JPH01242484A - Crystal growth method by liquid epitaxy - Google Patents

Crystal growth method by liquid epitaxy

Info

Publication number
JPH01242484A
JPH01242484A JP6933288A JP6933288A JPH01242484A JP H01242484 A JPH01242484 A JP H01242484A JP 6933288 A JP6933288 A JP 6933288A JP 6933288 A JP6933288 A JP 6933288A JP H01242484 A JPH01242484 A JP H01242484A
Authority
JP
Japan
Prior art keywords
substrate
vessel
cylinder
raw material
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6933288A
Other languages
Japanese (ja)
Inventor
Yoshio Fujino
芳男 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6933288A priority Critical patent/JPH01242484A/en
Publication of JPH01242484A publication Critical patent/JPH01242484A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize and improve the compsn. ratio over the entire surface of a grown crystal film by mounting a substrate to the prescribed position of a rectangular box body vessel having a specific constructure, housing a raw material melt into a hollow cylinder installed glidably with a bottom end face, and inclining and oscillating the vessel to stir the melt then to bring the melt into contact with the substrate. CONSTITUTION:The substrate 2 consisting of, for example, CdTe, etc., is installed in a recess 3 provided at one end of the growth vessel 1 which consists of high-purity carbon and has zigzag inside walls and a flat base. The hollow cylinder 4 formed glidably with the aperture bottom end face is imposed on the base of the vessel. In addition, the vessel is so constituted that the vessel can incline around the longitudinal axis 1 and oscillate around the axis orthogonal with the direction thereof. This vessel 1 is then installed in an electric furnace and the raw material 5 for crystal growth such as, for example, HgCdTe, is housed into the cylinder 4. After the material is melted by heating, the vessel 1 is inclined and oscillated to glide the cylinder 4 back and forth in the range (A-B) of a detaining part 6 from one end in the inside wall in the longitudinal direction of the vessel 1 to stir the raw material melt 5; thereafter, the vessel is further inclined and oscillated so as to be moved (B C D), by which the melt 5 is brought into contact with the substrate 3 to grow the crystal film by liquid epitaxy on the substrate.

Description

【発明の詳細な説明】 U産業上の利用分野] 本発明は、成長用基板に過飽和状態の原料融液を接触さ
せ、析出により、基板上に単結晶薄膜を育成させる液相
エピタキシャル結晶育成法に関し、特に、傾斜法によっ
て結晶成長を行う液相エピタキシャル結晶育成法に関す
る。
[Detailed Description of the Invention] U Industrial Field of Application] The present invention is a liquid phase epitaxial crystal growth method in which a supersaturated raw material melt is brought into contact with a growth substrate and a single crystal thin film is grown on the substrate by precipitation. In particular, the present invention relates to a liquid phase epitaxial crystal growth method in which crystal growth is performed by a tilting method.

[従来の技術] 半導体をデバイスとして応用するには、薄膜状で、かつ
面積の大きい単結晶か必要である。このような半導体の
単結晶膜を形成する方法の一つとして用いられているの
が液相エピタキシャル法である。所望の単結晶がHg1
−x CdxTeのような蒸気圧の高い材料を成分とし
ている場合は、多くの場合封管中での育成である。
[Prior Art] To apply a semiconductor as a device, a thin film-like single crystal with a large area is required. A liquid phase epitaxial method is used as one of the methods for forming such a semiconductor single crystal film. The desired single crystal is Hg1
-x When the component is a material with high vapor pressure such as CdxTe, the growth is often in a sealed tube.

第2図は、従来の傾斜法による液相エピタキシャル育成
装置を示す縦断面図でおる。同図において、装置は高純
度のカーボンブロックから作られた育成用容器か主な構
成物である。この育成用容器21の傾斜部22には、基
板設置用の凹部23か掘設されていて、ここに基板(例
えばCdTe) 24が設置され、水平部25には育成
用原料26が収容される。
FIG. 2 is a longitudinal sectional view showing a conventional liquid phase epitaxial growth apparatus using a tilting method. In the figure, the device is a growing container or main component made from high-purity carbon blocks. A recess 23 for installing a substrate is dug in the inclined part 22 of this growth container 21, and a substrate (for example, CdTe) 24 is installed here, and a growth raw material 26 is accommodated in the horizontal part 25. .

容器21は石英製の封管(図示せず)に真空封入される
The container 21 is vacuum sealed in a sealed tube (not shown) made of quartz.

この石英封管は横型電気炉(図示せず)内に設置され、
該電気炉は必らかしめ長手方向に垂直な軸、すなわち短
軸のまわりに回転可能とされていて、図中矢印で示され
るように電気炉ごと封管を揺動することができるように
なっている。このようにして石英封管を炉内に設置した
後は、これを加熱することにより育成用原料26を完全
に融解する。この際、原料26が基板24に接触するの
を避けるため、容器21は水平か、または傾斜部22側
が高くなるように電気炉を固定しておく。原料26の融
解後、電気炉をその短軸のまわりに回動させて傾斜部2
2を水平にし、原料26が図中点線で示される如く基板
24を十分に覆い、かつこれとよく接触するようにする
。そして、電気炉の温度を徐々に降下させ、基板24上
にH!111−xCdxTeの結晶を育成させる。適度
の降温により所要の膜厚を得たならば、電気炉を再び回
動させて初めの状態に戻し、原料融液26と基板24と
を離して、育成を停止する。
This quartz sealed tube is installed in a horizontal electric furnace (not shown),
The electric furnace is necessarily rotatable around an axis perpendicular to the longitudinal direction of the caulking, that is, around a short axis, and the sealed tube together with the electric furnace can be swung as shown by the arrow in the figure. ing. After the quartz sealed tube is installed in the furnace in this way, the growth raw material 26 is completely melted by heating it. At this time, in order to prevent the raw material 26 from coming into contact with the substrate 24, the electric furnace is fixed so that the container 21 is horizontal or the inclined part 22 side is higher. After melting the raw material 26, the electric furnace is rotated around its short axis to melt the inclined part 2.
2 is held horizontally so that the raw material 26 sufficiently covers and contacts the substrate 24 as shown by the dotted line in the figure. Then, the temperature of the electric furnace is gradually lowered, and H! A crystal of 111-xCdxTe is grown. When the required film thickness is obtained by appropriately lowering the temperature, the electric furnace is rotated again to return to the initial state, the raw material melt 26 and the substrate 24 are separated, and the growth is stopped.

[発明が解決しようとする課題] しかしながら、上記従来の方法においては次のような問
題点がある。
[Problems to be Solved by the Invention] However, the above conventional method has the following problems.

即ち、結晶育成用原料を融解する際に撹拌を行うことが
できないが、原料のH(]、Cd、 Teは互いに比重
差があるので、撹拌なしでは融液内に組成比のばらつき
、いわゆる組成ムラが起き、これか育成された結晶の組
成ムラとなる。撹拌を行うため、電気炉ごと一定角度の
範囲内で揺動させる方法も考えられるが、十分な撹拌効
果は得られない。
In other words, stirring cannot be performed when melting the raw material for crystal growth, but since the raw materials H(], Cd, and Te have different specific gravities, there will be variations in the composition ratio in the melt, so-called composition. This causes unevenness in the composition of the grown crystals.In order to perform stirring, it is possible to oscillate the entire electric furnace within a certain angle, but a sufficient stirring effect cannot be obtained.

本発明は、このような問題点に鑑みて創案されたもので
、従来良質で均一なエピタキシャル結晶膜を得る上で障
害となっていた原料融液内の組成比のばらつき、不均一
性を取除き、積極的な撹拌・混合によって融液を均質化
し、良質で均一なエピタキシャル結晶膜を得ることので
きる液相エピタキシャル結晶育成法を提供することを目
的とするものである。
The present invention was devised in view of these problems, and aims to eliminate variations in the composition ratio and non-uniformity in the raw material melt, which have traditionally been an obstacle to obtaining a high quality and uniform epitaxial crystal film. The object of the present invention is to provide a liquid phase epitaxial crystal growth method that can homogenize the melt by active stirring and mixing to obtain a high quality and uniform epitaxial crystal film.

[課題を解決するための手段] 本発明は、原料融液を基板に接触させ、基板上に結晶を
析出させて単結晶薄膜を育成させる液相エピタキシャル
結晶育成法において、長手方向の軸回りに傾斜可能でか
つその方向と直交する軸回りに揺動可能に電気炉内に配
設された長方箱体の容器と、該容器の長手方向の一端で
かつ長手方向に直交する方向の一端の底面凹部に取付け
られた基板と、開口された底@面を滑動可能に前記容器
の底面に設置された中空の円筒と、前記容器の長手方向
に直交する方向の基板の無い側にあって前記基板と前記
円筒との接触を防止する係止部とを備え、前記円筒内に
原料融液を収容し、傾斜動作および揺動動作で、まず容
器の長手方向およびこれと直交する方向の基板の無い側
の一端から前記係止部の範囲で円筒を往復滑動させるこ
とにより原料融液の撹拌を行い、次いでさらなる傾斜動
作および揺動動作で基板に触れる範囲まで円筒を移動さ
せることにより原料融液を該基板に接触させて結晶育成
を行うことを特徴とする液相エピタキシi・ル結晶育成
法である。
[Means for Solving the Problems] The present invention provides a liquid phase epitaxial crystal growth method in which a raw material melt is brought into contact with a substrate and crystals are deposited on the substrate to grow a single crystal thin film. A rectangular box-like container arranged in an electric furnace so as to be tiltable and swingable around an axis perpendicular to the direction thereof, and one end of the container in the longitudinal direction and one end in the direction perpendicular to the longitudinal direction. a substrate attached to the bottom recess, a hollow cylinder installed on the bottom of the container so as to be able to slide on the opened bottom surface, and a hollow cylinder on the side without the substrate in the direction perpendicular to the longitudinal direction of the container. The cylinder is provided with a locking part that prevents contact between the substrate and the cylinder, and the raw material melt is stored in the cylinder, and the substrate is first moved in the longitudinal direction of the container and in the direction perpendicular thereto by tilting and swinging movements. The raw material melt is stirred by sliding the cylinder back and forth from one end of the free side within the range of the locking part, and then the raw material melt is stirred by further tilting and swinging movements to move the cylinder to the range where it touches the substrate. This is a liquid phase epitaxy crystal growth method characterized in that crystal growth is performed by bringing a substrate into contact with the substrate.

[作用] 本発明は、従来技術において不完全であった育成用原料
の撹拌・混合を十分に行い、しかる後に結晶成長を行う
ように構成されている。以下、本発明の作用について、
第1図を用いて説明する。
[Function] The present invention is configured to sufficiently stir and mix the raw materials for growth, which was incomplete in the prior art, and then perform crystal growth. Below, regarding the effects of the present invention,
This will be explained using FIG.

第1図の各図は本発明の方法の一例を上方から見たもの
で、育成用容器1内には、容器の長手方向の一端でかつ
長手方向に直交する方向の一端の底面凹部3に基板2が
配設されている。また、底部を開口された円筒4は、ま
ず第1図(a)に示すように基板と対向する端部に設置
され、この円筒4の中に育成用原料5が収容されている
。育成用容器1は長手方向と直交する短軸のまわりにお
る角度範囲で揺動可能な電気炉(図示せず)内に設置す
る。この電気炉は、また、容器の長手方向の長軸のまわ
りに回転可能となっており、所定角度だけ傾けて設置す
る。但し、この傾斜は基板2の配置されている側が高く
、円筒4が配置されている側か低くなるようにする。次
に電気炉を昇温させ、育成用原料5が融解したならば、
容器1が短軸のまわりにシーソー運動するように電気炉
を揺動させる。このことにより円筒4は第1図(b)に
示すようにA点と、係止部6によって運動を停止される
B点との間を往復することになる。容器1は前記長軸の
まわりに傾けて設置されているので、円筒4は容器内壁
との摩擦によって、滑ることなく必ず転動する。従って
、この揺動動作の繰返しにより円筒内の原料5は強制的
に撹拌・混合される。また係止部6によって円筒4の転
勤は止められるので、この間は基板と接触することがな
い。
Each figure in FIG. 1 shows an example of the method of the present invention viewed from above. Inside the growth container 1, there is a bottom recess 3 at one end in the longitudinal direction of the container and at one end in a direction perpendicular to the longitudinal direction. A substrate 2 is provided. A cylinder 4 with an open bottom is first installed at the end facing the substrate, as shown in FIG. The growth container 1 is installed in an electric furnace (not shown) that can swing in an angular range around a short axis perpendicular to the longitudinal direction. This electric furnace is also rotatable around the long axis in the longitudinal direction of the container, and is installed tilted at a predetermined angle. However, the slope is such that the side where the substrate 2 is placed is higher and the side where the cylinder 4 is placed is lower. Next, when the temperature of the electric furnace is increased and the growth raw material 5 is melted,
The electric furnace is rocked so that the container 1 seesaws around the short axis. As a result, the cylinder 4 reciprocates between point A and point B, where the movement is stopped by the locking portion 6, as shown in FIG. 1(b). Since the container 1 is installed tilted around the long axis, the cylinder 4 always rolls without slipping due to friction with the inner wall of the container. Therefore, by repeating this swinging motion, the raw material 5 in the cylinder is forcibly stirred and mixed. Furthermore, since the locking portion 6 prevents the cylinder 4 from moving, it does not come into contact with the substrate during this time.

十分に混合が行われたならば、最後に第1図(C)のよ
うに長軸のまわりにこれ迄とは逆向きに回転し、円筒4
をB点から0点に移動させ、ざらに短軸のまわりに基板
2が低くなるように回転して円筒4を0点からD点、す
なわち基板2の上に移動させる。この状態になったなら
ば結晶育成のための徐冷を開始し、所定の時間だけ結晶
育成を行う。
When sufficient mixing has been achieved, the cylinder 4 is finally rotated around the long axis in the opposite direction as shown in Figure 1 (C).
is moved from point B to point 0, and the cylinder 4 is moved from point 0 to point D, that is, above the substrate 2, by roughly rotating around the short axis so that the substrate 2 is lowered. When this state is reached, slow cooling for crystal growth is started, and crystal growth is continued for a predetermined period of time.

[実施例] 以下、図面を参照して、本発明の実施例を詳細に説明す
る。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明による液相エピタキシャル育成法を実
現するための装置と動作手順を示しており、(a)は最
初の状態、(b)は揺動工程、(C)はエピタキシャル
結晶育成工程を表している。第1図中、1は高純度カー
ボンからなる育成用容器で、内部は蛇行した内壁と平坦
な底部を有している。
Figure 1 shows the apparatus and operating procedure for realizing the liquid phase epitaxial growth method according to the present invention, in which (a) is the initial state, (b) is the rocking process, and (C) is the epitaxial crystal growth process. It represents the process. In FIG. 1, reference numeral 1 denotes a growth container made of high-purity carbon and has a meandering inner wall and a flat bottom.

その一端には基板2が設置される凹部3が形成されてい
ると共に、内壁最小間隔より小さい外径をもつ円筒4が
設置できるようになっている。この円筒4には結晶育成
用の原料5が収容される。
A recess 3 in which the substrate 2 is installed is formed at one end, and a cylinder 4 having an outer diameter smaller than the minimum interval between inner walls can be installed therein. This cylinder 4 accommodates a raw material 5 for crystal growth.

次に上記装置によるエピタキシャル結晶育成法の手順に
ついて説明する。まず、第1図(a)のように育成用容
器1の凹部3にCdTeからなる基板2を設置し、円筒
4に結晶育成用H(lcdTe原料5を収容した。これ
を石英封管(図示せず)中に入れ、真空封入し、この封
管を図中に点線で示した短軸のまわりにシーソー式の揺
動が可能な横型電気炉中に設置した。また、この電気炉
は一点鎖線で示した長袖のまわりにある程度の角度範囲
で回転できるので、封管の設置後は矢印の向きに20°
程度傾けておいた。これによって、円筒4が容器1の中
を滑動する際に、その内壁との摩擦によって確実に回転
することができる。次に電気炉を昇温させ、原料5が融
解したならば、第1図(b)中、矢印で示す如く、短軸
のまわりに容器1を揺動させることにより、円筒4は容
器1の一端Aから容器内側壁で構成される係止部6に当
接するB点までをシーソー的に転・滑動する。その角度
範囲は±30’程度とし、また周期は1分間に15回の
割合で、これを15分間続けた。最後は円筒4をBの位
置で止め、電気炉を水平状態にした。これによって円筒
4を点線の二重円、AとBの間を何回も側壁面に対して
は転勤、底面に対しては滑動させて往復動させる。以上
の操作により、原料融液は撹拌・混合され、均質化させ
ることができた。
Next, the procedure of the epitaxial crystal growth method using the above apparatus will be explained. First, as shown in FIG. 1(a), a substrate 2 made of CdTe was placed in the recess 3 of a growth container 1, and a crystal growth H (lcdTe raw material 5) was placed in a cylinder 4. (not shown), vacuum-sealed the sealed tube, and installed this sealed tube in a horizontal electric furnace that can swing like a seesaw around the short axis indicated by the dotted line in the figure. It can be rotated within a certain angle range around the long sleeve shown by the chain line, so after installing the sealed tube, rotate it 20 degrees in the direction of the arrow.
I left it at an angle. Thereby, when the cylinder 4 slides inside the container 1, it can be reliably rotated by friction with the inner wall of the cylinder 4. Next, when the temperature of the electric furnace is raised and the raw material 5 is melted, the cylinder 4 is moved around the short axis of the container 1 as shown by the arrow in FIG. 1(b). It rolls and slides like a seesaw from one end A to a point B where it comes into contact with a locking part 6 formed on the inner wall of the container. The angle range was approximately ±30', and the cycle was 15 times per minute, which continued for 15 minutes. Finally, the cylinder 4 was stopped at position B, and the electric furnace was placed in a horizontal state. As a result, the cylinder 4 is reciprocated in the double circle indicated by the dotted line, between A and B, by repeatedly moving against the side wall surface and sliding against the bottom surface. Through the above operations, the raw material melt was stirred and mixed and was able to be homogenized.

その後、融液温度を育成開始温度に降下させ、第1図(
C)のように電気炉を長袖のまわりに矢印の向きに回転
させ、最初とは逆に20’程度傾斜させた。これによっ
て円筒4はBの位置からCの位置に移動した。さらに短
軸のまわりに矢印の向きに30°程度回動し、円筒4を
Cの位置からDの位置、すなわち基板2の上に移動させ
た。この段階で原料5と基板2が接触するので、次に温
度を降下させることにより、Hg1−x CdxTeエ
ピタキシャル膜を育成した。所定の厚さに育成したなら
ば電気炉を逆に回動して円筒4をDからCの位置に戻し
、融液5と基板2とを分離した。この時、円筒4の下端
面がワイパーの役をするため、余分の原料融液は基板上
に残ることなく、全て取り除かれるので、育成されたH
(]1−xCdxTe膜の表面状態が良好となった。こ
の結晶膜の組成の均一性をフーリエ変換式赤外分光計で
調べた結果、従来より優れた均一性を再現性よく得られ
ることが分かった。
After that, the temperature of the melt was lowered to the growth starting temperature, as shown in Figure 1 (
As shown in C), the electric furnace was rotated around the sleeve in the direction of the arrow and tilted about 20' in the opposite direction from the beginning. This moved the cylinder 4 from position B to position C. Further, the cylinder 4 was rotated about the short axis by about 30 degrees in the direction of the arrow, and the cylinder 4 was moved from the position C to the position D, that is, above the substrate 2. Since the raw material 5 and the substrate 2 came into contact at this stage, the temperature was then lowered to grow a Hg1-x CdxTe epitaxial film. After growing to a predetermined thickness, the electric furnace was rotated in the opposite direction to return the cylinder 4 from position D to position C, and the melt 5 and the substrate 2 were separated. At this time, since the lower end surface of the cylinder 4 acts as a wiper, all excess raw material melt is removed without remaining on the substrate, so that the grown H
(] The surface condition of the 1-xCdxTe film has become better.As a result of examining the uniformity of the composition of this crystal film using a Fourier transform infrared spectrometer, it was found that better uniformity than before can be obtained with good reproducibility. Do you get it.

[発明の効果] 以上説明したように、本発明によれば原料融液の撹拌・
混合か十分に行われ、組成ムラが極めて少なくなり、結
晶膜全面にわたって組成比が安定し、かつ良好な表面状
態を有するエピタキシャル結晶膜の得られる液相エピタ
キシャル結晶育成法を提供することができる。
[Effect of the invention] As explained above, according to the present invention, stirring and
It is possible to provide a liquid phase epitaxial crystal growth method in which mixing is carried out sufficiently, compositional unevenness is extremely reduced, the composition ratio is stable over the entire surface of the crystalline film, and an epitaxial crystalline film having a good surface condition can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例を示す説明図、第2図
は従来例による液相エピタキシャル装置の縦断面図であ
る。
FIG. 1 is an explanatory view showing one embodiment of the method of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional liquid phase epitaxial device.

Claims (1)

【特許請求の範囲】[Claims] (1)原料融液を基板に接触させ、基板上に結晶を析出
させて単結晶薄膜を育成させる液相エピタキシャル結晶
育成法において、長手方向の軸回りに傾斜可能でかつそ
の方向と直交する軸回りに揺動可能に電気炉内に配設さ
れた長方箱体の容器と、該容器の長手方向の一端でかつ
長手方向に直交する方向の一端の底面凹部に取付けられ
た基板と、開口された底端面を滑動可能に前記容器の底
面に設置された中空の円筒と、前記容器の長手方向に直
交する方向の基板の無い側にあって前記基板と前記円筒
との接触を防止する係止部とを備え、前記円筒内に原料
融液を収容し、傾斜動作および揺動動作で、まず容器の
長手方向およびこれと直交する方向の基板の無い側の一
端から前記係止部の範囲で円筒を往復滑動させることに
より原料融液の撹拌を行い、次いでさらなる傾斜動作お
よび揺動動作で基板に触れる範囲まで円筒を移動させる
ことにより原料融液を該基板に接触させて結晶育成を行
うことを特徴とする液相エピタキシャル結晶育成法。
(1) In the liquid phase epitaxial crystal growth method in which a raw material melt is brought into contact with a substrate and crystals are deposited on the substrate to grow a single crystal thin film, an axis that can be tilted around a longitudinal axis and is perpendicular to that direction. a rectangular box-like container arranged in an electric furnace so as to be able to swing around; a substrate mounted in a bottom recess at one end in the longitudinal direction of the container and in a direction orthogonal to the longitudinal direction; a hollow cylinder installed on the bottom surface of the container so as to be able to slide on the bottom end surface of the container; and a member provided on the side without the substrate in a direction perpendicular to the longitudinal direction of the container to prevent contact between the substrate and the cylinder. The raw material melt is accommodated in the cylinder, and by tilting and swinging movements, the area of the locking part is first moved from one end of the side without the substrate in the longitudinal direction of the container and the direction perpendicular thereto. The raw material melt is stirred by sliding the cylinder back and forth, and then the cylinder is moved to a range where it touches the substrate by further tilting and rocking motions, thereby bringing the raw material melt into contact with the substrate to grow crystals. A liquid phase epitaxial crystal growth method characterized by the following.
JP6933288A 1988-03-25 1988-03-25 Crystal growth method by liquid epitaxy Pending JPH01242484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6933288A JPH01242484A (en) 1988-03-25 1988-03-25 Crystal growth method by liquid epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6933288A JPH01242484A (en) 1988-03-25 1988-03-25 Crystal growth method by liquid epitaxy

Publications (1)

Publication Number Publication Date
JPH01242484A true JPH01242484A (en) 1989-09-27

Family

ID=13399488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6933288A Pending JPH01242484A (en) 1988-03-25 1988-03-25 Crystal growth method by liquid epitaxy

Country Status (1)

Country Link
JP (1) JPH01242484A (en)

Similar Documents

Publication Publication Date Title
JPH01242484A (en) Crystal growth method by liquid epitaxy
JPH01242483A (en) Liquid phase epitaxy method
JPH01242485A (en) Device for growing crystal by liquid epitaxy
JPH06177033A (en) Laser annealing
JPH02130839A (en) Liquid epitaxially growing method
JP2001019592A (en) Device for pulling single crystal
KR100206343B1 (en) Lbo single crysral manufacturing device and method
JP3154527B2 (en) Liquid phase epitaxial growth apparatus and method
JP3536915B2 (en) Method for producing composite oxide single crystal thin film
JPH04321590A (en) Growing method of single crystal
KR100292087B1 (en) Rubidium titanyl acenate (RBTIOASO₄) melt mixing device and RTA single crystal manufacturing method using the same
JPH01141892A (en) Method for growing crystal
JPS62120033A (en) Liquid-phase epitaxy apparatus
JPH02263788A (en) Method and device for liquid phase epitaxial growth
JPS5821830A (en) Apparatus for liquid phase epitaxial growth
JPH05229893A (en) Apparatus for liquid-phase epitaxial growth
JPH03187994A (en) Substrate holder in molecular beam vapor growth equipment
JPH06206791A (en) Method for liquid-phase epitaxial growth
JPS60118692A (en) Production of single crystal
JPH02271991A (en) Liquid phase epitaxy device and growth method thereof
JPS61280613A (en) Liquid epitaxial growing process
JPH02275795A (en) Method for lifting single crystal
JPH10101469A (en) Method for growing compound semiconductor crystal and apparatus therefor
JPH0687459B2 (en) Vapor phase growth equipment
JPH04119988A (en) Liquid phase epitaxial growth system