JPH0346523B2 - - Google Patents

Info

Publication number
JPH0346523B2
JPH0346523B2 JP58190188A JP19018883A JPH0346523B2 JP H0346523 B2 JPH0346523 B2 JP H0346523B2 JP 58190188 A JP58190188 A JP 58190188A JP 19018883 A JP19018883 A JP 19018883A JP H0346523 B2 JPH0346523 B2 JP H0346523B2
Authority
JP
Japan
Prior art keywords
amorphous
cooling liquid
powder
molten metal
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58190188A
Other languages
Japanese (ja)
Other versions
JPS6082604A (en
Inventor
Akira Menjo
Hiroyuki Tomioka
Kyomi Yasuhara
Akio Nakamura
Yukio Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP19018883A priority Critical patent/JPS6082604A/en
Publication of JPS6082604A publication Critical patent/JPS6082604A/en
Publication of JPH0346523B2 publication Critical patent/JPH0346523B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アトマイズ法により非晶質金属粉粒
体を高収率で迅速かつ大量に製造する方法に関す
るものである。 溶融金属を超急冷すると非晶質の金属が得ら
れ、しかも結晶質金属とは異なつた諸性質を有す
ることが知られており、例えば機械的強度、耐蝕
性に優れていることや、また遷移金属を主体とす
る組成の合金は電磁気性能に優れていること等が
知られており、従来、これらの非晶質金属の優れ
た特性を有する薄帯、細線形状の材料での実用化
の検討がなされてきている。 一方、圧着して成型体としたり、樹脂中に分散
させる場合には、粉粒状の非晶質金属が利用され
ている。この非晶質金属粉末には、形状的に長さ
1〜2mm、厚さ20〜50μm程度の鋭いエツジをも
つたフレーク状及び粒状を有したものがある。フ
レーク状非晶質金属粉末は、製造が容易である
が、圧着成型体とする時、隣接するフレーク状粉
末同士が面で接触するため、圧着時に多大な発熱
が生じ、この発熱により結晶化したり、圧着後の
成型体に十分な空げき率を与えることができない
ため、適当な空げきが必要な製品には不向きであ
つた。また、粉末を流動床化及び固定床化して触
媒として用いる場合にも、薄片状であるがために
運転時の制御及び圧損のムラ等、種々の問題を含
んでいる。これらのフレーク状非晶質金属粉末の
有する多くの問題点と比較して粒状の非晶質金属
粉末(以下非晶質金属粉粒体という。)の製造は
困難であり、製造者の意図とする粒径の非晶質金
属粉粒体を得ることは究めて難しく、偶然によつ
て生じた粒径の小さい非晶質金属粉粒体を分級に
より選別して得ている程度であるが、非晶質金属
粉粒体は、圧着成型する際に隣接する粉粒体同士
は点で接触するため、圧着時の発熱もほとんどな
く、したがつて結晶化することも全くない。ま
た、粒径の異なつた粉粒体を適当に配合すること
により空げき率の小さな圧着成型体が得られた
り、また粒径のそろつた粉粒体を圧着成型するこ
とにより空げき率の大きな圧着成型体が得られ、
また鉄粉等との混練性も良好である。このように
製造者の目的により任意の応用が可能である。例
えば、特開昭54−76469号公報には、アトマイズ
法を用いて非晶質金属粉末を製造するため、冷却
用液体流の流速を70m/sec以上に高速化し、か
つ合金溶湯流量に対する冷却用液体流量の比を10
〜40と小さくとることが記載されており、更に分
級により非晶質化した粉粒体を選別することが記
載されている。しかし、この方法では、冷却能が
大変小さく、非晶質化させることがかなり困難
で、ほとんどの部分が結晶化しており、これを分
級により非常に細かい非晶質化したものだけを選
別しても、非晶質化した粉末の収率も低く、コス
ト的に高くつき、しかも分級後の非晶質粉末の直
径も小さく、30μm以下であるため、取扱いに不
便で、圧着成型しても空げきが小さく、適当な空
げきが必要な製品には不向きであり、また分級と
いう複雑な工程を必要とするため、製造法として
は決して好ましいものではなかつた。また、特開
昭57−29504号公報、特開昭57−29505号公報に
は、回転するドラムの内側の壁面に回転によつて
生じる遠心力によつて形成された水の層に合金溶
湯流を吹き出し、急冷固化させて非晶質粉粒体を
得る方法が記載されている。しかしながら、回転
ドラムの内側の壁面に形成された水の層は、実質
的に大きな乱れのない層流であるために、溶湯を
分断して粉粒体とするアトマイズ効果が小さく、
よつて非晶質化するための冷却能もかなり低く、
非晶質粉粒体は100μm径以下程度の細かいもの
を分級によつてのみ選別して得ているにしかすぎ
なかつた。 本発明者らは、これらの事情に鑑み、粒径の大
なるものまですべてが非晶質の状態で、しかも分
級して非晶質部分と結晶化部分とを選別するとい
うような工程を経ずに、高い収率で工業的に有用
な非晶質金属粉粒体の製造方法を提供することを
目的として鋭意研究した結果、溶融金属流をノズ
ルより特定の条件で冷却液体ジエツト流に噴出し
て冷却固化させると、上記の目的が達成されるこ
とを見い出し、本発明を完成した。 すなわち、本発明は溶融金属流をノズルより下
記(a)。このようにす、(b)、(c)及び(d)を満足する条
件で冷却液体ジエツト流に噴出して冷却固化させ
ることを特徴とする非晶質金属粉粒体の製造方法
である。 800≦V≦6000 (a) Q/q≧50 (b) 0.04≦D≦0.15 (c) θ≧70 (d) (式中Vは冷却液体ジエツト流の速度(m/分)、
Qは冷却液体ジエツト流の流量(g/分)、qは
溶融金属流の流量(g/分)、Dはノズル孔径
(mm)、θは冷却流体ジエツト流とノズルより噴出
された溶融金属流とのなす角(°)を表す。) 本発明によれば、粉粒体の直径が特に約50μm
〜約400μmの大きなものまで全て非晶質の状態
で得ることができる。そのために、冷却液体ジエ
ツト流の速度V(m/分)を800〜6000の間に、冷
却液体ジエツト流の流量(g/分)と溶融金属流
の流量(g/分)との比Q/qを50以上に、ノズ
ル孔径D(mm)を0.04〜0.15の間に、冷却液体ジ
エツト流とノズルより噴出された溶融金属流との
なす角θ(°)を70以上にすることが必要である。 上記製造条件をひとつでも満足しない場合、す
なわち、まず冷却液体ジエツト流の速度V(m/
分)が800未満では、溶融金属(以下溶湯とい
う。)の分断がおこりにくくなり、また粉粒体径
が大きくなり、冷却能も低下するため、非晶質化
しにくく、しかも丸い形状の粉流体も得られなく
なり、6000を越える場合は、冷却液体ジエツト流
の冷却能が頭打ちになるため、6000を越えて速度
を速めても、そのメリツトはない。次にQ/qが
50未満では、溶湯は冷却途中で冷却液体ジエツト
流の外に飛び出したり、結晶化をおこしたりして
製造された粉粒体に品質のバラツキが生じる。ま
た、ノズル孔径D(mm)が0.04未満では、ノズル
孔の塞まりが生じやすく、ノズルの寿命が短くな
り、またアルゴン吹出圧が高圧になるため、ノズ
ル自体の破損の原因となり、0.15を越える孔径で
は、製造される粉粒体の中に400μm径を越える
ものが生じ、この400μm径以上の粒径は結晶化
する傾向がある。ノズル孔径D(mm)は、0.05〜
0.13の範囲が最も好ましい。また、第2図に示す
ごとく、ノズル孔径D(mm)、その孔長L(mm)の
比L/Dを0.8以下にすると、噴出時の溶湯が不
安定化し、アトマイズ化しやすくなり、特に0.6
以下にすることが好ましい。L/Dが0.8を越え
る場合には、噴出時の溶湯が安定化し、冷却液体
ジエツト流による溶湯の分断、すなわちアトマイ
ズ化がおこりにくくなる。次にθが70°未満の場
合には、溶湯は冷却液体ジエツト液中より飛び出
し、冷却されなくなるため、結晶化をおこしてし
まう。特にθは80°以上であることが好ましい。 次に、本発明を図により説明する。第1図は本
発明を実施するための一実施態様を示す装置で、
1は溶湯流を噴出させるための孔を有した石英ノ
ズル、2は冷却液体ジエツト流の噴出用ノズル、
3は冷却液体ジエツト流と凝固した粉粒体との流
路となる管又は溝、4は冷却液体と粉粒体とを分
離するフイルター、5は冷却液体をうけるタンク
である。冷却液体は5のタンクから冷却液体加圧
ポンプにより所定の圧力に加圧され、所定温度ま
で冷却された後、2の冷却液体ジエツトの噴出用
ノズルから、圧力により定まる一定速度で噴出す
る。1の溶湯噴出用ノズルは、冷却液体ジエツト
流の上面に近接して一定の確度で配置され、不活
性ガス等の圧力でノズルから溶湯を冷却液体ジエ
ツト流に噴出する。噴出された溶湯流は冷却液体
ジエツト流に流入し、分断され、急冷固化されて
非晶質金属粉流体となり、4のフイルターで粉粒
体と冷却液体とを分離し、この冷却液体は適当な
温度に再冷却された後、再使用される。 本発明に用いられる合金としては、非晶質形成
能を有する合金であれば、いかなるものでもよ
い。また、アトマイズ法による急冷固化は、急冷
固化過程が片ロール法、双ロール法、回転液中紡
糸法とは異なつており、アトマイズ化された粉粒
体の球面の前面にわたつて冷却されており、しか
も冷却液体ジエツト流の状態が乱流であり、また
超高速であるため、溶湯のまわりでも膜沸とうが
全くおこらず、伝熱状況が極めてよいので、冷却
速度はかなり速くなつており、それにつれて非晶
質が形成される臨界径も向上し、従来非晶質にな
りにくかつた合金でも用いることができる。特に
Fe−Si−B系合金、Fe−P−C系合金、Fe−Ni
−Si−B系合金などのFe系合金、Co−Si−B系
合金などのCo系合金、Pd−Cu−Si系合金などの
Pd系合金が好ましく、Niのような溶湯の粘性を
下げたり、表面張力を大きくするような成分を加
えることが好ましい。 本発明に用いられる冷却液体としては、例えば
水、アルコール、エチレングリコールや、それに
各種塩類を加えたものがあげられ、特に安価で、
しかも冷却能が高い水が好ましい。 本発明によつて得られる粉粒体としては、同一
断面の長軸直径と短軸直径との比が約3以下の真
円度を有するものが好ましい。 本発明によつて得られた非結晶粉粒体は、粉粒
体の直径が約50μm〜約400μmの大きなものまで
全く非晶質であるため、種々の成型方法によつて
有用な工業用材料となる。例えば、大きな直径の
粉粒体と微小な粉粒体を空げき率の小さい状態で
成型すると、非晶質特有の高硬度にる耐摩耗性に
優れた材料を得ることができ、またこれは電磁シ
ールド材、中性子シールド材としても有用であ
る。さらに、粉粒体の直径の揃つた非晶質粉粒体
を成型した場合には、その空げき率の大なること
から、SOx、NOxガスの吸着用フイルター及び
磁場中において油等中の鉄粉の除去用吸着フイル
ターに使用することができる。触媒として用いる
場合にも、充填率の調節によつて生成物分布のコ
ントロールが容易となり、選択性に優れたものと
なる。このように全ての粉粒体が非晶質の状態で
得られる粉粒体においては、400μm径以下の
種々の直径の粉粒体の組合せ、又は単一径の粉粒
体の使用により空げき及び空げき率を調節するこ
とが任意にでき、有用な工業用資材として広く用
いられるものである。 以下、本実施例により本発明を具体的に説明す
る。 実施例1〜6、比較例1〜4 Fe75−Si10−B15(原子%)の組成を有する合金
を1400℃で溶融した後、表1に示した孔径D(mm)
ノズル孔長L(mm)の石英ノズルを用いて40g/
分(q)の溶湯にてアルゴンガス吹出圧2.5〜8.0
(Kg/cm2)の圧力にて表1に示したQ/q、V及
びθ(°)の角度で冷却液体ジエツト流に噴出せ
しめて急冷凝固させた。 冷却液体を凝固した粉粒体とをフイルターによ
り選別し、種々の製造条件のもとに得られた粉末
を分級し、それらの粒径分布を測定すると表1に
示すような結果が得られた。また、非晶質である
ことは、X線回折により明瞭な非晶質特有のハロ
ーパターンがみられることから判別した。
The present invention relates to a method for producing amorphous metal powder in high yield, rapidly, and in large quantities by an atomization method. It is known that an amorphous metal can be obtained by ultra-quenching molten metal, and that it has properties different from crystalline metals. For example, it has excellent mechanical strength and corrosion resistance, and It is known that alloys with a composition mainly composed of metals have excellent electromagnetic properties, and studies have been conducted to find practical applications for materials in the form of ribbons or thin wires that have the excellent properties of these amorphous metals. has been done. On the other hand, powdery amorphous metal is used when it is pressed into a molded body or dispersed in a resin. Some of these amorphous metal powders have a flake shape or a granule shape with sharp edges, about 1 to 2 mm in length and 20 to 50 μm in thickness. Flake-like amorphous metal powder is easy to manufacture, but when it is pressed into a compact, adjacent flake-like powders come into contact with each other on their surfaces, so a large amount of heat is generated during pressure bonding, and this heat generation can cause crystallization. However, since it is not possible to give a sufficient void ratio to the molded product after crimping, it is not suitable for products that require appropriate voids. Furthermore, when the powder is made into a fluidized bed or a fixed bed and used as a catalyst, since the powder is flaky, there are various problems such as control during operation and uneven pressure drop. Compared to the many problems associated with these flaky amorphous metal powders, it is difficult to manufacture granular amorphous metal powders (hereinafter referred to as amorphous metal powder), and it is difficult to produce granular amorphous metal powders (hereinafter referred to as amorphous metal powders). It is extremely difficult to obtain amorphous metal powder with a particle size of 100%, and it is only possible to obtain it by sorting out amorphous metal powder with a small particle size that occurs by chance. When amorphous metal powder is press-molded, adjacent powders come into contact with each other at points, so there is almost no heat generation during press-molding, and therefore no crystallization occurs. In addition, by appropriately blending powders and granules with different particle sizes, it is possible to obtain a compacted product with a small void ratio, and by pressure-molding powders with uniform particle sizes, it is possible to obtain a compact product with a large void ratio. A crimped molded body is obtained,
It also has good kneading properties with iron powder and the like. In this way, any application is possible depending on the purpose of the manufacturer. For example, in JP-A-54-76469, in order to produce amorphous metal powder using the atomization method, the flow rate of the cooling liquid flow is increased to 70 m/sec or more, and the cooling liquid flow rate is increased to 70 m/sec or more, and the cooling liquid flow rate is Liquid flow ratio 10
It is described that the particle size can be as small as ~40, and it is also described that amorphous powder or granules are sorted out by classification. However, with this method, the cooling capacity is very small, and it is quite difficult to turn the material into an amorphous state.Most of the parts are crystallized, and only the very fine amorphous material is sorted out by classification. However, the yield of amorphous powder is low and the cost is high. Furthermore, the diameter of the amorphous powder after classification is small, less than 30 μm, so it is inconvenient to handle, and even if it is pressed and molded, it is empty. It was not suitable as a manufacturing method because it was not suitable for products that had small cracks and required proper cracking, and required a complicated step of classification. In addition, JP-A-57-29504 and JP-A-57-29505 disclose that molten alloy flows in a layer of water formed on the inner wall surface of a rotating drum by centrifugal force generated by rotation. A method is described in which an amorphous powder is obtained by blowing out and rapidly solidifying the powder. However, since the water layer formed on the inner wall surface of the rotating drum is a laminar flow without substantial turbulence, the atomization effect of dividing the molten metal into powder particles is small.
Therefore, the cooling ability to become amorphous is also quite low.
Amorphous powder particles have only been obtained by selecting fine particles with a diameter of 100 μm or less only by classification. In view of these circumstances, the present inventors conducted a process in which all particles, including those of large size, were in an amorphous state, and the amorphous portion and the crystallized portion were separated by classification. As a result of intensive research aimed at providing a method for producing industrially useful amorphous metal powder with high yield, we have developed a method for jetting a molten metal stream from a nozzle into a cooling liquid jet stream under specific conditions. They have discovered that the above object can be achieved by cooling and solidifying the mixture, and have completed the present invention. That is, the present invention directs the molten metal flow from the nozzle in the following manner (a). This is a method for producing amorphous metal powder, which is characterized in that it is jetted into a cooling liquid jet stream and cooled and solidified under conditions that satisfy (b), (c), and (d). 800≦V≦6000 (a) Q/q≧50 (b) 0.04≦D≦0.15 (c) θ≧70 (d) (where V is the velocity of the cooling liquid jet flow (m/min),
Q is the flow rate of the cooling liquid jet flow (g/min), q is the flow rate of the molten metal flow (g/min), D is the nozzle hole diameter (mm), and θ is the cooling fluid jet flow and the molten metal flow ejected from the nozzle. Represents the angle (°) between ) According to the present invention, the diameter of the granular material is particularly about 50 μm.
All large particles up to about 400 μm in size can be obtained in an amorphous state. For this purpose, the velocity V (m/min) of the cooling liquid jet stream is set between 800 and 6000, and the ratio Q/ It is necessary that q is 50 or more, the nozzle hole diameter D (mm) is between 0.04 and 0.15, and the angle θ (°) between the cooling liquid jet flow and the molten metal flow jetted from the nozzle is 70 or more. be. If even one of the above manufacturing conditions is not satisfied, firstly, the cooling liquid jet flow velocity V (m/
If the molten metal (hereinafter referred to as molten metal) is less than 800, the molten metal (hereinafter referred to as molten metal) will be difficult to break up, the powder particle diameter will become large, and the cooling ability will decrease, so it will be difficult to become amorphous, and the powder will have a round shape. If the speed exceeds 6000, the cooling capacity of the cooling liquid jet flow reaches a ceiling, so there is no advantage to increasing the speed beyond 6000. Next, Q/q
If it is less than 50, the molten metal may jump out of the cooling liquid jet flow during cooling or crystallize, resulting in variations in quality of the produced powder or granules. In addition, if the nozzle hole diameter D (mm) is less than 0.04, the nozzle hole is likely to become clogged, shortening the life of the nozzle, and the argon blowing pressure becomes high, which may cause damage to the nozzle itself. In terms of pore size, some of the produced powder particles have a diameter exceeding 400 μm, and particles with a diameter of 400 μm or more tend to crystallize. Nozzle hole diameter D (mm) is 0.05~
A range of 0.13 is most preferred. Furthermore, as shown in Fig. 2, if the ratio L/D of the nozzle hole diameter D (mm) and its hole length L (mm) is set to 0.8 or less, the molten metal at the time of spouting becomes unstable and tends to atomize, especially 0.6
It is preferable to do the following. When L/D exceeds 0.8, the molten metal at the time of ejection is stabilized, and the molten metal is less likely to be divided by the cooling liquid jet flow, that is, atomized. Next, when θ is less than 70°, the molten metal jumps out of the cooling liquid jet liquid and is no longer cooled, resulting in crystallization. In particular, θ is preferably 80° or more. Next, the present invention will be explained using figures. FIG. 1 shows an apparatus showing one embodiment for carrying out the present invention,
1 is a quartz nozzle having a hole for ejecting a flow of molten metal; 2 is a nozzle for ejecting a flow of cooling liquid;
Reference numeral 3 designates a pipe or groove that serves as a flow path for the cooling liquid jet flow and the solidified powder, 4 a filter that separates the cooling liquid from the powder, and 5 a tank that receives the cooling liquid. The cooling liquid is pressurized to a predetermined pressure from the tank 5 by a cooling liquid pressurizing pump, cooled to a predetermined temperature, and then jetted from the cooling liquid jet jet nozzle 2 at a constant speed determined by the pressure. The molten metal jetting nozzle No. 1 is placed close to the upper surface of the cooling liquid jet stream with a certain degree of accuracy, and jets the molten metal from the nozzle into the cooling liquid jet stream under the pressure of an inert gas or the like. The ejected molten metal flow flows into the cooling liquid jet flow, is divided, rapidly solidified, and becomes an amorphous metal powder.The filter in step 4 separates the powder from the cooling liquid, and this cooling liquid is mixed with an appropriate cooling liquid. After being recooled to temperature, it is reused. The alloy used in the present invention may be any alloy as long as it has the ability to form an amorphous state. In addition, the rapid solidification process using the atomization method is different from that of the single roll method, twin roll method, and rotating liquid spinning method, in that the atomized powder is cooled over the front surface of the spherical surface. Moreover, since the cooling liquid jet flow is turbulent and extremely fast, no film boiling occurs around the molten metal, and the heat transfer conditions are extremely good, so the cooling rate is quite fast. Accordingly, the critical diameter at which amorphous material is formed also improves, and even alloys that have conventionally been difficult to form amorphous can be used. especially
Fe-Si-B alloy, Fe-P-C alloy, Fe-Ni
- Fe-based alloys such as Si-B alloys, Co-based alloys such as Co-Si-B alloys, Pd-Cu-Si alloys, etc.
A Pd-based alloy is preferable, and it is preferable to add a component such as Ni that lowers the viscosity of the molten metal or increases the surface tension. The cooling liquid used in the present invention includes, for example, water, alcohol, ethylene glycol, and liquids to which various salts are added, and are particularly inexpensive.
Moreover, water with high cooling ability is preferable. The powder or granular material obtained by the present invention preferably has a circularity in which the ratio of the major axis diameter to the minor axis diameter of the same cross section is about 3 or less. Since the amorphous powder obtained by the present invention is completely amorphous even in large particles with a diameter of about 50 μm to about 400 μm, it can be used as a useful industrial material by various molding methods. becomes. For example, by molding large-diameter powder and fine powder with a small void ratio, it is possible to obtain a material with excellent wear resistance and high hardness characteristic of amorphous materials. It is also useful as an electromagnetic shielding material and a neutron shielding material. Furthermore, when molding amorphous powder and granules with uniform diameters, the void ratio is large, so iron in oil, etc. should be used in adsorption filters for SOx and NOx gases, and in magnetic fields. Can be used in adsorption filters for removing powder. When used as a catalyst, the product distribution can be easily controlled by adjusting the filling rate, resulting in excellent selectivity. For powders and granules obtained in this way, where all the powders and granules are in an amorphous state, it is possible to create voids by combining powders and granules with various diameters of 400 μm or less, or by using powders and granules of a single diameter. And the void ratio can be adjusted arbitrarily, and it is widely used as a useful industrial material. Hereinafter, the present invention will be specifically explained using the present example. Examples 1 to 6, Comparative Examples 1 to 4 After melting an alloy having a composition of Fe 75 -Si 10 -B 15 (atomic %) at 1400°C, the pore diameter D (mm) shown in Table 1 was obtained.
40g/using a quartz nozzle with nozzle hole length L (mm)
Argon gas blowing pressure 2.5 to 8.0 at molten metal of minutes (q)
The liquid was jetted into a cooling liquid jet stream at a pressure of (Kg/cm 2 ) at an angle of Q/q, V, and θ (°) shown in Table 1, and was rapidly solidified. The cooling liquid was separated from the solidified powder using a filter, the powders obtained under various manufacturing conditions were classified, and their particle size distributions were measured, and the results shown in Table 1 were obtained. . Further, it was determined that it was amorphous because a clear halo pattern peculiar to amorphous was observed by X-ray diffraction.

【表】 表1より実施例1〜6は、得られた粉粒体全て
がほぼ真円に近く、かつ非晶質であり、粒径分布
も良好であり、400μm径程度の非晶質金属粉粒
体も得られている。特に、実施例5、6はノズル
孔長L(mm)と孔径D(mm)の比L/Dも小さく溶
湯が乱れやすく、分断されやすいうえに、中でも
実施例5は溶湯の冷却液体ジエントへの入射角も
大きく、粒径分布の公布状況はさらに向上し、所
望の粒径の粉粒体を容易に得やすくなつているこ
とが明らかである。 一方、比較例1は冷却液体ジエツト流の流量Q
(g/分)と溶湯粒q(g/分)の比Q/qが小さ
く、冷却能が低下し、溶湯の分断もおこりにくく
なるため、401μm径以上の粉粒体に結晶化した
部分がみられた。比較例2は、ノズル孔径D(mm)
が小さいため、ノズル孔が塞まり、溶湯を噴出し
つづけることができず、比較例3は溶湯の流速、
流量に比べ、冷却液体ジエツト流の流量が少ない
ため、溶湯が冷却液体ジエツト流を通り抜けてし
まい、冷却凝固させることができなかつた。比較
例4は、Fe68−Si17−B15の組成を有する合金を
用いて、θを25°としたため(他はすべて本発明
を満足する条件である。)、得られた粉粒体は結晶
化したものが大部分で、20μm径以下の粉粒体で
のみ非晶化したものが得られた。 実施例7〜12、比較例5〜8 Fe67.5−Ni10−Si15−B7.5(原子%)の組成を有
する合金を1400℃で溶融した後、孔径0.13mm、
L/D0.6の石英ノズルを用いて、40g/分(q)
の溶湯にて、表2に示したQ/q、V及びθ(°)
の角度で冷却液体ジエツト流に噴出せしめ急冷凝
固させた。 冷却液体と凝固した粉粒体をフイルターにより
選別し、ふるいにより分級し、それらの粒径分布
を測定すると、表2に示すような結果が得られ
た。また、非晶質であることは、X線回折により
明瞭な非晶質特有のハローパターンがみられるこ
とから判別した。
[Table] From Table 1, in Examples 1 to 6, all the powder particles obtained were almost perfectly circular and amorphous, and the particle size distribution was also good, and the amorphous metal had a diameter of about 400 μm. Powder and granules have also been obtained. In particular, in Examples 5 and 6, the ratio L/D of the nozzle hole length L (mm) to the hole diameter D (mm) is small, and the molten metal is easily disturbed and easily divided. It is clear that the incident angle of the particles is also large, the state of publication of the particle size distribution has further improved, and it has become easier to obtain powder with the desired particle size. On the other hand, in Comparative Example 1, the flow rate Q of the cooling liquid jet flow was
(g/min) and molten metal particles q (g/min) is small, the cooling ability is reduced, and the molten metal is less likely to break up, so the crystallized part into powder particles with a diameter of 401 μm or more is It was seen. Comparative example 2 has nozzle hole diameter D (mm)
Since the flow rate of the molten metal was small, the nozzle hole was blocked and the molten metal could not be continuously spouted.
Since the flow rate of the cooling liquid jet stream was smaller than the flow rate, the molten metal passed through the cooling liquid jet stream and could not be cooled and solidified. In Comparative Example 4, an alloy having a composition of Fe 68 -Si 17 -B 15 was used, and θ was set to 25° (all other conditions satisfying the present invention), so the obtained powder was Most of the particles were crystallized, and only amorphous particles with a diameter of 20 μm or less were obtained. Examples 7 to 12, Comparative Examples 5 to 8 After melting an alloy having a composition of Fe 67.5 −Ni 10 −Si 15 −B 7.5 (atomic %) at 1400°C, the pore size was 0.13 mm.
40g/min (q) using L/D0.6 quartz nozzle
Q/q, V and θ (°) shown in Table 2 for the molten metal of
The liquid was jetted into the cooling liquid jet stream at an angle of When the cooling liquid and the solidified powder were sorted by a filter, classified by a sieve, and their particle size distribution was measured, the results shown in Table 2 were obtained. Further, it was determined that it was amorphous because a clear halo pattern peculiar to amorphous was observed by X-ray diffraction.

【表】 表2より実施例7〜12は、粉粒体全てがほぼ真
円に近く、かつ非晶質であり、粉粒分布も良好で
あることが明らかである。 一方、比較例5は、冷却液体ジエツト流の速度
V(m/分)が500m/分と低く、アトマイズ効果
が小さい。比較例6は冷却液体ジエツト流の流量
Q(g/分)の溶湯流量q(g/分)の比Q/qが
小さく、アトマイズ化はやや進んでいるが、冷却
能が低い。比較例7は、ノズル孔が大きく、アト
マイズ化されにくく、したがつて非晶質のものは
えられない。比較例8は、θ(°)が小さく、ア
トマイズ効果が小さく、線状の切れたものが混じ
り、また形状も一定しないものであつた。 実施例 3 合金組成をFe81−Si4−B14−C1にした以外は、
実施例1と同様の条件で粉粒体を製造した。 その結果、粉粒分布は200μ〜151μmが1%、
150〜101μmが1%、100〜51μmが40%、50μm
以下が58%で、全てほぼ真円に近く、かつ非晶質
であつた。 実施例 4 合金組成をFe68−Si10−B15−Cr8にした以外は
実施例1と同様の条件で粉粒体を製造した。 その結果、粉粒分布は200μ〜151μmが8%、
150〜101μmが26%、100〜51μmが60%、50μm
以下が6%で、全てほぼ真円に近く、かつ非晶質
であつた。
[Table] From Table 2, it is clear that in Examples 7 to 12, all the powder particles were almost perfectly circular and amorphous, and the particle distribution was also good. On the other hand, in Comparative Example 5, the velocity V (m/min) of the cooling liquid jet flow was as low as 500 m/min, and the atomization effect was small. In Comparative Example 6, the ratio Q/q of the flow rate Q (g/min) of the cooling liquid jet flow to the molten metal flow rate q (g/min) is small, and although atomization has progressed somewhat, the cooling ability is low. Comparative Example 7 has a large nozzle hole and is difficult to atomize, so an amorphous product cannot be obtained. In Comparative Example 8, θ (°) was small, the atomization effect was small, linear cuts were mixed, and the shape was not constant. Example 3 Except for changing the alloy composition to Fe 81 −Si 4 −B 14 −C 1 ,
Powder was produced under the same conditions as in Example 1. As a result, the particle distribution was 1% between 200 μm and 151 μm;
150-101μm 1%, 100-51μm 40%, 50μm
The following were 58%, all of which were almost perfectly round and amorphous. Example 4 Powder was produced under the same conditions as in Example 1 except that the alloy composition was changed to Fe 68 -Si 10 -B 15 -Cr 8 . As a result, the particle distribution was 8% between 200 μm and 151 μm;
150-101μm 26%, 100-51μm 60%, 50μm
The percentage below was 6%, and all of them were almost perfectly round and amorphous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施するための一実施態様
を示す装置の概略図、第2図は溶湯噴出用ノズル
の一部断面図である。 1……溶湯噴出用ノズル、2……冷却液体ジエ
ツトの噴出用ノズル、D……1の孔径、L……1
の孔長。
FIG. 1 is a schematic diagram of an apparatus showing one embodiment of the present invention, and FIG. 2 is a partial cross-sectional view of a molten metal jetting nozzle. 1...Nozzle for spouting molten metal, 2...Nozzle for spouting cooling liquid jet, hole diameter of D...1, L...1
hole length.

Claims (1)

【特許請求の範囲】 1 溶融金属流をノズルより下記(a)、(b)、(c)及び
(d)を満足する条件で冷却液体ジエツト流に噴出し
て冷却固化させることを特徴とする非晶質金属粉
粒体の製造方法。 800≦V≦6000 (a) Q/q≧50 (b) 0.04≦D≦0.15 (c) θ≧70 (d) (式中Vは冷却液体ジエツト流の速度(m/分)、
Qは冷却液体ジエツト流の流量(g/分)、qは
溶融金属流の流量(g/分)、Dはノズル孔径
(mm)、θは冷却流体ジエツト流とノズルより噴出
された溶融金属流とのなす角(°)を表す。)
[Scope of Claims] 1 The following (a), (b), (c) and
A method for producing amorphous metal powder, which comprises jetting it into a cooling liquid jet flow and cooling and solidifying it under conditions that satisfy (d). 800≦V≦6000 (a) Q/q≧50 (b) 0.04≦D≦0.15 (c) θ≧70 (d) (where V is the velocity of the cooling liquid jet flow (m/min),
Q is the flow rate of the cooling liquid jet flow (g/min), q is the flow rate of the molten metal flow (g/min), D is the nozzle hole diameter (mm), and θ is the cooling fluid jet flow and the molten metal flow ejected from the nozzle. Represents the angle (°) between )
JP19018883A 1983-10-12 1983-10-12 Manufacture of amorphous metallic granular powder Granted JPS6082604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19018883A JPS6082604A (en) 1983-10-12 1983-10-12 Manufacture of amorphous metallic granular powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19018883A JPS6082604A (en) 1983-10-12 1983-10-12 Manufacture of amorphous metallic granular powder

Publications (2)

Publication Number Publication Date
JPS6082604A JPS6082604A (en) 1985-05-10
JPH0346523B2 true JPH0346523B2 (en) 1991-07-16

Family

ID=16253914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19018883A Granted JPS6082604A (en) 1983-10-12 1983-10-12 Manufacture of amorphous metallic granular powder

Country Status (1)

Country Link
JP (1) JPS6082604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137468A1 (en) 2009-05-27 2010-12-02 三菱重工業株式会社 Scroll compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342308A (en) * 1986-08-07 1988-02-23 Tanaka Electron Ind Co Ltd Production of metal powder
KR100372226B1 (en) * 2000-04-26 2003-02-14 휴먼일렉스(주) Making process of amorphous metallic powder by high pressure water atomization
EP2181785A1 (en) * 2008-11-04 2010-05-05 Umicore AG & Co. KG Device and method of granulating molten metal
KR102288549B1 (en) * 2017-01-27 2021-08-10 제이에프이 스틸 가부시키가이샤 Method for producing soft magnetic iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476469A (en) * 1977-11-30 1979-06-19 Fukuda Metal Foil Powder Production of amorphous alloy powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476469A (en) * 1977-11-30 1979-06-19 Fukuda Metal Foil Powder Production of amorphous alloy powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137468A1 (en) 2009-05-27 2010-12-02 三菱重工業株式会社 Scroll compressor

Also Published As

Publication number Publication date
JPS6082604A (en) 1985-05-10

Similar Documents

Publication Publication Date Title
US4069045A (en) Metal powder suited for powder metallurgical purposes, and a process for manufacturing the metal powder
US4063942A (en) Metal flake product suited for the production of metal powder for powder metallurgical purposes, and a process for manufacturing the product
JPH06172819A (en) Method of granulating molten metal
US4154284A (en) Method for producing flake
JP2022191273A (en) Refractory metal or alloy powder atomization manufacturing process
JP4217997B2 (en) Soft magnetic alloy powder
JPS61226163A (en) Production of metal product
US7628838B2 (en) Method for producing particle-shaped material
JP6565941B2 (en) Method for producing soft magnetic iron powder
Schade et al. Atomization
US4818279A (en) Method and device for the granulation of a molten material
JPH0346523B2 (en)
EP0131969B1 (en) Process for manufacturing amorphous alloy powders
US4242069A (en) Apparatus for producing flake
CA1132315A (en) Process for preparation of granules of low-melting-point metals
US4355057A (en) Formation of alloy powders through solid particle quenching
US3963811A (en) Process for producing a composite metal powder
JPH0754019A (en) Production of powder by multistage fissure and quenching
JP4553180B2 (en) Electromagnetic wave absorption shielding material
JPS6024302A (en) Production of amorphous alloy powder
JPH064886B2 (en) Cream solder manufacturing method
JP7276637B1 (en) Method for producing water-atomized metal powder and apparatus for producing water-atomized metal powder
WO2023119896A1 (en) Production method for water-atomized metal powder, and production device for water-atomized metal powder
JPH06172817A (en) Production of quenched metal powder
EP4019166A1 (en) Atomisation of metallic melts using carbonated water