JPH01242479A - Aluminum nitride substrate - Google Patents

Aluminum nitride substrate

Info

Publication number
JPH01242479A
JPH01242479A JP6933188A JP6933188A JPH01242479A JP H01242479 A JPH01242479 A JP H01242479A JP 6933188 A JP6933188 A JP 6933188A JP 6933188 A JP6933188 A JP 6933188A JP H01242479 A JPH01242479 A JP H01242479A
Authority
JP
Japan
Prior art keywords
sintered body
substrate
titanium carbide
aln
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6933188A
Other languages
Japanese (ja)
Other versions
JPH0717469B2 (en
Inventor
Hiroaki Yamamoto
博章 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6933188A priority Critical patent/JPH0717469B2/en
Publication of JPH01242479A publication Critical patent/JPH01242479A/en
Publication of JPH0717469B2 publication Critical patent/JPH0717469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PURPOSE:To provide an AlN substrate having high heat conductivity and superior bonding strength between the sintered body and electrically conductive metallizing layer by forming an electrically conductive metallizing layer contg. nickel and titanium carbide on an AlN sintered body. CONSTITUTION:Nickel powder is mixed with titanium carbide powder so that the titanium carbide content is preferably regulated to about 1-10wt.%, paste, a solvent, etc., are added to the mixture and they are impasted. The resulting paste is applied to an AlN sintered body by a thick film printing method and dried. An electrically conductive metallizing layer contg. nickel and titanium carbide is formed on the AlN sintered body with high bonding strength and an AlN substrate is produced. This substrate is used as a board for a high integration-high power electronic circuit with high reliability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒化アルミニウム(Ai2N)基板に関し、ざ
らに詳しくは高い接合強度を有する導電性メタライズ層
(以下、「メタライズ層」と略す)が形成された窒化ア
ルミニウム基板に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an aluminum nitride (Ai2N) substrate, and more specifically, a conductive metallized layer (hereinafter abbreviated as "metalized layer") having high bonding strength is formed. The present invention relates to an aluminum nitride substrate.

[従来の技術j 近年、特に電子装置および機器は小型化、高密度化が強
く要求されており、これらの要求はICにLSIを実装
する基板に対しても生じている。
[Prior Art j] In recent years, there has been a strong demand for smaller size and higher density especially for electronic devices and equipment, and these demands have also arisen for substrates on which LSIs are mounted on ICs.

一方、LSIの高速作動、高集積化に伴ってチップから
発生する熱は多量になってくる傾向にあり、前述の基板
の小型化と相乗して基板単位面積当りの発熱量は大幅に
増大している。
On the other hand, as LSIs operate at higher speeds and become more highly integrated, the amount of heat generated by the chips tends to increase, and combined with the aforementioned miniaturization of substrates, the amount of heat generated per unit area of the substrate increases significantly. ing.

従来、この種の実装基板としては、一般にアルミナ(M
2O3)基板が用いられている。
Conventionally, this type of mounting board has generally been made of alumina (M
2O3) substrate is used.

[発明が解決しようとする課題] しかしながら、上述したAl2O3基板では熱の放散性
が十分でないという問題があり、M2O3基板よりも熱
伝導率が大きく、熱の放散性に優れた絶縁基板が必要に
なっている。これらの条件を満た1−5のとして、最近
NN焼結体で形成された基板が注目されている。このM
N焼結体は熱伝導率かM2O3基板の約8〜10倍と高
く、また電気絶縁性にも優れ、しかも熱膨張率がシリコ
ンに近いという特性を有しているため、高集積化された
LSI等の実装基板として適したものである。
[Problems to be Solved by the Invention] However, there is a problem that the above-mentioned Al2O3 substrate does not have sufficient heat dissipation properties, and an insulating substrate that has higher thermal conductivity and excellent heat dissipation properties than the M2O3 substrate is needed. It has become. Recently, substrates formed of NN sintered bodies have been attracting attention as satisfying these conditions 1-5. This M
N sintered bodies have thermal conductivity that is approximately 8 to 10 times higher than M2O3 substrates, excellent electrical insulation, and a coefficient of thermal expansion close to that of silicon, making them highly integrated. It is suitable as a mounting board for LSI etc.

このようなMN焼結体を実装基板として使用するために
は、表面に配線等を行うためのメタライズ層を形成する
必要かあるが、このメタライズ層を形成する方法として
は従来より金、銀−バラジラムを用いた厚膜法か知られ
ている。しかしなからこれらの厚膜法では、約600〜
1000°C程度の温度でメタライズ層を形成するため
高温下においてMNとメタライズ層の接合強度か低下す
るという欠点がある。
In order to use such a MN sintered body as a mounting board, it is necessary to form a metallized layer on the surface for wiring, etc., but conventional methods for forming this metallized layer include gold, silver, etc. A thick film method using Balajiram is known. However, with these thick film methods, the
Since the metallized layer is formed at a temperature of about 1000°C, there is a drawback that the bonding strength between the MN and the metallized layer decreases at high temperatures.

本発明は以上述べたような従来の問題点を解決するため
になされたもので、AINとメタライズ層の接合強度が
大ぎく、高集積・高電力電子回路用基板として最適のA
I!N基板を提供することを目的とする。
The present invention has been made in order to solve the conventional problems as described above, and the bonding strength between the AIN and the metallized layer is very high, making it ideal as a substrate for highly integrated and high power electronic circuits.
I! The purpose is to provide an N substrate.

[課題を解決するための手段] 本発明は、窒化アルミニウム焼結体上にニッケルおよび
炭化チタンを含有する導電性メタライズ層か形成されて
なることを特徴とする窒化アルミニウム基板である。
[Means for Solving the Problems] The present invention is an aluminum nitride substrate characterized in that a conductive metallized layer containing nickel and titanium carbide is formed on an aluminum nitride sintered body.

本発明において、メタライズ層を形成するニッケルと炭
化チタンの使用割合は炭化チタン含有量か1〜10重量
%であることが好ましい。
In the present invention, the ratio of nickel and titanium carbide used to form the metallized layer is preferably 1 to 10% by weight based on the titanium carbide content.

[実施例] 次に本発明の実施例について詳細に説明する。[Example] Next, embodiments of the present invention will be described in detail.

ニッケルの粉末95重量部と炭化チタンの扮末5重♀部
とを混合し、得られた混合物80重量部を4重量部のエ
チルセルロースと16重量部のα−テルピネオールに分
散せしめ、ペースト化した。次にこのペーストを厚膜印
刷法によりMN焼結体上に10〜20柳の膜厚になるよ
うに塗布した。乾燥後、第1表に示す条件で加熱し、メ
タライズ図を形成した。
95 parts by weight of nickel powder and 5 parts by weight of titanium carbide powder were mixed, and 80 parts by weight of the resulting mixture was dispersed in 4 parts by weight of ethyl cellulose and 16 parts by weight of α-terpineol to form a paste. Next, this paste was applied onto the MN sintered body by a thick film printing method to a film thickness of 10 to 20 mm. After drying, it was heated under the conditions shown in Table 1 to form a metallized pattern.

このようにして得られたMN基板のMN焼結体とメタラ
イズ層の接合強度を測定した。測定方法はメタライズ面
に銅製ピンをハンダ付けし、万能引張試験機を用いて行
った。その結果を第1表に併せて示す。同表の測定結果
からいずれの場合も高い接合強度が得られ、特に130
0’C10,5hのメタライズ条件が最適条件であるこ
とがわかる。なお、このメタライズ条件での強度測定の
際、焼結体の一部かえぐり取られるモードが測定数の約
半数おり、実際の接合強度はざらに大きいと推察される
The bonding strength between the MN sintered body and the metallized layer of the MN substrate thus obtained was measured. The measurement method was to solder copper pins to the metallized surface and use a universal tensile tester. The results are also shown in Table 1. From the measurement results in the same table, high bonding strength was obtained in all cases, especially at 130
It can be seen that the metallization condition of 0'C10,5h is the optimum condition. In addition, when measuring the strength under these metallization conditions, there was a mode in which a part of the sintered body was gouged out in about half of the measured numbers, and it is presumed that the actual bonding strength is much higher.

第1表 [発明の効果] 以上説明しノたとおり、本発明の窒化アルミニウム基板
は、基板を構成する%N焼結体とメタライズ層が高い接
合強度を示している。したがってUN焼結体が本来布し
ている高熱伝導性と併せ、信頼性の高い高集積・高電力
電子回路用基板として用いることができる。
Table 1 [Effects of the Invention] As explained above, in the aluminum nitride substrate of the present invention, the %N sintered body constituting the substrate and the metallized layer exhibit high bonding strength. Therefore, in addition to the inherent high thermal conductivity of the UN sintered body, it can be used as a highly reliable substrate for highly integrated and high power electronic circuits.

Claims (1)

【特許請求の範囲】[Claims] (1)窒化アルミニウム焼結体上にニッケルおよび炭化
チタンを含有する導電性メタライズ層が形成されてなる
ことを特徴とする窒化アルミニウム基板。
(1) An aluminum nitride substrate characterized in that a conductive metallized layer containing nickel and titanium carbide is formed on an aluminum nitride sintered body.
JP6933188A 1988-03-25 1988-03-25 Aluminum nitride substrate Expired - Lifetime JPH0717469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6933188A JPH0717469B2 (en) 1988-03-25 1988-03-25 Aluminum nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6933188A JPH0717469B2 (en) 1988-03-25 1988-03-25 Aluminum nitride substrate

Publications (2)

Publication Number Publication Date
JPH01242479A true JPH01242479A (en) 1989-09-27
JPH0717469B2 JPH0717469B2 (en) 1995-03-01

Family

ID=13399459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6933188A Expired - Lifetime JPH0717469B2 (en) 1988-03-25 1988-03-25 Aluminum nitride substrate

Country Status (1)

Country Link
JP (1) JPH0717469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD934864S1 (en) 2019-04-05 2021-11-02 Dynabook Inc. Mobile computer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD934864S1 (en) 2019-04-05 2021-11-02 Dynabook Inc. Mobile computer

Also Published As

Publication number Publication date
JPH0717469B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
US5294750A (en) Ceramic packages and ceramic wiring board
JPH0451078B2 (en)
JPS6273799A (en) Multilayer ceramic circuit substrate
JPS6265991A (en) High heat conductive ceramics substrate
JPH0719964B2 (en) Silver-based wiring ceramic substrate
JPH04212441A (en) Ceramic wiring board
JPH0570954B2 (en)
JPH01242479A (en) Aluminum nitride substrate
JPS62197375A (en) Aluminum nitride substrate
JP2001135753A (en) Semiconductor module substrate and manufacturing method for the same
JPS59184586A (en) Circuit board for placing semiconductor element
JP2754806B2 (en) Conductor paste for aluminum nitride substrate
JPH0451059B2 (en)
JPH0337758B2 (en)
JPH04125952A (en) Ceramic package
JPS6276592A (en) Multilayer ceramic circuit substrate
JPS6276596A (en) Multilayer ceramic circuit substrate
JPS62211985A (en) Highly heat-conductive circuit board
Iwase et al. AIN LGAs for High Performance Packaging Applications
JPS6273797A (en) Multilayer ceramic circuit substrate
JPH01276789A (en) Metallic base board
JPH0523077B2 (en)
JPH02240995A (en) Ceramic substrate for electronic component mounting
JPH06164089A (en) Method for making electrode pattern
JPS6327094A (en) Manufacture of ceramic substrate for optical transmission