JPH01242199A - Controlling method for intermittent aeration in aeration tank - Google Patents

Controlling method for intermittent aeration in aeration tank

Info

Publication number
JPH01242199A
JPH01242199A JP6640788A JP6640788A JPH01242199A JP H01242199 A JPH01242199 A JP H01242199A JP 6640788 A JP6640788 A JP 6640788A JP 6640788 A JP6640788 A JP 6640788A JP H01242199 A JPH01242199 A JP H01242199A
Authority
JP
Japan
Prior art keywords
aeration
tank
sensor
reaction
attains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6640788A
Other languages
Japanese (ja)
Other versions
JPH0773712B2 (en
Inventor
Toshimasa Umehara
梅原 敏正
Kozo Ashizawa
公三 芦沢
Atsushi Hibino
淳 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP6640788A priority Critical patent/JPH0773712B2/en
Publication of JPH01242199A publication Critical patent/JPH01242199A/en
Publication of JPH0773712B2 publication Critical patent/JPH0773712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To make nitration operation and denitirification operation at a low load stage stable by suspending an aeration apparatus when an initial pH after aeration, which is sensed by a sensor, attains a predetermined value, and operating the aeration apparatus when an initial pH after the suspension attains a predetermined value. CONSTITUTION:A pH in an aeration tank 1 is sensed by a pH sensor 5 after sending an aerated liquid in the aeration tank 1 to a pH sensor box 2 with a suction pump 3. An electric voltage sensed by the pH sensor is amplified by an amplifier 4, and an aeration device 6 is controlled by a controller S. Aeration reaction does not proceed and nitrogen in a feed water is not removed when the pH is biased to one side in an intermittent operation in a same aeration tank since both nitration reaction and denitrification reaction are influenced by pH. Accordingly, the pH in an aeration tank is preferred to be 6.5-8.0. When the pH attains <=6.5, the aeration is suspended, and when it attains <=8.0, the aeration is resumed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ばっ気槽の間欠ばつ気制御方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for controlling intermittent aeration in an aeration tank.

(従来の技術) 従来のばっ気槽の間欠運転におけるばつ気、非ばつ気持
間の調整は、ばっ気槽内の溶存酸素濃度をDOセンサー
で測定する方法、あるいはばっ気、非ばつ気持間を予め
タイマーで設定する方法により行われていた。
(Prior art) In the conventional intermittent operation of an aeration tank, the adjustment between aeration and non-aeration can be achieved by measuring the dissolved oxygen concentration in the aeration tank with a DO sensor, or by adjusting the difference between aeration and non-aeration. This was done by setting a timer in advance.

(発明が解決しようとする課題) 現行のDOセンサーは、酸素透過膜の劣化、膜表面への
よごれによる酸素透過障害、カチオン電極である鉛電極
の劣化、内部電解液である塩化カリウム溶液の劣化があ
るため、Do濃度測定値への信頼性に欠は頻繁に酸素透
過膜の交換、鉛電極、内部電解液を交換せざるを得なか
った0 また、タイマーでの設定では極端な低負荷の場合、ばっ
気過剰により一方的に硝化のみに進行していた。即ち、
間欠運転におけるばつ気槽内のPH変化は硝化反応(1
)及び脱窒反応(2)から第1図のようになる。
(Problems to be solved by the invention) Current DO sensors suffer from deterioration of the oxygen permeable membrane, obstruction of oxygen permeation due to dirt on the membrane surface, deterioration of the lead electrode which is the cation electrode, and deterioration of the potassium chloride solution which is the internal electrolyte. Because of this, the reliability of the Do concentration measurement value was low, and the oxygen permeable membrane, lead electrode, and internal electrolyte had to be replaced frequently.In addition, setting a timer requires extremely low load. In this case, due to excessive aeration, only nitrification progressed unilaterally. That is,
The pH change in the aeration tank during intermittent operation is due to the nitrification reaction (1
) and denitrification reaction (2) as shown in Figure 1.

硝化反応:NH:+20.→No; +H,O+2H1
、・、(1)脱窒反応+ 2NO; +I OH→4H
*o+2oH−十N*7・・・(2)しかしながら、極
端な低負荷では第2図に示すように同一ばっ気持間でも
ばっ気槽内IJ Oが上昇し、好気時間が長くなり硝化
が進行し、PHが低下する。このため、嫌気域ができず
、さらにPH低下により脱窒反応の効率が下がるため硝
酸イオンの窒素ガス化が進行しない。
Nitrification reaction: NH: +20. →No; +H, O+2H1
,・,(1) Denitrification reaction + 2NO; +I OH → 4H
*o+2oH-10N*7...(2) However, at extremely low loads, as shown in Figure 2, the IJO in the aeration tank increases even during the same aeration period, and the aerobic time becomes longer, causing nitrification. As the disease progresses, the pH decreases. For this reason, an anaerobic region is not formed, and furthermore, the efficiency of the denitrification reaction decreases due to a decrease in pH, so that the conversion of nitrate ions to nitrogen gas does not proceed.

(課題を解決するための手段) 本発明は、間欠ばっ気による窒素除去方法のばっ気及び
ばっ気停止のくり返しをPHセンサーにより行うもので
ある。
(Means for Solving the Problems) The present invention uses a PH sensor to repeatedly aerate and stop aeration in a nitrogen removal method using intermittent aeration.

(1)式、第1図、第2図に示されるように、ばっ気す
るとPHが低下し、ばっ気を継続すると第3図に示すよ
うにPHは5以下に低下する。
As shown in equation (1), FIGS. 1 and 2, aeration causes the PH to decrease, and as aeration continues, the PH decreases to 5 or less as shown in FIG. 3.

PHが5以下では脱窒反応速度は最大値のV5程度にな
り、反応時間を5倍かけないと目的の値まで達しない。
When the pH is 5 or less, the denitrification reaction rate reaches the maximum value of about V5, and the desired value cannot be reached unless the reaction time is increased by 5 times.

一般に、第3図に示すように硝化反応はPH6,5〜8
.0、脱窒反応はP H5゜5〜8.5で行うのが望し
い。
Generally, the nitrification reaction takes place at a pH of 6.5 to 8, as shown in Figure 3.
.. 0. It is desirable that the denitrification reaction be carried out at a pH of 5° to 8.5.

従って、同一槽内ではP H5,5〜8.0で処理する
のがよい。このような条件で硝化、脱窒反応を効率よく
くり返すにはばっ気槽のPHが6.5以下となった時点
あるいは初期PH値(通常7゜0)より0.2〜0.5
低下した時点でばっ気装置を停止1.すなわち硝化反応
を停止し、ばっ気停止後、脱窒反応によりPHが8.0
以上となった時点あるいはばっ気停止後PHが0.2〜
0.5上昇した時点でばっ気装置を運転する。
Therefore, it is preferable to process at pH 5.5 to 8.0 in the same tank. In order to efficiently repeat the nitrification and denitrification reactions under these conditions, the pH of the aeration tank should be 0.2 to 0.5 below the initial pH value (usually 7°0).
Stop the aeration device when the temperature drops 1. In other words, after the nitrification reaction is stopped and the aeration is stopped, the pH becomes 8.0 due to the denitrification reaction.
When the pH reaches 0.2 or more or after the aeration stops
Operate the aeration system when the temperature rises by 0.5.

PHセンサーの取り付は方法は直接ばっ気槽に取り付け
る方法や、第4図に示すように、PHセンサー収納箱2
を設けこの箱内にポンプ3でばっ気槽1のばっ気液を吸
引する方法があるが、PHセンサーの汚れを防止する意
味から後者の方が望しい。PHセンサー収納箱2に吸引
する供給液は沈殿槽上澄液でもよい。
The PH sensor can be installed directly in the aeration tank, or as shown in Figure 4, in the PH sensor storage box 2.
There is a method in which a pump 3 is provided in the box to suck the aeration liquid from the aeration tank 1, but the latter method is preferable in order to prevent the PH sensor from becoming contaminated. The supply liquid sucked into the PH sensor storage box 2 may be the supernatant liquid of the sedimentation tank.

ばっ気量始時のPHは通常7.0であるから、ばっ気を
開始するとP f(が低下してい(が、脱窒反応は第3
図に示すようにP H5,Qでは反応速度が最大値の5
096となるため、70%1こ抑えられるPHHO25
を下限とし、測定誤差を考慮して上限を6.8、すなわ
ちPHが0.2〜0.5低下した時点でばっ気停止とし
た。また、ばっ気停止後のPH上昇値は中性域でのくり
返しが条件であるから、同様に0.2〜0.5とした。
Since the pH at the beginning of aeration is normally 7.0, when aeration starts, P f (decreases) (but the denitrification reaction
As shown in the figure, at PH5,Q the reaction rate is at its maximum value of 5.
096, PHHO25 can be suppressed by 70% by 1
The lower limit was set to 6.8, and the upper limit was set to 6.8 in consideration of measurement errors, that is, aeration was stopped when the pH decreased by 0.2 to 0.5. Further, since the pH increase value after the aeration is stopped is required to be repeated in the neutral range, it was similarly set to 0.2 to 0.5.

(作用)。(action).

硝化、脱窒反応とも第3図に示すようにPHの影響をう
ける。同一槽における間欠運転では、PHが一方的に片
寄ると反応が進行しないため、原水中の窒素は除去され
ない。このため、槽内のPHを第3図に示すように、中
性域に保たなければならない。
Both nitrification and denitrification reactions are affected by pH, as shown in Figure 3. In intermittent operation in the same tank, if the pH is one-sided, the reaction will not proceed, so nitrogen in the raw water will not be removed. For this reason, the pH inside the tank must be kept in the neutral range as shown in Figure 3.

PHセンサーは、槽内のPHを中性域に保つためのもの
である。槽内のPHは、ばっ気を行うと(1)式に示す
ように低下していくため、ばっ気後PH値が0.3〜0
.5低下するか、6.5以下になった時点でばっ気を停
止し、脱窒反応に切り換える。脱窒反応では(2)式に
示すよう1こPHは上昇し、ばっ気停止後PH値が0.
2〜0.5上昇するか、8.0以上となった時点でばっ
気を開始する。この動作をP 1(センサーにより制御
し、くり返すことにより槽内PHを中性域に保つ。
The PH sensor is for keeping the pH inside the tank in the neutral range. When aeration is performed, the PH in the tank decreases as shown in equation (1), so the PH value after aeration is between 0.3 and 0.
.. 5 or below 6.5, stop aeration and switch to denitrification reaction. In the denitrification reaction, the pH increases by 1 as shown in equation (2), and after the aeration stops, the pH value decreases to 0.
Start aeration when the temperature rises by 2 to 0.5 or reaches 8.0 or higher. This operation is controlled by P1 (sensor) and repeated to keep the pH inside the tank in the neutral range.

(実施例) 本発明の実施例を第1図〜第5図に基づき以下説明する
(Example) An example of the present invention will be described below based on FIGS. 1 to 5.

ばっ気槽1のばっ気液を吸引ポンプ3によりPHセンサ
ー収納箱2に送り、PHセンサー5によりばっ気槽内の
PHを検知する。
The aeration liquid in the aeration tank 1 is sent to the PH sensor storage box 2 by the suction pump 3, and the PH in the aeration tank is detected by the PH sensor 5.

検知したPHセンサーによる電圧は増幅器4により増幅
されコントローラー8によりばっ気装置6が制御される
The voltage detected by the PH sensor is amplified by the amplifier 4, and the aeration device 6 is controlled by the controller 8.

PHセンサー収納箱2にはPHセンサー5洗浄のための
水道水7配管が常設されている。
A tap water 7 pipe for cleaning the PH sensor 5 is permanently installed in the PH sensor storage box 2.

第1図は設計負荷における設定時間によるばっ気/ばっ
気停止の間欠運転で硝化、脱窒時間が十分にとれ、同一
槽で窒素除去が可能であった。
Figure 1 shows that the intermittent operation of aeration/aeration stop for a set time under the design load allowed sufficient time for nitrification and denitrification, making it possible to remove nitrogen in the same tank.

第2図は低負荷時における設定時間によるばっ気/ばっ
気停止の間欠運転であるが、低負荷のためばっ気持にお
ける槽内のDoが上昇し、ばっ気を停止しても槽内が嫌
気状態となるまでに時間を要し、設定したばっ気停止時
間では嫌気時間が短すぎ、脱窒反応時間が不足し、窒素
除去が不十分であった。
Figure 2 shows the intermittent operation of aeration/aeration stop according to the set time at low load, but because of the low load, Do inside the tank increases during aeration, and even if aeration is stopped, the inside of the tank remains anaerobic. It took time to reach this state, and the set aeration stop time was too short for anaerobic time, resulting in insufficient denitrification reaction time and insufficient nitrogen removal.

第2図において、P HセンサーによりP H5,8で
ばっ気装置を停止、P H7,Oでばっ気装置を稼動さ
せると第5図のようなりOパターンとなり、硝化時間、
脱窒時間を第1図と同様にとることができ窒素除去が可
能となった。
In Fig. 2, when the aeration device is stopped at pH 5.8 using the PH sensor and started at pH 7.0, the O pattern as shown in Fig. 5 is obtained, and the nitrification time is
The denitrification time could be set in the same manner as shown in Figure 1, making it possible to remove nitrogen.

(発明の効果) 本発明は上記構成よりなるのテ下記ノ効果を奏するもの
である。
(Effects of the Invention) The present invention achieves the following effects with the above configuration.

1)低負荷時においても、槽内に安定した硝化、脱窒時
間を設けることができ、窒素除去が可能となった。
1) Stable nitrification and denitrification time can be provided in the tank even under low load, making it possible to remove nitrogen.

2)PHセンサーを用いることにより、従来のDoセン
サーのような膜劣化がなくなり長期間の使用に耐えれる
2) By using a PH sensor, there is no membrane deterioration like in conventional Do sensors, and it can withstand long-term use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、設計負荷のばっ気槽内DO及びPH変化を表
わす図、第2図は低負荷におけるばっ気槽内DO及びP
H変化を表わす図、第3図は硝化、脱窒速度のPHによ
る影響を表わす図、第4図はばっ気槽に取付けたときの
フローシートを表わす図、第5図は低負荷においてP 
Hセンサーによりばっ気装置を制御したときのり。 及びPHの変化を表わす図である。 符号の説明
Figure 1 shows the DO and PH changes in the aeration tank under the design load, and Figure 2 shows the DO and P in the aeration tank under low load.
Figure 3 shows the influence of PH on nitrification and denitrification rates, Figure 4 shows the flow sheet when installed in an aeration tank, and Figure 5 shows P at low load.
Glue when the aeration device is controlled by the H sensor. It is a figure showing the change of and PH. Explanation of symbols

Claims (1)

【特許請求の範囲】[Claims] 1、間欠ばっ気のばっ気/ばっ気停止の動作をくり返し
て行なうばっ気槽の制御方法において、ばっ気槽内ある
いは沈殿槽内のPHをPHセンサーにより感知し、ばっ
気後初期のPH値より0.2〜0.5低下した時点ある
いはPHが6.5以下となった時点でばっ気装置を停止
し、ばっ気停止後初期のPH値より0.2〜0.5上昇
した時点あるいはPHが8.0以上となった時点でばっ
気装置を運転する動作のくり返しを行うことを特徴とす
るPHセンサー制御によるばっ気槽の間欠ばっ気制御方
法。
1. In an aeration tank control method that repeatedly performs intermittent aeration/aeration stop operations, the pH in the aeration tank or sedimentation tank is detected by a PH sensor, and the initial pH value after aeration is detected. Stop the aeration device when the pH value decreases by 0.2 to 0.5 or below 6.5, and when the pH value increases by 0.2 to 0.5 from the initial pH value after stopping the aeration or when the pH A method for intermittent aeration control of an aeration tank by PH sensor control, characterized in that the operation of operating an aeration device is repeated when the value becomes 8.0 or more.
JP6640788A 1988-03-18 1988-03-18 Intermittent aeration control method for aeration tank Expired - Lifetime JPH0773712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6640788A JPH0773712B2 (en) 1988-03-18 1988-03-18 Intermittent aeration control method for aeration tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6640788A JPH0773712B2 (en) 1988-03-18 1988-03-18 Intermittent aeration control method for aeration tank

Publications (2)

Publication Number Publication Date
JPH01242199A true JPH01242199A (en) 1989-09-27
JPH0773712B2 JPH0773712B2 (en) 1995-08-09

Family

ID=13314912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6640788A Expired - Lifetime JPH0773712B2 (en) 1988-03-18 1988-03-18 Intermittent aeration control method for aeration tank

Country Status (1)

Country Link
JP (1) JPH0773712B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811289A (en) * 1996-02-06 1998-09-22 Lewandowski; Raymond Process and apparatus for effecting a biological aerobic pretreatment of dairy industry effluent
AT407151B (en) * 1997-04-14 2001-01-25 Ingerle Kurt Dipl Ing Dr Techn METHOD FOR THE CLEANING OF AMMONIUM-CONTAINING WASTE WATER
US9855550B2 (en) 2016-01-21 2018-01-02 Cataler Corporation Exhaust gas-purifying catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811289A (en) * 1996-02-06 1998-09-22 Lewandowski; Raymond Process and apparatus for effecting a biological aerobic pretreatment of dairy industry effluent
AT407151B (en) * 1997-04-14 2001-01-25 Ingerle Kurt Dipl Ing Dr Techn METHOD FOR THE CLEANING OF AMMONIUM-CONTAINING WASTE WATER
US9855550B2 (en) 2016-01-21 2018-01-02 Cataler Corporation Exhaust gas-purifying catalyst

Also Published As

Publication number Publication date
JPH0773712B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US4818408A (en) Intermittent aeration type biological treatment process and system therefor
EP0534650A1 (en) Corrosion control for wet oxidation systems
JP6591093B1 (en) Ozone water generation apparatus, water treatment apparatus, ozone water generation method, and cleaning method
JPH01242199A (en) Controlling method for intermittent aeration in aeration tank
JPS6339698A (en) Method for controlling biological nitrification process
CN212476266U (en) Anaerobic ammonia oxidation sewage autotrophic denitrification device based on pulse aeration
JP3729365B2 (en) Method and apparatus for treating manganese-containing water
EP0070592B1 (en) Process for the biological purification of waste water
JPH11267687A (en) Biologically nitrogen-removing device
JPH09122681A (en) Water quality controlling apparatus
JP2003112194A (en) Method for controlling nitrogen removing process
JPH09290298A (en) Method of adjusting feed methanol quantity and aerated quantity in nitrifying/denitrifying device
JPS63291696A (en) Operation control method of oxidation ditch
JPH0362480B2 (en)
JPS58124596A (en) Apparatus for controlling active sludge process
JPS643554B2 (en)
JPH05177196A (en) Active carbon feeding device in high grade water purification system
JP4037491B2 (en) Nitrogen removal method and apparatus
JPH11169867A (en) Simple type water purification device and water purification method using the same
JPH0475079B2 (en)
JPS62227499A (en) Batchwise treatment of activated sludge
JPS62262797A (en) Controlling method for biological nitrification process
JPH08267089A (en) Method for controlling supplied waste water amount in denitrification reaction
JP3637819B2 (en) Waste water nitrification method
JP3685975B2 (en) Wastewater treatment method and apparatus