JPH01245585A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH01245585A
JPH01245585A JP63072665A JP7266588A JPH01245585A JP H01245585 A JPH01245585 A JP H01245585A JP 63072665 A JP63072665 A JP 63072665A JP 7266588 A JP7266588 A JP 7266588A JP H01245585 A JPH01245585 A JP H01245585A
Authority
JP
Japan
Prior art keywords
semiconductor laser
thermistor
chip
laser chip
chip carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63072665A
Other languages
Japanese (ja)
Inventor
Yuichi Odagiri
小田切 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63072665A priority Critical patent/JPH01245585A/en
Publication of JPH01245585A publication Critical patent/JPH01245585A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Abstract

PURPOSE:To enable the very accurate measurement of the temperature of an active layer of a semiconductor laser chip by a method wherein a thermistor is mounted on a chip carrier and the semiconductor laser chip is mounted directly thereon. CONSTITUTION:A thermistor 30 is mounted on a chip carrier 20, and a semiconductor laser chip 10 is mounted on one of electrodes of the thermistor 30. The thermistor 30 is mounted on the chip carrier 20 in such a manner that a lower electrode 33 of the thermistor 30 is fusion-welded on a metal 22 on the chip carrier 20 through the intermediary of a eutectic solder layer 35 of lead and tin. And, the semiconductor laser chip 10 is mounted on an upper electrode 32 of the thermistor 30 in such a way that a lower electrode of the semiconductor laser chip 10 is fusion-welded to the upper electrode 22 of the thermistor 30 through the intermediary of the pattern of a eutectic solder layer 34 of gold and tin formed on a part of the upper electrode 32 of the thermistor 30.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光通信システムなどで利用される半導体レ
ーザ装置に関し、特に高精度の温度ネ★出機能を備えた
半導体レーザ装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a semiconductor laser device used in optical communication systems, etc., and particularly relates to a semiconductor laser device equipped with a highly accurate temperature detection function. .

(従来の技術) 光通信システムでは、光源や変調器として半導体レーザ
装置が汎用されている。
(Prior Art) In optical communication systems, semiconductor laser devices are commonly used as light sources and modulators.

最近、半導体レーザ技術の向上に伴い単一モードと周波
数で発振する単一モード半導体レーザが実用化されつつ
ある。この単一モード半導体レーザでは、周波数と位相
の安定した光を搬送波としその振幅、周波数、あるいは
位相を変調して情報を伝送することにより、中継間隔や
伝送容量の拡大などが期待されている。
Recently, with improvements in semiconductor laser technology, single mode semiconductor lasers that oscillate in a single mode and frequency are being put into practical use. With this single-mode semiconductor laser, it is expected that the relay interval and transmission capacity will be increased by transmitting information by modulating the amplitude, frequency, or phase of a carrier wave using light with stable frequency and phase.

このようなコヒーレント光ファイバ伝送方式では、レー
ザ光源の周波数と位相を環境温度に対して安定させるこ
とが必要になる。この種の温度安定化を図った半導体レ
ーザ装置としては、動作温度検出用のサーミスタと温度
制御用の電子冷却素子とを半導体レーザと一体化したも
のが知られている。
In such a coherent optical fiber transmission system, it is necessary to stabilize the frequency and phase of the laser light source with respect to the environmental temperature. As a semiconductor laser device with this type of temperature stabilization, one in which a thermistor for detecting an operating temperature and an electronic cooling element for temperature control are integrated with a semiconductor laser is known.

例えば、昭和59年度電子通信学会、光・電波部門全国
大会講演論文集の分冊2の77頁に講演番号333番と
して掲載された「電子冷却素子内蔵形単一モード光ファ
イバレーザダイオードモジュールの信頼度試験」と題す
る青木らの論文によれば、第2図に示すようなモジュー
ルが記載されている。
For example, on page 77 of Volume 2 of the 1981 IEICE National Conference Conference Proceedings, Optical and Radio Division, published as lecture number 333, ``Reliability of Single Mode Optical Fiber Laser Diode Module with Built-in Thermoelectric Cooling Element'' According to a paper by Aoki et al. titled ``Tests'', a module as shown in FIG. 2 is described.

この半導体レーザ・モジュールにおいては、電子冷却素
子8上にL形のチップキャリア6が固定され、その上に
は、半導体レーザチップ1、光結合用の球レンズ2、モ
ニタ用のフォトダイオード5に加えて、温度検出用のサ
ーミスタ7がそれぞれ半田材で固定されている。半導体
レーザチップ1から出射する単一モードの発振光は球レ
ンズ2とGRIN レンズ3とを経て単一モード光ファ
イバ4の端面から内部に入射し、伝送される。
In this semiconductor laser module, an L-shaped chip carrier 6 is fixed on a thermoelectric cooling element 8, and on top of it are a semiconductor laser chip 1, a ball lens 2 for optical coupling, a photodiode 5 for monitoring, and Thermistors 7 for temperature detection are each fixed with solder material. Single-mode oscillation light emitted from the semiconductor laser chip 1 passes through a ball lens 2 and a GRIN lens 3, enters the single-mode optical fiber 4 from its end face, and is transmitted.

この半導体レーザ・モジュールでは、−406Cと+7
00Cの間の環境温度範囲にわたって、半導体レーザ・
モジュールの動作温度範囲を±1.56C以下に制御で
きたことが報告されている。
This semiconductor laser module has −406C and +7
Semiconductor laser
It has been reported that the operating temperature range of the module could be controlled to below ±1.56C.

(発明が解決しようとする課題) 上記第2図に示した構造の半導体レーザ装置では、環境
温度の変化に関係なく常に室温近傍の温度範囲でレーザ
チップを動作させることが可能であり、これに伴う装置
の長寿命化が期待できる。
(Problem to be Solved by the Invention) In the semiconductor laser device having the structure shown in FIG. It is expected that the life of the associated equipment will be extended.

しかしながら、発振周波数と位相の安定化によりコヒー
レント光ファイバ伝送方式の光源を実現するには、±1
.5°C程度の温度制御範囲では不十分である。例えば
、ファブリ・ペロ共振器等を周波数&準として周波数変
動成分を抽出し、それを半導体レーザの動作温度に帰還
させて周波数の安定化を図るには、少なくとも上記温度
制御範囲を1桁以上狭めて±0.0156C以下の範囲
に制御する必要がある。このためには、半導体レーザチ
ップの動作温度を正確に測定することが必要になる。
However, in order to realize a coherent optical fiber transmission light source by stabilizing the oscillation frequency and phase, ±1
.. A temperature control range of about 5°C is insufficient. For example, in order to extract the frequency fluctuation component of a Fabry-Perot resonator etc. as a frequency and quasi, and to stabilize the frequency by returning it to the operating temperature of the semiconductor laser, the temperature control range described above must be narrowed by at least one order of magnitude. It is necessary to control the temperature within the range of ±0.0156C or less. For this purpose, it is necessary to accurately measure the operating temperature of the semiconductor laser chip.

しかしながら、第2図に例示した従来のモジュールでは
、温度検出対象の半導体レーザチップとサーミスタとの
位置関係から検出精度に限界がある。
However, in the conventional module illustrated in FIG. 2, there is a limit to the detection accuracy due to the positional relationship between the semiconductor laser chip whose temperature is to be detected and the thermistor.

(課題を解決するための手段) 本発明の半導体レーザ装置は、チップキャリアと、この
チップキャリア上に搭載されたサーミスタと、このサー
ミスタの一方の電極上に搭載された半導体レーザチップ
とを備えることにより、レーザとサーミスタ間の距離を
理論上の最少値にまで短縮し、極めて高精度の温度検出
機能を実現するように構成されている。
(Means for Solving the Problems) A semiconductor laser device of the present invention includes a chip carrier, a thermistor mounted on the chip carrier, and a semiconductor laser chip mounted on one electrode of the thermistor. This allows the distance between the laser and thermistor to be shortened to its theoretical minimum, achieving an extremely accurate temperature detection function.

以下、本発明の作用を実施例と共に詳細に説明する。Hereinafter, the operation of the present invention will be explained in detail together with examples.

(実施例) 第1図は、本発明の一実施例の半導体レーザ装置の構造
を示す斜視図であり、IOは半導体レーザチップ、20
はチップキャリア、30はサーミスタである。
(Example) FIG. 1 is a perspective view showing the structure of a semiconductor laser device according to an example of the present invention, where IO is a semiconductor laser chip, 20
is a chip carrier, and 30 is a thermistor.

チップキャリア20は、セラミックの素材21上に金層
22が形成されている。このチップキャリア20上には
、通常はヒートシンクとして搭載されるダイヤモンドや
シリコンチップに代えてサーミスタ30が搭載され、こ
のサーミスタ30の一方の電極上に半導体レーザチップ
IOが搭載される。
In the chip carrier 20, a gold layer 22 is formed on a ceramic material 21. A thermistor 30 is mounted on this chip carrier 20 in place of a diamond or silicon chip that is normally mounted as a heat sink, and a semiconductor laser chip IO is mounted on one electrode of this thermistor 30.

サーミスタ30は、ペロブスカイト形のチタン酸カルシ
ウムとランタンとを主体にした半導体素材31の上面と
下面のそれぞれに、クロム・白金・金による積層構造の
電極32.33が形成された構造となっている。このサ
ーミスタ30のチップキャリア20への搭載は、鉛・錫
の共晶半田層35を介在させつつ下面電極33をチップ
キャリア20上の金層22上に融着することにより行わ
れる。また、サーミスタ30の上面電極32上への半導
体レーザチップlOの搭載は、半導体レーザチップ10
の下面電極をサーミスタ30の上面電極32の一部に形
成された金・錫の共晶半田層34のパターンを介してサ
ーミスタ30の上面電極22に融着することにより行わ
れる。
The thermistor 30 has a structure in which electrodes 32 and 33 having a laminated structure of chromium, platinum, and gold are formed on the upper and lower surfaces of a semiconductor material 31 mainly composed of perovskite-type calcium titanate and lanthanum. . The thermistor 30 is mounted on the chip carrier 20 by fusing the lower electrode 33 onto the gold layer 22 on the chip carrier 20 with a lead-tin eutectic solder layer 35 interposed therebetween. Furthermore, mounting the semiconductor laser chip 10 on the upper surface electrode 32 of the thermistor 30
This is done by fusing the bottom electrode of the thermistor 30 to the top electrode 22 of the thermistor 30 through a pattern of a gold-tin eutectic solder layer 34 formed on a part of the top electrode 32 of the thermistor 30.

半導体レーザチップ10の上面電極上に熱圧着によって
固定された金線12と、サーミスタ30の上面電極32
上に熱圧着によって固定された金線I3との間で半導体
レーザチップ10の駆動用電流の注入が行われる。また
、この金線13と、チップキャリア20の上面に形成さ
れた金層22に熱圧着によって固定された金線36との
間で、サーミスタ30の抵抗変化に基づく温度の検出が
行われる。
The gold wire 12 fixed on the upper surface electrode of the semiconductor laser chip 10 by thermocompression bonding and the upper surface electrode 32 of the thermistor 30
A driving current for the semiconductor laser chip 10 is injected between the gold wire I3 fixed thereon by thermocompression bonding. Further, temperature is detected based on the resistance change of the thermistor 30 between the gold wire 13 and the gold wire 36 fixed by thermocompression bonding to the gold layer 22 formed on the upper surface of the chip carrier 20.

以上、サーミスタ30として上面と下面に電極の形成さ
れたサンドインチ型のものを使用する構成を例示した。
In the above, a configuration in which a sandwich type thermistor 30 having electrodes formed on the upper and lower surfaces is used has been exemplified.

しかしながら、上面のみに第1、第2の電極が分離して
形成されたプレーナ型のサーミスタを使用し、上面の一
方の電極上に半導体レーザチップを搭載する構成として
もよい。
However, it is also possible to use a planar thermistor in which first and second electrodes are formed separately only on the upper surface, and to mount the semiconductor laser chip on one of the electrodes on the upper surface.

また、セラミックを素材とするチップキャリアを使用す
る構成を例示したが、金属を素材とするものを使用して
もよい。
Further, although a configuration using a chip carrier made of ceramic is illustrated, a chip carrier made of metal may also be used.

さらに、半導体レーザチップやサーミスタを融着固定す
るのに、金・錫や鉛・錫の半田層を使用する構成を例示
したが、これらに代えて他の適宜な素材を使用すること
もできる。
Further, although a configuration in which a gold-tin or lead-tin solder layer is used to fuse and fix the semiconductor laser chip and the thermistor is illustrated, other suitable materials may be used in place of these.

(発明の効果) 以上詳細に説明したように、本発明の半導体レーザ装置
は、チップキャリア上にサーミスタを搭載しこのサーミ
スタ上に半導体レーザチップを直接搭載する構成である
から、レーザチップとサーミスタとの距離が理論的に可
能な最少値に短縮される。この結果、半導体レーザチッ
プの活性層温度を極めて高精度で測定でき、電子冷却素
子などとの組合せによって極めて高精度の温度制御が可
能になる。
(Effects of the Invention) As explained in detail above, the semiconductor laser device of the present invention has a configuration in which a thermistor is mounted on a chip carrier and a semiconductor laser chip is directly mounted on this thermistor, so that the laser chip and the thermistor are distance is reduced to the minimum theoretically possible value. As a result, the temperature of the active layer of a semiconductor laser chip can be measured with extremely high accuracy, and in combination with an electronic cooling element, etc., it becomes possible to control the temperature with extremely high accuracy.

波長1.3μm帯のインジウム・ガリウム・ヒ素・リン
系の半導体レーザチップを使用し、ペロブスカイト形の
チタン酸カルシウムとランタンを主体にしたサーミスタ
半導体素子を使用した上述の実施例では、環境温度を変
化させながら半導体レーザチップの電流闇値の変化を測
定したところ、10.01°Cの高精度で温度検出が可
能であることが確認された。
In the above embodiment, which uses an indium-gallium-arsenic-phosphorus semiconductor laser chip with a wavelength of 1.3 μm and a thermistor semiconductor element mainly composed of perovskite calcium titanate and lanthanum, the environmental temperature can be changed. When the change in the current dark value of the semiconductor laser chip was measured while changing the temperature, it was confirmed that temperature could be detected with a high accuracy of 10.01°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体レーザ装置の構成を
示す斜視図、第2図は従来の半導体レーザモジュールの
構成を示す部分断面図である。 10・・・半導体レーザチップ、20・・・チップキャ
リア、30・・・サーミスタ、31.32・・・サーミ
スタ30の上面と下面の電極、12.13・・・半導体
レーザチップの駆動電流の供給端子、13.36・・・
サーミスタ30の抵抗値検出用端子。
FIG. 1 is a perspective view showing the structure of a semiconductor laser device according to an embodiment of the present invention, and FIG. 2 is a partial sectional view showing the structure of a conventional semiconductor laser module. DESCRIPTION OF SYMBOLS 10... Semiconductor laser chip, 20... Chip carrier, 30... Thermistor, 31.32... Electrodes on the upper and lower surfaces of thermistor 30, 12.13... Supply of drive current for the semiconductor laser chip Terminal, 13.36...
Terminal for detecting resistance value of thermistor 30.

Claims (2)

【特許請求の範囲】[Claims] (1)チップキャリアと、 このチップキャリア上に搭載されたサーミスタと、 このサーミスタの一方の電極上に搭載された半導体レー
ザチップとを備えたことを特徴とする半導体レーザ装置
(1) A semiconductor laser device comprising: a chip carrier; a thermistor mounted on the chip carrier; and a semiconductor laser chip mounted on one electrode of the thermistor.
(2)前記サーミスタによる検出温度を一定値に保つよ
うに動作する電子冷却素子との組合せのもとに単一モー
ドの発光源として動作することを特徴とする特許請求の
範囲第1項記載の半導体レーザ装置。
(2) The device operates as a single mode light emitting source in combination with an electronic cooling element that operates to maintain the temperature detected by the thermistor at a constant value. Semiconductor laser equipment.
JP63072665A 1988-03-26 1988-03-26 Semiconductor laser device Pending JPH01245585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072665A JPH01245585A (en) 1988-03-26 1988-03-26 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072665A JPH01245585A (en) 1988-03-26 1988-03-26 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH01245585A true JPH01245585A (en) 1989-09-29

Family

ID=13495886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072665A Pending JPH01245585A (en) 1988-03-26 1988-03-26 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH01245585A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212699A (en) * 1990-07-18 1993-05-18 Fujitsu Limited Temperature-controlling laser diode assembly
JPH09129818A (en) * 1995-10-31 1997-05-16 Nec Corp Compound semiconductor device provided with buil-in temperature control element
WO1999021251A1 (en) * 1997-10-18 1999-04-29 Deutsche Telekom Ag Semiconductor laser chip
WO2000065699A3 (en) * 1999-04-16 2001-03-01 Sarnoff Corp Semiconductor diode lasers with thermal sensor control of the active region temperature
FR2852145A1 (en) * 2003-03-07 2004-09-10 Cit Alcatel OPTOELECTRONIC MODULE COMPRISING AN INTEGRATED THERMAL SENSOR
US7196355B2 (en) 2003-03-07 2007-03-27 Avanex Corporation Integrated thermal sensor for optoelectronic modules
JP2010245209A (en) * 2009-04-03 2010-10-28 Anritsu Corp Semiconductor laser module and raman amplifier equipped with the same
JP2010287597A (en) * 2009-06-09 2010-12-24 Anritsu Corp Semiconductor layer module and raman amplifier having the same
JP2010287596A (en) * 2009-06-09 2010-12-24 Anritsu Corp Semiconductor layer module and raman amplifier having the same
JP2011023383A (en) * 2009-07-13 2011-02-03 Anritsu Corp Semiconductor laser module and raman amplifier equipped with the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131580A (en) * 1984-11-30 1986-06-19 Nec Corp Semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131580A (en) * 1984-11-30 1986-06-19 Nec Corp Semiconductor laser

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212699A (en) * 1990-07-18 1993-05-18 Fujitsu Limited Temperature-controlling laser diode assembly
JPH09129818A (en) * 1995-10-31 1997-05-16 Nec Corp Compound semiconductor device provided with buil-in temperature control element
WO1999021251A1 (en) * 1997-10-18 1999-04-29 Deutsche Telekom Ag Semiconductor laser chip
US6829263B1 (en) 1997-10-18 2004-12-07 Deutsche Telekom Ag Semiconductor laser
WO2000065699A3 (en) * 1999-04-16 2001-03-01 Sarnoff Corp Semiconductor diode lasers with thermal sensor control of the active region temperature
WO2004079399A3 (en) * 2003-03-07 2004-11-04 Avanex Corp Integrated thermal sensor for optoelectronic modules
WO2004079399A2 (en) * 2003-03-07 2004-09-16 Avanex Corporation Integrated thermal sensor for optoelectronic modules
FR2852145A1 (en) * 2003-03-07 2004-09-10 Cit Alcatel OPTOELECTRONIC MODULE COMPRISING AN INTEGRATED THERMAL SENSOR
US7196355B2 (en) 2003-03-07 2007-03-27 Avanex Corporation Integrated thermal sensor for optoelectronic modules
JP2010245209A (en) * 2009-04-03 2010-10-28 Anritsu Corp Semiconductor laser module and raman amplifier equipped with the same
JP2010287597A (en) * 2009-06-09 2010-12-24 Anritsu Corp Semiconductor layer module and raman amplifier having the same
JP2010287596A (en) * 2009-06-09 2010-12-24 Anritsu Corp Semiconductor layer module and raman amplifier having the same
JP2011023383A (en) * 2009-07-13 2011-02-03 Anritsu Corp Semiconductor laser module and raman amplifier equipped with the same

Similar Documents

Publication Publication Date Title
US4844581A (en) Optical transmission package
US5212699A (en) Temperature-controlling laser diode assembly
US6327287B1 (en) Tunable semiconductor laser system
US4998256A (en) Semiconductor laser apparatus
JP3794552B2 (en) Optical module, optical transmitter and optical module manufacturing method
US8259765B2 (en) Passive phase control in an external cavity laser
JP2000056185A (en) Laser diode module
US5706302A (en) Temperature control type semiconductor laser device
US20050138934A1 (en) Optoelectronic component with a peltier cooler
EP0632550A2 (en) Modulation of laser diodes
US8396092B2 (en) Vertically emitting, optically pumped semiconductor comprising an external resonator and frequency doubling on a separate substrate
JPH01245585A (en) Semiconductor laser device
US20030044132A1 (en) Laser module
JP2004179273A (en) Semiconductor laser chip component and semiconductor laser module using the same
US6931215B1 (en) Optical transmitter module
JP2959678B2 (en) Semiconductor laser module and method of manufacturing the module
JP2003124566A (en) Semiconductor laser control module and optical system
JPH08335747A (en) Light emitting element module and its manufacture
US7342257B2 (en) Optical transmitter
JP2004079989A (en) Optical module
US20210367399A1 (en) Optical module and thermoelectric module
JPH11295560A (en) Module for optical communication and inspection method therefor
US7283302B2 (en) Wavelength filter and wavelength monitor device
CN211928231U (en) Tunable filter, vernier filter and tunable laser
US6839139B2 (en) Bench based integrated wavelength locker