JPH01242483A - Liquid phase epitaxy method - Google Patents
Liquid phase epitaxy methodInfo
- Publication number
- JPH01242483A JPH01242483A JP6932388A JP6932388A JPH01242483A JP H01242483 A JPH01242483 A JP H01242483A JP 6932388 A JP6932388 A JP 6932388A JP 6932388 A JP6932388 A JP 6932388A JP H01242483 A JPH01242483 A JP H01242483A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- cylinder
- raw material
- vessel
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 17
- 238000004943 liquid phase epitaxy Methods 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 239000002994 raw material Substances 0.000 claims abstract description 31
- 239000013078 crystal Substances 0.000 claims abstract description 24
- 239000007791 liquid phase Substances 0.000 claims description 13
- 230000033001 locomotion Effects 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052799 carbon Inorganic materials 0.000 abstract description 9
- 239000000155 melt Substances 0.000 abstract description 9
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 229910004613 CdTe Inorganic materials 0.000 abstract description 3
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 238000000407 epitaxy Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 6
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、成長用基板に過飽和状態の原料融液を接触さ
せ、結晶を析出させて基板上に単結晶薄膜を成長させる
液相エピタキシャル成長法に関し、特に傾斜法によって
結晶成長を行う液相エピタキシャル成長法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is a liquid phase epitaxial growth method in which a growth substrate is brought into contact with a supersaturated raw material melt to precipitate crystals to grow a single crystal thin film on the substrate. In particular, the present invention relates to a liquid phase epitaxial growth method in which crystal growth is performed by a tilting method.
[従来の技術]
半導体をデバイスに応用するには、薄膜状でかつ大面積
の単結晶が必要となる。このような半導体の単結晶膜を
形成する方法として用いられているものの一つが、液相
エピタキシャル成長法である。所望の単結晶がHg1−
xcdx Teの場合は、主にテルル化カドミウム(C
dTe )基板上に形成する。[Prior Art] To apply semiconductors to devices, a thin film-like single crystal with a large area is required. One of the methods used to form such a semiconductor single crystal film is a liquid phase epitaxial growth method. The desired single crystal is Hg1-
In the case of xcdx Te, cadmium telluride (C
dTe ) formed on a substrate.
この場合、Hgの蒸気圧が高いため、多くは封管中での
成長とされる。In this case, since the vapor pressure of Hg is high, most of the growth occurs in the sealed tube.
第4図は、従来の傾斜法による液相エピタキシャル成長
装置を示す縦断面図である。同図において、装置は高純
度のカーボンブロックから作られた成長槽(以下カーボ
ンボートと呼ぶ)である。FIG. 4 is a longitudinal sectional view showing a conventional liquid phase epitaxial growth apparatus using a tilting method. In the figure, the device is a growth tank (hereinafter referred to as a carbon boat) made from a high-purity carbon block.
カーボンボート41の傾斜部42には、基板設置用の凹
部43がm設されていて、ここにテルル化カドミウム(
CdTe)の成長用基板44が設置されると共に、水平
部45には原料46か収容されている。カーボンボート
41は石英製の封管(図示せず)に真空封入される。こ
の石英封管は、加熱電気炉(図示せず)内に設置され、
該加熱電気炉はあらかじめ長手方向に垂直な軸のまわり
に回転可能とされていて、図中矢印で示される如く、電
気炉ごと封管を揺動できるようになっている。このよう
に石英封管を炉内に設置した後は、これを加熱すること
により原料46を完全に融解する。その際、原料46が
基板44に接触しないように、カーボンボート41は水
平か、または傾斜部42側が高くなるように固定してお
く。原料46が十分に融解した後、電気炉ごと回動させ
て、傾斜部42を水平状態にし、原料46が図中点線で
示される如く基板44を十分に覆い、かつこれと接触す
るようにする。そして、温度を徐々に低下させ、基板4
4上にHg1−x CdxTeの結晶を成長させる。適
度の降温により所要の膜厚を(qた後には、電気炉を再
び回動させて初めの状態に戻し、原料融液46と基板4
4とを離して、成長を停止させる。The inclined part 42 of the carbon boat 41 is provided with a recess 43 for installing a substrate, and cadmium telluride (
A growth substrate 44 for CdTe) is installed, and a raw material 46 is accommodated in the horizontal portion 45. The carbon boat 41 is vacuum sealed in a sealed tube (not shown) made of quartz. This quartz sealed tube is installed in a heating electric furnace (not shown),
The heating electric furnace is made rotatable in advance about an axis perpendicular to the longitudinal direction, so that the sealed tube together with the electric furnace can be swung as shown by the arrow in the figure. After the quartz sealed tube is thus installed in the furnace, the raw material 46 is completely melted by heating it. At this time, the carbon boat 41 is fixed horizontally or so that the inclined portion 42 side is higher so that the raw material 46 does not come into contact with the substrate 44. After the raw material 46 is sufficiently melted, the entire electric furnace is rotated so that the inclined part 42 is in a horizontal state so that the raw material 46 sufficiently covers and contacts the substrate 44 as shown by the dotted line in the figure. . Then, the temperature is gradually lowered, and the substrate 4
A crystal of Hg1-x CdxTe is grown on 4. After the required film thickness (q) is achieved by moderately lowering the temperature, the electric furnace is rotated again to return to the initial state, and the raw material melt 46 and the substrate 4 are heated.
4 and stop the growth.
[発明が解決しようとする課題]
しかしながら、上記従来の方法においては、次のような
問題点がある。即ち、結晶成長用原料を融解する際に攪
拌を行うことができないが、原料のHCI、Cd、 T
eは互いに比重差があるので、攪拌なしては融液内に組
成比の傾斜、いわゆる組成ムラが発生し、これが成長結
晶の組成ムラとなる。攪拌を行うため、電気炉ごと、小
さな角度の範囲内で推動させる方法も考えられるか、そ
の場合は原料が基板に触れて基板を部分的に溶かしたり
、カーボンボートの外にあふれてしまう危険性がある。[Problems to be Solved by the Invention] However, the above conventional method has the following problems. That is, although stirring cannot be performed when melting the raw materials for crystal growth, the raw materials HCI, Cd, T
Since there is a difference in specific gravity between the two materials e, if stirring is not performed, a gradient in the composition ratio, so-called compositional unevenness, will occur in the melt, and this will result in compositional unevenness in the growing crystal. Is it possible to consider a method of moving the entire electric furnace within a small angle range in order to stir it? In that case, there is a risk that the raw materials will touch the substrate and partially melt it, or that it will overflow outside the carbon boat. There is.
また、小さい角度のため十分な攪拌は期待できない。Also, due to the small angle, sufficient stirring cannot be expected.
本発明は、このような問題点に鑑みて創案されたもので
、従来、良質で均一なエピタキシャル成長膜を得るうえ
での障害となっていた原料融液内の組成比の傾斜、不均
一性を取除き、積極的な攪拌・混合によって融液を均質
化し、良質で均一なエピタキシャル成長膜を得る液相エ
ピタキシャル成長法を提供することを目的としたもので
ある。The present invention was devised in view of these problems, and it is possible to solve the inclination and non-uniformity of the composition ratio in the raw material melt, which has conventionally been an obstacle to obtaining a good quality and uniform epitaxially grown film. The object of the present invention is to provide a liquid phase epitaxial growth method in which a high quality and uniform epitaxially grown film is obtained by homogenizing the melt by removing and actively stirring and mixing.
[課題を解決するための手段]
本発明は、原料融液を基板に接触させ、基板上に結晶を
析出させて単結晶薄膜を成長さぜる液相エピタキシャル
成長法において、第1図および第2図に一実施例を兼ね
て基本構成を示す如く、長手方向の軸回りに傾斜可能で
かつその方向と直交する軸回りに揺動可能に電気炉内に
配設された長方箱体の容器1と、該容器1の長手方向の
一端の底面凹部2に取付けられた基板3と、開口された
底端面を滑動可能に前記容器1の底面に設置された中空
の円筒4とを備え、該円筒内に原料融液5を収容し、傾
斜動作および揺動動作で、まず容器1の長手方向の基板
の無い側の一端から基板3に触れない範囲で円筒4を往
復滑動させることにより原料融液5の攪拌を行い、次い
で基板に触れる範囲まで円筒4を移動させることにより
原料融液5を該基板3に接触させて結晶成長を行うこと
を特徴とする液相エピタキシャル成長法でおる。[Means for Solving the Problems] The present invention relates to a liquid phase epitaxial growth method in which a raw material melt is brought into contact with a substrate and crystals are precipitated on the substrate to grow a single crystal thin film. As shown in the figure, which also serves as an example and shows the basic configuration, a rectangular box-like container is arranged in an electric furnace so that it can be tilted around a longitudinal axis and can be rocked around an axis perpendicular to the longitudinal axis. 1, a substrate 3 attached to a bottom recess 2 at one end in the longitudinal direction of the container 1, and a hollow cylinder 4 installed on the bottom surface of the container 1 so as to be able to slide on the opened bottom end surface. The raw material melt 5 is stored in a cylinder, and the raw material melt is first slid back and forth from one end of the longitudinal direction of the container 1 on the side without the substrate by tilting and swinging motions without touching the substrate 3. This is a liquid phase epitaxial growth method characterized by stirring the liquid 5 and then moving the cylinder 4 to a range where it touches the substrate, thereby bringing the raw material melt 5 into contact with the substrate 3 to perform crystal growth.
[作用]
本発明は、従来技術において不完全であった成長用原料
の攪拌・混合を十分に行い、しかる後に結晶成長を行う
ように構成されている。以下、本発明の作用について、
第3図を用いて説明する。[Function] The present invention is configured to sufficiently stir and mix the raw materials for growth, which was incomplete in the prior art, and then perform crystal growth. Below, regarding the effects of the present invention,
This will be explained using FIG.
第3図の各図は本発明の方法を上方から見たもので、成
長用容器1の中に底部を開口された円筒4が設置され、
この円筒4の中に成長用原料5が収容されていて、成長
容器1は長手方向と直交する短軸の回りに揺動可能な電
気炉(図示せず)内に設置される。この設置の際に、成
長容器1を容器の長手方向の長袖の回りに、10°〜2
0°傾けて設置する。最初は第3図(a)に示す如く、
円筒4は成長用基板3の無い側の端部に位置させるか、
これは基板3側を高くするように、電気炉を前記短軸の
回りに30°程度回動させることによって達成される。Each figure in FIG. 3 shows the method of the present invention viewed from above, in which a cylinder 4 with an open bottom is installed in a growth container 1;
A growth material 5 is housed in this cylinder 4, and the growth container 1 is installed in an electric furnace (not shown) that can swing around a short axis perpendicular to the longitudinal direction. During this installation, rotate the growth container 1 by 10° to 2° around the long sleeve in the longitudinal direction of the container.
Install it at a 0° angle. Initially, as shown in Figure 3(a),
The cylinder 4 is located at the end of the side without the growth substrate 3, or
This is achieved by rotating the electric furnace about 30 degrees around the short axis so that the substrate 3 side is raised.
次に電気炉を昇温し、成長用原料5が融解したならば、
成長容器1が短軸の回りにシーソー運動するように電気
炉を揺動させる。この揺勅の角度限界は、第3図(b)
に示した矢印の範囲、すなわち基板3に触れない範囲を
円筒4が往復することができる範囲とする。成長容器1
は、その長軸の回りに傾けて設置されているので、円筒
4は容器内壁との摩擦によって、滑ることなく、必ず転
動する。従って、この揺動動作の繰返しにより円筒内の
原料5は強制的に攪拌・混合される。Next, when the temperature of the electric furnace is increased and the growth raw material 5 is melted,
The electric furnace is rocked so that the growth container 1 seesaws around the short axis. The angle limit of this swing is shown in Figure 3 (b).
The range indicated by the arrow, that is, the range where the cylinder 4 does not touch the substrate 3 is defined as the range in which the cylinder 4 can reciprocate. Growth container 1
Since the cylinder 4 is installed tilted around its long axis, the cylinder 4 always rolls without slipping due to friction with the inner wall of the container. Therefore, by repeating this swinging motion, the raw material 5 in the cylinder is forcibly stirred and mixed.
十分に混合が行われたならば、最債に第3図(C)のよ
うに円筒4すなわち成長原料5を基板3の上に位置させ
る。この状態になったならば結晶成長のための徐冷を開
始し、所定の時間だけ結晶成長を行う。After sufficient mixing has been performed, the cylinder 4, ie, the growth material 5, is finally placed on the substrate 3 as shown in FIG. 3(C). When this state is reached, slow cooling for crystal growth is started, and crystal growth is performed for a predetermined period of time.
[実施例]
以下、図面を参照して、本発明の実施例を詳細に説明す
る。[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図は本発明の基本構成を兼ねる液相エピタキシャル
成長装置の一実施例を示す縦断面図、第2図はそのY−
Y ””線による縦断面図である。FIG. 1 is a vertical cross-sectional view showing an embodiment of a liquid phase epitaxial growth apparatus which also serves as the basic structure of the present invention, and FIG.
FIG.
第1図中、1は高純度カーボンからなる成長用容器であ
る。内部底面は平坦で長手方向の一端に近い部分に基板
3を設置する凹部2が形成されている。成長用容器1の
内部にはその内壁最少間隔より小さい外径をもつ円筒4
が設置できるようになっている。この円筒4には結晶成
長用のHgCdTe原料5が収容される。In FIG. 1, 1 is a growth container made of high-purity carbon. The internal bottom surface is flat, and a recess 2 in which a substrate 3 is placed is formed near one end in the longitudinal direction. Inside the growth container 1, there is a cylinder 4 having an outer diameter smaller than the minimum distance between its inner walls.
can be installed. This cylinder 4 accommodates an HgCdTe raw material 5 for crystal growth.
次に、上記装置によるエピタキシャル結晶成長法の手順
について説明する。Next, the procedure of the epitaxial crystal growth method using the above apparatus will be explained.
まず成長用容器1の凹部2にCdTeからなる基板3を
設置し、円筒4に結晶成長用HqCdTe原料5を収容
する。これを石英封管(図示せず)中に入れ、真空封入
し、この封管を第1図中に示す揺動軸6の回りにシーソ
ー式の揺動が可能な横型電気炉中に設置する。このとき
、第2図に示す如く、容器1がその幅方向で角度10〜
20’傾くように設置する。これによって、円筒4が容
器1の中を滑動する際に、その内壁との摩擦によって確
実に回転することができる。First, a substrate 3 made of CdTe is placed in a recess 2 of a growth container 1, and a HqCdTe raw material 5 for crystal growth is placed in a cylinder 4. This is placed in a quartz sealed tube (not shown), sealed under vacuum, and this sealed tube is placed in a horizontal electric furnace that can swing like a seesaw around the swing shaft 6 shown in FIG. . At this time, as shown in FIG.
Install it so that it is tilted 20'. Thereby, when the cylinder 4 slides inside the container 1, it can be reliably rotated by friction with the inner wall of the cylinder 4.
最初は円筒4を容器の長手方向の基板3の無い側の端に
位置させるため、基板3側が高くなるように揺動軸6の
回りに30’程度回動させた状態とする。Initially, in order to position the cylinder 4 at the end of the container in the longitudinal direction on the side where the substrate 3 is not present, the cylinder 4 is rotated about 30' around the swing axis 6 so that the substrate 3 side is higher.
次に電気炉を昇温させ、原料5が融解したならば、電気
炉を図中矢印で示す如く、揺動軸6の回りに揺動させ、
その融液5と基板3が接しない範囲で円筒4を容器1内
で、側壁面に対しては転勤、底面に対しては滑動させて
往復動させる。これによって、融液を攪拌・混合し、均
質化させることができる。Next, the temperature of the electric furnace is raised, and when the raw material 5 is melted, the electric furnace is swung around the oscillation shaft 6 as shown by the arrow in the figure.
The cylinder 4 is moved reciprocally within the container 1 within the range where the melt 5 and the substrate 3 do not come in contact with each other, by shifting against the side wall surface and sliding against the bottom surface. This allows the melt to be stirred and mixed to be homogenized.
その後、融液温度を成長開始設定温度にまで降下させ、
基板3のある方の一端が下がるように電気炉を傾け、そ
れによって円筒4を転・滑動させて基板3のある位置ま
で移動させ、原料融液5と基板3とを接触させる。次い
で温度を降下させることにより、基板3上にHg1−x
CdxTeエピタキシャル膜を成長させた。After that, the melt temperature is lowered to the set temperature for starting growth,
The electric furnace is tilted so that one end of the substrate 3 is lowered, and thereby the cylinder 4 is rolled and slid to a position where the substrate 3 is located, and the raw material melt 5 and the substrate 3 are brought into contact. Then, by lowering the temperature, Hg1-x is formed on the substrate 3.
A CdxTe epitaxial film was grown.
所定の厚さまで成長させた後は、再び電気炉を回動じて
元の状態に傾け、円筒4を転・滑動させて基板3と融液
5とを分離する。その際に、円筒4の下端面がワイパー
の役をするため、余分の融液は基板上に残ることなく全
て取り除かれるので、成長した”1−x CdxTe膜
は表面の状態が良好となった。After growing to a predetermined thickness, the electric furnace is rotated again to tilt it back to its original state, and the cylinder 4 is rotated and slid to separate the substrate 3 and the melt 5. At this time, the lower end surface of the cylinder 4 acts as a wiper, and all excess melt is removed without remaining on the substrate, resulting in a good surface condition of the grown 1-x CdxTe film. .
成長した■g1−x Cdx 丁e膜面の組成の均一性
をフーリエ変換式赤外分光計で調べると、従来より優れ
た均一性を再現性よく得られることがわかった。When the uniformity of the composition of the grown (g1-x Cdx) film surface was examined using a Fourier transform infrared spectrometer, it was found that uniformity superior to that of the conventional method could be obtained with good reproducibility.
[発明の効果]
以上述べたとおり、本発明によれば、原料融液の攪拌・
混合が十分に行われ、組成比のムラが極めて少なくなり
、成長結晶膜全面にわたって組成比が安定し、かつ良好
な表面状態を有するエピタキシャル成長膜を得ることの
できる液相エピタキシャル成長法を提供することができ
る。[Effect of the invention] As described above, according to the present invention, stirring and
It is an object of the present invention to provide a liquid phase epitaxial growth method in which sufficient mixing is performed, the unevenness of the composition ratio is extremely reduced, the composition ratio is stable over the entire surface of the grown crystal film, and an epitaxially grown film having a good surface condition can be obtained. can.
第1図および第2図は本発明の基本構成を兼ねて本発明
方法に用いられる液相エピタキシャル成長装置の一例を
示す縦断面図、第3図は本発明の詳細な説明図、第4図
は従来例による液相エピタキシャル装置の縦断面図でお
る。
1・・・容器 2,43・・・凹部3.4
4・・・基板 4・・・円筒5,46・・・原
料 6・・・揺動軸41・・・カーボンボート
42・・・傾斜部45・・・水平部1 and 2 are vertical cross-sectional views showing an example of a liquid phase epitaxial growth apparatus used in the method of the present invention which also serves as the basic structure of the present invention, FIG. 3 is a detailed explanatory diagram of the present invention, and FIG. 4 is a FIG. 2 is a longitudinal sectional view of a conventional liquid phase epitaxial device. 1... Container 2, 43... Recessed portion 3.4
4... Substrate 4... Cylinder 5, 46... Raw material 6... Swing shaft 41... Carbon boat 42... Inclined part 45... Horizontal part
Claims (1)
させて単結晶薄膜を成長させる液相エピタキシャル成長
法において、長手方向の軸回りに傾斜可能でかつその方
向と直交する軸回りに揺動可能に電気炉内に配設された
長方箱体の容器と、該容器の長手方向の一端の底面凹部
に取付けられた基板と、開口された底端面を滑動可能に
前記容器の底面に設置された中空の円筒とを備え、該円
筒内に原料融液を収容し、傾斜動作および揺動動作で、
まず容器の長手方向の基板の無い側の一端から基板に触
れない範囲で円筒を往復滑動させることにより原料融液
の攪拌を行い、次いで基板に触れる範囲まで円筒を移動
させることにより原料融液を該基板に接触させて結晶成
長を行うことを特徴とする液相エピタキシャル成長法。(1) In the liquid phase epitaxial growth method, in which a raw material melt is brought into contact with a substrate and crystals are precipitated on the substrate to grow a single crystal thin film, it is possible to tilt around a longitudinal axis and to rotate around an axis perpendicular to the longitudinal axis. A rectangular box-like container is swingably disposed in an electric furnace, a substrate is attached to a bottom concave portion at one longitudinal end of the container, and a bottom surface of the container is slidably mounted on an open bottom end surface. and a hollow cylinder installed in the cylinder, the raw material melt is accommodated in the cylinder, and the tilting movement and the swinging movement
First, the raw material melt is stirred by sliding the cylinder back and forth from one end of the longitudinal direction of the container without the substrate within a range that does not touch the substrate, and then the raw material melt is stirred by moving the cylinder to the range where it touches the substrate. A liquid phase epitaxial growth method characterized in that crystal growth is performed in contact with the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6932388A JPH01242483A (en) | 1988-03-25 | 1988-03-25 | Liquid phase epitaxy method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6932388A JPH01242483A (en) | 1988-03-25 | 1988-03-25 | Liquid phase epitaxy method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01242483A true JPH01242483A (en) | 1989-09-27 |
Family
ID=13399228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6932388A Pending JPH01242483A (en) | 1988-03-25 | 1988-03-25 | Liquid phase epitaxy method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01242483A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7959729B2 (en) * | 2003-03-17 | 2011-06-14 | Osaka University | Method for producing group-III-element nitride single crystals and apparatus used therein |
-
1988
- 1988-03-25 JP JP6932388A patent/JPH01242483A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7959729B2 (en) * | 2003-03-17 | 2011-06-14 | Osaka University | Method for producing group-III-element nitride single crystals and apparatus used therein |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01242483A (en) | Liquid phase epitaxy method | |
US4026735A (en) | Method for growing thin semiconducting epitaxial layers | |
JPH01242484A (en) | Crystal growth method by liquid epitaxy | |
US3810794A (en) | Preparation of gap-si heterojunction by liquid phase epitaxy | |
JPH01242485A (en) | Device for growing crystal by liquid epitaxy | |
JPS5821830A (en) | Apparatus for liquid phase epitaxial growth | |
JP3018738B2 (en) | Single crystal manufacturing equipment | |
JPH04367587A (en) | Liquid phase growth and apparatus therefor | |
JP3073870B2 (en) | Semiconductor liquid phase epitaxy equipment | |
JPH10101469A (en) | Method for growing compound semiconductor crystal and apparatus therefor | |
JPH02263788A (en) | Method and device for liquid phase epitaxial growth | |
JP3536915B2 (en) | Method for producing composite oxide single crystal thin film | |
JPH02271991A (en) | Liquid phase epitaxy device and growth method thereof | |
JPH0624894A (en) | Device for liquid phase epitaxy of multielement semiconductor crystal | |
JPS61280613A (en) | Liquid epitaxial growing process | |
JPH02130839A (en) | Liquid epitaxially growing method | |
JPH03295892A (en) | Method and device for pulling up single crystal | |
JPH0712030B2 (en) | (II)-(VI) Group compound semiconductor crystal growth apparatus | |
JPS61271817A (en) | Molecular beam epitaxy apparatus | |
JPH04119988A (en) | Liquid phase epitaxial growth system | |
JPH04321590A (en) | Growing method of single crystal | |
JPH0625955Y2 (en) | Liquid phase epitaxial growth system | |
JP3551406B2 (en) | Growth method of mixed crystal semiconductor single crystal | |
JPS5988834A (en) | Liquid phase epitaxial growth device | |
JP2001135586A (en) | Epitaxial growth apparatus and method of manufacturing semiconductor device |