JPH01242771A - Vapor deposition material - Google Patents

Vapor deposition material

Info

Publication number
JPH01242771A
JPH01242771A JP6883888A JP6883888A JPH01242771A JP H01242771 A JPH01242771 A JP H01242771A JP 6883888 A JP6883888 A JP 6883888A JP 6883888 A JP6883888 A JP 6883888A JP H01242771 A JPH01242771 A JP H01242771A
Authority
JP
Japan
Prior art keywords
titanium
crucible
vapor deposition
deposition material
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6883888A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nehashi
清 根橋
Shuichi Okabe
修一 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6883888A priority Critical patent/JPH01242771A/en
Publication of JPH01242771A publication Critical patent/JPH01242771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a vapor deposition material free from scattering at the time of charging into a crucible and capable of uniform melting by forming the above vapor deposition material of granular titanium and also limiting the average grain size of the above. CONSTITUTION:Titanium 20 is previously formed into a nearly spherical shape of >=1mm average grain size and spaces among the titanium grains in a state charged into a crucible 21 are reduced to the utmost, by which Coulomb's repulsive force is balanced with the weight of the titanium grain 20 even if electric charges are stored at the time of melting in the crucible 21. By this method, the vapor deposition material free from scattering at the time of charging into the crucible and capable of uniform melting can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はイオンブレーティングや真空蒸着等の蒸着めっ
きに用いられる蒸着用材料に係わり、特に、チタン薄膜
蒸着やTiN、Tic、T1CN等の反応性イオンブレ
ーティング処理に用いられるチタン蒸着用材料に関する
ものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to deposition materials used in deposition plating such as ion blating and vacuum deposition, and particularly relates to deposition materials for titanium thin film deposition and reactions such as TiN, Tic, T1CN, etc. The present invention relates to a material for titanium deposition used in ion blating treatment.

[従来の技術] 一般に、チタンの蒸着めっきを行う場合に、例えば、第
3図に示されるようなイオンブレーティング装置が用い
られている。
[Prior Art] Generally, when vapor deposition plating of titanium is performed, for example, an ion blating apparatus as shown in FIG. 3 is used.

このイオンブレーティング装置を構成するチャンバ1内
は、真空状態に保持されるとともに、反応ガス2として
窒素や炭素等が供給されている。
The inside of a chamber 1 constituting this ion blating apparatus is maintained in a vacuum state, and nitrogen, carbon, etc. are supplied as a reaction gas 2.

この反応ガス2には、放電を生じさせるためのアルゴン
等の不活性ガスが適宜混合される場合もある。
This reaction gas 2 may be appropriately mixed with an inert gas such as argon for causing discharge.

チャンバ1内の底部には、蒸着材料としてのチタン3を
所定の蒸気圧が得られるまで、温度でいえば融点よりも
少し高い温度まで加熱して蒸発させて蒸発物質4を生成
する蒸発源5が設けられている。
At the bottom of the chamber 1 is an evaporation source 5 that generates an evaporation substance 4 by heating titanium 3 as an evaporation material to a temperature slightly higher than its melting point until a predetermined vapor pressure is obtained. is provided.

この蒸発源5は、電子ビーム6を利用した、いわゆる電
子ビーム蒸発源であり、水冷されたルツボ7にチタン3
を入れ、これに電子ビーム6を直接光てて加熱して蒸着
物質4を得るようにしている。
This evaporation source 5 is a so-called electron beam evaporation source that uses an electron beam 6, and is placed in a water-cooled crucible 7 containing titanium 3.
A vapor deposited substance 4 is obtained by directly shining an electron beam 6 on this and heating it.

また、前記チャンバlの側壁には、ルツボ7より電位が
高い直流放電電極板8が設けられている。
Furthermore, a DC discharge electrode plate 8 having a higher potential than the crucible 7 is provided on the side wall of the chamber l.

この直流放電電極板8は、モリブデン、タンタル、タン
グステン等で形成され、前記蒸発源5から熱電子9 (
e−)を放出させて前記反応ガス2や蒸発物質11に衝
突させることにより、これらの反応ガス2や蒸発物質4
をイオン化しあるいは励起するらのである。
This DC discharge electrode plate 8 is made of molybdenum, tantalum, tungsten, etc., and thermionic electrons 9 (
e-) is released and collides with the reaction gas 2 and evaporation material 11, these reaction gas 2 and evaporation material 4
It ionizes or excites the ions.

さらにチャンバl内の上方には、めっきされる被蒸着基
板IOが配置されている。この被蒸着基板IOは、ルツ
ボ7より電位が低く、ヒータ11によって加熱されるよ
うになっている。
Furthermore, a deposition target substrate IO to be plated is arranged above the chamber l. This deposition target substrate IO has a lower potential than the crucible 7 and is heated by the heater 11.

なお、蒸発源5と被蒸着基板10との間には、開閉可能
なツヤツタ12が設けられ、また、ルツボ7と直流放電
電極板8との間、および、ルツボ7と被蒸着基板IOと
の間の各々に、直流電源13・14が接続されている。
Note that an openable and closable gloss 12 is provided between the evaporation source 5 and the deposition target substrate 10, and between the crucible 7 and the DC discharge electrode plate 8, and between the crucible 7 and the deposition target substrate IO. DC power supplies 13 and 14 are connected to each of them.

さらに、図中符号I5は真空排気である。Further, reference numeral I5 in the figure indicates vacuum evacuation.

以上の構成において、電子ビーム6によって加熱された
チタン3は、蒸発物質4となってチャンバl内に蒸発す
る。この時、蒸発源5から直流放電7ri極板8へ向け
て放出される熱電子9 (e−)が蒸発物質4に衝突し
て電子を弾き出し正イオン化する。また、反応ガス2も
同様に熱電子9の衝突により正イオン化する。
In the above configuration, the titanium 3 heated by the electron beam 6 becomes an evaporative substance 4 and evaporates into the chamber 1. At this time, thermionic electrons 9 (e-) emitted from the evaporation source 5 toward the DC discharge 7ri electrode plate 8 collide with the evaporation substance 4 to eject the electrons and become positive ions. Further, the reaction gas 2 is also positively ionized by the collision with the thermionic electrons 9.

これら正イオン化された蒸発物質4と反応ガス2は、電
位の低い被蒸着基板10に引かれて衝突して化合し蒸着
膜を形成する。
The positively ionized evaporated substance 4 and the reaction gas 2 are attracted to the deposition target substrate 10 having a low potential, collide with each other, and combine to form a deposited film.

このように、イオンブレーティング装置は、蒸発物質4
をイオン化するので、被蒸着基板10に確実に付着し、
経時変化の少ない強固なめっきが得られる。
In this way, the ion blating device uses the evaporated material 4
Since it ionizes, it reliably attaches to the substrate 10 to be evaporated,
A strong plating with little change over time can be obtained.

そして、従来では、チタン3を、第4図に示すように、
チップ状に形成して前記ルツボ7内に投入するようにし
ている。
Conventionally, titanium 3 was used as shown in FIG.
It is formed into a chip shape and placed in the crucible 7.

[発明が解決しようとする課M] ところで、前述した従来の技術においては、チタン3を
チップ状に形成してルツボ7内に投入するようにしてい
るが、この方法であると、チタン3をルツボ7内に投入
した際に各チップ間に隙間が生じ、これに起因して、第
5図に示すように、溶解時に塊状体中にチップの一部が
未溶解となって残存したり、チップ間の隙間、が空洞と
なって残り、水冷されているルツボ7を介して冷却され
る塊状体の冷却温度が安定せず、ひいては、蒸発源5か
らの蒸発物質4の生成が不安定となって操業に悪影響を
およぼすことが想定されるといった解決すべき課題か残
されている。
[Problem M to be solved by the invention] By the way, in the conventional technique described above, the titanium 3 is formed into a chip shape and put into the crucible 7. However, with this method, the titanium 3 is When the chips are placed in the crucible 7, gaps are created between the chips, and due to this, as shown in FIG. 5, some of the chips may remain undissolved in the lump during melting. The gaps between the chips remain as cavities, and the cooling temperature of the lumps cooled through the water-cooled crucible 7 becomes unstable, and as a result, the production of the evaporation substance 4 from the evaporation source 5 becomes unstable. However, there are still issues that need to be resolved, such as the possibility that this could have a negative impact on operations.

一方、このようなチタン3の未溶解や溶解時の空洞形成
を避けろために、チタン3を微細化することが検討され
ている。
On the other hand, in order to avoid the formation of cavities when the titanium 3 is not melted or when it is melted, it is being considered to make the titanium 3 finer.

しかしながら、このような方法においても、微細化した
チタン3のルツボ7への投入後において、何等かの原因
でこれらのチタン3がルツボ7から弾き出されてしまい
、溶解できなくなり、また、投入に際して飛散してしま
うといった問題点が生じ、これらへの対策か要望されて
いるといった課題が残されている。
However, even with this method, after the finely divided titanium 3 is charged into the crucible 7, these titanium 3 are ejected from the crucible 7 for some reason and cannot be melted, and also they are scattered during the charging. However, there are still issues that remain, including the need for countermeasures to address these issues.

[課題を解決するための手段] 本発明者等は、鋭意研究の結果、微細化したチタンを用
いた場合の溶解中における飛散現象が、チタンに蓄積さ
れた電荷によるクーロン反発力によって引き起こされる
との想定に基づき本発明を完成するに至ったもので、特
に、粒状のチタンの平均粒径を1mm以上としたことを
特徴とする。
[Means for Solving the Problems] As a result of intensive research, the present inventors have determined that the scattering phenomenon during melting when using micronized titanium is caused by Coulomb repulsion due to the electric charges accumulated in titanium. The present invention was completed based on this assumption, and is particularly characterized in that the average particle size of the granular titanium is 1 mm or more.

[作用] 本発明に係わる蒸着用材料は、粒状のチタンの平、均粒
径を1mm以上とすることにより、ルツボ内における溶
解時に電、荷が蓄積された場合においても、そのクーロ
ン反発力とチタン粒のff1ffiとをバランスさせて
その飛散を防止し、かつ、ルツボ内に投入した状態にお
けるチタン粒間の隙間を極力小さくして、均一な溶解を
可能とする。
[Function] The vapor deposition material according to the present invention has a mean particle diameter of 1 mm or more for the granular titanium, so that even if electric charges are accumulated during melting in the crucible, the Coulomb repulsion force and the The ff1ffi of the titanium grains is balanced to prevent the titanium grains from scattering, and the gaps between the titanium grains placed in the crucible are made as small as possible to enable uniform melting.

[実施例] 以下、本発明の一実施例について、第1図および第2図
に基づき説明する。
[Example] An example of the present invention will be described below with reference to FIGS. 1 and 2.

本発明に係わる蒸着用材料は、粉砕されたチタン20を
略球形となるように成型するか、あるいは、予め球形に
成形したのちに、篩いを用いて分板し、その粒径が1m
m以上のものが用いられる。
The material for vapor deposition according to the present invention is obtained by molding crushed titanium 20 into a substantially spherical shape, or by molding it into a spherical shape in advance and dividing it into plates using a sieve, so that the particle size is 1 m.
m or more are used.

一方、その最大粒径はルツボ21の形状や容積等の他の
要因に基づいて設定される。
On the other hand, the maximum particle size is set based on other factors such as the shape and volume of the crucible 21.

このような粒径のチタン20をルツボ21内に投入する
と、各チタン粒が小径であること、および、略球形とな
されていることと相俟って、第1図に示すように、各チ
タン20が密に充填されて、チタン粒間の隙間が減少さ
せられる。
When titanium 20 having such a particle size is put into the crucible 21, each titanium particle is small in diameter and approximately spherical, and as shown in FIG. 20 is closely packed to reduce the gaps between titanium grains.

そして、チタン20のvL径を1mmを基準にし、それ
以上の場合と以下の場合とにおいて、さらに、ある粒度
の範囲に区分して、各区分毎における溶解状況を測定し
たところ、表−1に示す結果が得られた。
Using the vL diameter of titanium 20 as a standard of 1 mm, we further divided the particle size into a certain range of particle sizes, and measured the dissolution status in each category, as shown in Table 1. The following results were obtained.

以上の結果から明らかなように、粒径が1mm以上のチ
タン粒を用いた場合においては、チタン20の飛散がな
く安定した溶解が得られる。
As is clear from the above results, when titanium particles having a particle size of 1 mm or more are used, stable dissolution can be obtained without scattering of the titanium 20.

そして、これらの1mm以上の粒径における各区分にお
いては、第2図に示すように、内部に空洞部がない無垢
に近い塊状体22が得られた。
In each of these particle sizes of 1 mm or more, as shown in FIG. 2, a nearly solid block 22 with no internal cavity was obtained.

この結果、ルツボ21の表面と、チタン塊状体22の底
面とがほぼ全面に亙って接触させられることとなり、電
子ビームによる塊状体22の加熱・蒸発と、ルツボ21
を介した塊状体22の冷却作用との間の熱バランスが安
定し、良好な操業ならびに成膜が得られる。
As a result, the surface of the crucible 21 and the bottom surface of the titanium block 22 are brought into contact over almost the entire surface, and the electron beam heats and evaporates the block 22, and the crucible 21
The thermal balance between the cooling effect of the lumps 22 and the cooling effect via the cooling effect is stabilized, and good operation and film formation can be obtained.

これらの結果は、チタン20の形状や粒径設定により、
電荷の蓄積によって発生するクーロン反発力とチタン2
0の重量とが平衡し、前記クーロン反発力によるチタン
20の弾き出しが抑制されたことに起因するものと考え
られる。
These results depend on the shape and particle size settings of titanium 20.
Coulomb repulsion generated by charge accumulation and titanium 2
This is considered to be due to the fact that the weight of the titanium 20 is balanced with the weight of the titanium 20, and the ejection of the titanium 20 due to the Coulomb repulsion force is suppressed.

さらに、各チタン粒の重量が確保されていることから、
ルツボ21内へ投入する場合の飛散がなく、良好な取り
扱いが得られた。
Furthermore, since the weight of each titanium grain is secured,
There was no scattering when charging into the crucible 21, and good handling was obtained.

[発明の効果] 以上説明したように本発明に係わる蒸着用材料は、蒸発
めっき装置において用いられる類骨用材料であって、粒
状のチタンからなり、かつ、その平均粒径を1mm以上
としたことを特徴とするちので、溶解時におけるチタン
粒の飛散を抑制するとともに、溶解後において得られる
塊状体中に空洞部が形成されることを抑制して安定した
溶解操作を行うことができ、これによって、良好な成膜
を得ることができ、さらに、ルツボへの投入に際し、チ
タンの飛散を抑制して取り扱いを容易にする等の優れた
効果を奏する。
[Effects of the Invention] As explained above, the vapor deposition material according to the present invention is a bone-like material used in an evaporation plating apparatus, and is made of granular titanium and has an average particle size of 1 mm or more. Because of this feature, it is possible to suppress the scattering of titanium particles during melting, and to suppress the formation of cavities in the obtained lump after melting, so that a stable melting operation can be performed. This makes it possible to form a good film, and also has excellent effects such as suppressing the scattering of titanium and making it easier to handle when charging the titanium into a crucible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示すもので、
第1図は一実施例のチタン粒をルツボ内に投入した状態
を示す概略図、第2図は溶解後のルツボ内の塊状体を示
す概略図、第3図ないし第5図は一従来例を示すもので
、第3図はイオンブレーティング装置を示す概略図、第
4図はルツボ内にチップ状のチタンを投入した状態を示
す概略図、第5図は溶解後のルツボ内の塊状体を示す概
略図である。 20・・・・・・チタン、21・・・・・・ルツボ、2
2・・・・・・塊状体。 第3図 しy−13
1 and 2 show an embodiment of the present invention,
Fig. 1 is a schematic diagram showing a state in which titanium grains of one embodiment are placed in a crucible, Fig. 2 is a schematic diagram showing a lump in the crucible after melting, and Figs. 3 to 5 are a conventional example. Fig. 3 is a schematic diagram showing the ion blating device, Fig. 4 is a schematic diagram showing a state in which titanium chips are placed in the crucible, and Fig. 5 is a schematic diagram showing the state in which titanium chips are placed in the crucible after melting. FIG. 20... Titanium, 21... Crucible, 2
2...Clumpy body. Figure 3 y-13

Claims (1)

【特許請求の範囲】[Claims] 蒸発めっき装置において用いられる蒸着用材料であって
、粒状のチタンからなり、かつ、その平均粒径を1mm
以上としたことを特徴とする蒸着用材料
An evaporation material used in an evaporation plating device, which is made of granular titanium and has an average particle size of 1 mm.
A material for vapor deposition characterized by the above-mentioned features.
JP6883888A 1988-03-23 1988-03-23 Vapor deposition material Pending JPH01242771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6883888A JPH01242771A (en) 1988-03-23 1988-03-23 Vapor deposition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6883888A JPH01242771A (en) 1988-03-23 1988-03-23 Vapor deposition material

Publications (1)

Publication Number Publication Date
JPH01242771A true JPH01242771A (en) 1989-09-27

Family

ID=13385235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6883888A Pending JPH01242771A (en) 1988-03-23 1988-03-23 Vapor deposition material

Country Status (1)

Country Link
JP (1) JPH01242771A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343636A (en) * 1976-10-01 1978-04-19 Mitsubishi Heavy Ind Ltd Vacuum deposition method of titanium
JPS53129180A (en) * 1977-04-19 1978-11-10 Teijin Ltd Vacuum evaporating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343636A (en) * 1976-10-01 1978-04-19 Mitsubishi Heavy Ind Ltd Vacuum deposition method of titanium
JPS53129180A (en) * 1977-04-19 1978-11-10 Teijin Ltd Vacuum evaporating method

Similar Documents

Publication Publication Date Title
US5110435A (en) Apparatus and process for producing a thin layer on a substrate
US11855278B2 (en) Microcomposite alloy structure
JP2008179892A (en) METHOD FOR PREPARING ALRu SPUTTERING TARGET
JP2004261747A (en) Powder surface modifying method and apparatus
JP2853046B2 (en) Ultra fine powder production equipment
US20070281081A1 (en) Vacuum Deposition Method and Sealed-Type Evaporation Source Apparatus for Vacuum Deposition
CN113215552B (en) Method for preparing coating powder by adopting plasma vapor deposition process
US2960331A (en) Vacuum melting process
JPH01242771A (en) Vapor deposition material
WO1988001919A1 (en) Apparatus for producing powder and process for its production
CN112024903B (en) Metal powder manufacturing equipment and method
RU2446915C2 (en) Method of producing refractory material powder and device to this end
CN113215533B (en) Method for preparing coating powder by adopting plasma vapor deposition process
EP1985584A1 (en) Method for producing a carbon-containing material by carbon electron-beam vaporisation in a vacuum and a subsequent condensation thereof on a substrate and a device for carrying out said method
JPH04504283A (en) Medium pressure electron beam furnace
JPH01108364A (en) Method for supplying material for vapor deposition of vapor source
JPH11224797A (en) Plasma generating apparatus, and thin film forming apparatus
JP3775851B2 (en) Vapor deposition apparatus and protective film manufacturing method
WO2021009057A1 (en) Particle separation device, coating assembly, and method
WO2021008998A1 (en) Coating assembly and method
Haberland et al. A new low temperature thin film deposition process: Energetic cluster impact (ECI)
JPS5959812A (en) Manufacture of fine metallic powder
JPS59110705A (en) Centrifugal spray apparatus for preparing powder
JPH02247379A (en) Production of silicide target
JP2006299370A (en) Film deposition apparatus, and film deposition method