and apparatus
JPS61295306A (en) Method and apparatus for producing pulverous metallic powder
JPH01246307A (en) Manufacture of fine metal particle having non-porosity
JPH06346114A (en) Metal powder producing device and its usage
JPH03230893A (en) Production of fused flux for welding
JP4163817B2 (en) Method for continuous casting of molten steel, electromagnetic vibration applying device and continuous cast slab
JP2002226903A (en) Equipment for manufacturing fine metal ball
SU1201047A1 (en) Metal-teaming method