JP4037491B2 - Nitrogen removal method and apparatus - Google Patents

Nitrogen removal method and apparatus Download PDF

Info

Publication number
JP4037491B2
JP4037491B2 JP26411697A JP26411697A JP4037491B2 JP 4037491 B2 JP4037491 B2 JP 4037491B2 JP 26411697 A JP26411697 A JP 26411697A JP 26411697 A JP26411697 A JP 26411697A JP 4037491 B2 JP4037491 B2 JP 4037491B2
Authority
JP
Japan
Prior art keywords
nitrogen
value
oxidation
reduction potential
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26411697A
Other languages
Japanese (ja)
Other versions
JPH11104691A (en
Inventor
悦朗 有川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP26411697A priority Critical patent/JP4037491B2/en
Publication of JPH11104691A publication Critical patent/JPH11104691A/en
Application granted granted Critical
Publication of JP4037491B2 publication Critical patent/JP4037491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属材料工場から排出される金属表面処理に使用した後の廃液や生活排水のように、硝酸性窒素或いは亜硝酸性窒素を含有する排水から、窒素を除去し得るようにした窒素除去方法及び装置に関するものである。
【0002】
【従来の技術】
例えば硝酸性窒素は酸化物質であるため、排液中の硝酸性窒素濃度が上昇すると酸化還元電位値(以下ORP値という)が上昇する。
【0003】
又、脱窒反応により硝酸性窒素が還元され窒素ガスとして除去されると硝酸性窒素濃度が下がり、硝酸性窒素濃度が下がるとORP値は下降する。換言すれば、硝酸性窒素を含む排水は硝酸性窒素の濃度に応じてORP値が変化する。
【0004】
そこで、この原理を利用して排水中の硝酸性窒素濃度をORP値として検知し、検知したORP値を脱窒に必要なメタノール等の有機物源の添加量の制御に使用するようにした、生物学的脱窒処理方法が種々提案されている。
【0005】
而して、斯かる生物学的脱窒処理方法としては、例えば
▲1▼良好な脱窒が行えるORP値を設定して排水のORP値が設定値になるよう、排水へのメタノール供給量を制御する一値制御方法
▲2▼良好な脱窒が行えるORP値に幅を持たせ、排水のORP値が上限値と下限値の間に入るよう、排水へのメタノール供給量を制御する二値制御方法
等がある。
【0006】
上述の従来方法では、▲1▼、▲2▼の何れにおいても、排水の温度、pH、含有物質の種類及び量、溶存酸素の量等が変化しない、性状が略一定の系内では、ORP値と硝酸性窒素濃度の関係に再現性があり、このため脱窒が良好に行われる際のORP値や脱窒が終了した時点(脱窒の終点)のORP値は略一定値となり、ORP値による一値制御や二値制御を良好に行うことができる。
【0007】
【発明が解決しようとする課題】
しかしながら、排水の硝酸性窒素濃度が変化しない場合でも排水の温度、pH、含有物質の種類及び量、溶存酸素量等に変化が生じて排水の性状が変化した場合には、脱窒が良好に行われる際のORP値や脱窒の終点におけるORP値は当初の値から変動(ベース変動)するため、ORP値の設定値を排水の性状の変化に合せて変更しないと、良好な一値制御、二値制御を行うことができない。
【0008】
ただし、二値制御の場合は、ORP値の設定値に幅を持たせているため、一値制御に比べてある程度は排水の性状変化に伴うORP値の変動に対処することができるが、性状変化が大きい場合には対処しきれない。
【0009】
又、一般的には硝酸性窒素濃度が変化した場合にORP値が硝酸性窒素濃度に対応した安定した値になるまでには数10分の時間遅れが生じるため、一値制御の場合には硝酸性窒素濃度が基準値よりも低いにも拘らず、又二値制御の場合には硝酸性窒素濃度が下限値よりも低いにも拘らず、排水中にメタノールが供給され、その結果、メタノールの供給が過剰となって良好な脱窒処理を行えない虞れがある。
【0010】
ところで、従来の二値制御を行う場合の時間とORP値の関係等は図4〜6のグラフに示されている。
【0011】
図4は従来の二値制御が良好に行われている際の時間とORP値の関係を示すグラフであり、線イにおいては、ORP値−190mVでメタノールの供給を開始し、−210mVでメタノールの供給を停止する場合を示す。
【0012】
又図5は、図4の曲線の一部を拡大して示すと共に時間と硝酸性窒素濃度の関係をも示すグラフであり、時間Tの間は、硝酸性窒素が検出されないにも拘らず、メタノールが供給されており、その分メタノールが供給過剰になることを示している。
【0013】
更に、図6は従来の二値制御で異常が生じた場合の時間とORP値の関係を示すグラフであり、ORP値−160mVでメタノールの供給を開始しORP値−180mVでメタノールの供給を停止する場合を示している。しかし、メタノールの供給を開始する際のORP値は図6の右上がりの直線ロに示すごとくベース変動を起こしており、正常な制御が行われていないことを示している。
【0014】
本発明は上述の実情に鑑み、排水中の硝酸性窒素濃度が低下して硝酸性窒素が存在しなくなった場合には、それを迅速に検出し、過剰なメタノールを供給することなく良好な窒素の除去を行い得るようにすることを目的としてなしたものである。
【0015】
【本発明の原理】
排水中に硝酸性窒素が存在する状態から硝酸性窒素が存在しない状態に移行した場合に、ORP検出器に指示されるORP値の変化は遅く、従ってORP検出器に指示されるORP値が硝酸性窒素の存在しない本来のORP値になるまでに数十分(図5の時間Tの部分参照)を要する。
【0016】
しかるにORP値の単位時間当りの変化率(以下ORP値の時間変化率という)は硝酸性窒素濃度が変化すれば直ちに変化する。
【0017】
そこで、本発明ではORP値そのものではなく、ORP値の時間変化率を求め、このORP値の時間変化率が一定値以上になった場合は硝酸性窒素が存在しているものと判断してメタノールを供給し、ORP値の時間変化率が一定値以下になった場合には、硝酸性窒素が存在しないものと判断してメタノールの供給を停止するようにした。
【0018】
而して、斯かる制御を行うことにより、硝酸性窒素が存在しない状態を迅速に検出することができ、無駄なメタノールの供給を防止して窒素の除去を良好に行い得るようになった。
【0019】
【課題を解決するための手段】
本発明は、硝酸性窒素或いは亜硝酸性窒素のうち少くとも何れか一方を含む排水を生物学的に還元処理して脱窒する際に、排水の硝酸性窒素濃度或いは亜硝酸性窒素濃度の変動に応じて有機物の添加量を制御する窒素除去方法であって、
排水中の酸化還元電位値の如何にかかわらず、
排水中の酸化還元電位値の時間変化率が予め定めた所定の上限値以上になったら前記排水中に有機物を供給し、
予め定めたゼロより小さい所定の下限値以下になったら前記排水への有機物の供給を停止するものである。
【0020】
又、本発明は、硝酸性窒素或いは亜硝酸性窒素のうち少くとも何れか一方を含む排水を生物学的に還元処理して脱窒する際に、排水の硝酸性窒素濃度或いは亜硝酸性窒素濃度の変動に応じて有機物の添加量を制御する窒素除去装置であって、
脱窒菌の働きにより硝酸性窒素或いは亜硝酸性窒素を窒素ガスに還元する流動脱窒槽内の排水の酸化還元電位値を検出する酸化還元電位検出器と、該酸化還元電位検出器で検出した今回の酸化還元電位値と所定時間前に検出した酸化還元電位値とから酸化還元電位値の時間変化率を求め、
求めた時間変化率が予め定めた時間変化率の上限値以上の場合は排水中の酸化還元電位値の如何にかかわらず前記流動脱窒槽へ有機物を供給するポンプを駆動する指令信号を出力し、
求めた時間変化率が予め定めた時間変化率のゼロより小さい下限値以下の場合は排水中の酸化還元電位値の如何にかかわらず前記ポンプを停止させる指令信号を出力する演算制御装置を設けたものである。
【0021】
従って、本発明においては、排水の性状の変化により脱窒が良好に行われる際のORP値や脱窒の終点におけるORP値が変化してベース変動が生じた場合にもベース変動の影響を受けることなく硝酸性窒素濃度或いは亜硝酸性窒素濃度を瞬時に正確に検出することが可能となる。
【0022】
このため、流動脱窒槽に対しては適正な量の有機物の供給が可能となって有機物不足による脱窒不良がなくなると共に過剰な有機物の供給をなくすことができ、有機物の費用を節約することができる。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照しつつ説明する。
【0024】
図1は本発明の実施の形態の一例を示す。
【0025】
図中、1は流動脱窒槽である。而して、流動脱窒槽1は、槽1内の原水W1、処理水W2、メタノールMの混合した排水を溶存する酸素のない嫌気状態に保持すると共に、表面に生物膜として脱窒菌を付着させた固体粒状の担体を槽1内で流動化させ、脱窒菌の働きにより排水中の硝酸性窒素NO3 -を窒素ガスN2に還元し除去するためのものである。
【0026】
2は流動脱窒槽1の下流に設置された好気性濾床である。而して好気性濾床2は、流動脱窒槽1からの排水を溶存する酸素の存在する状態を保持すると共に表面に生物膜としてBOD分解菌及び硝化菌を付着させた固体粒状の担体を槽2内でゆっくりと下方から上方へ移動させつつ、BOD分解菌により排水中の有機物やBODを分解、除去すると共に、硝化菌によりアンモニアを硝酸に変えるアンモニア性窒素の硝化を行い、処理水W2を得るものである(硝化工程)。
【0027】
3は硝酸性窒素を含む工程排水や生活排水を貯留する調整槽、4は調整槽3内の排水を原水W1として管路5を介し流動脱窒槽1へ送給するためのポンプである。
【0028】
6は有機物としてメタノールを貯留するメタノール貯槽、7はメタノール貯槽6内のメタノールMを管路8を介して管路5中へ供給するポンプである。
【0029】
9は好気性濾床2で処理されて流出した処理水W2の一部を管路10を介して管路5の管路8接続部よりも下流へ循環させるためのポンプであり、残りの処理水W2は、ポンプ9の上流側において管路10から分岐した管路10aを通り、図示してない消毒槽へ送給し得るようになっている。
【0030】
11は流動脱窒槽1内にある排水のORP値(酸化還元電位値ORP)を一定時間間隔で連続的に検出するためのORP検出器、12はORP検出器11で検出したORP値からORP値の時間変化率ΔORPを求め、時間変化率ΔORPが予め定めた上限値ΔORPMAXになったらポンプ7に起動指令を与え、時間変化率ΔORPが予め定めた下限値ΔORPMINになったらポンプ7に停止指令を与える演算制御装置である。ORP検出器11の電極としては、飽和KCl塩化銀電極、飽和KCl甘こう電極、3.3MKCl塩化電極、3MKCl電極等が使用されるが、飽和KCl塩化銀電極の場合は、基準水素電極を用いたときよりも約200mV低い電位値が示されるようになっている。なお、以後、本明細書中で記載したORP値は、ORP検出器の電極として飽和KCl塩化銀電極を基準とした値である。
【0031】
次に、本発明の実施の形態の作用について説明する。
【0032】
調整槽3内の排水はポンプ4により原水W1として管路5から流動脱窒槽1へ供給される。
【0033】
又、同時に、好気性濾床2からの処理水W2の一部はポンプ9により管路10,5を通り流動脱窒槽1へ供給される。
【0034】
更にORP検出器11で検出されたORP値をもとに演算制御装置12で求めたORP値の時間変化率ΔORPが予め定めた上限値ΔORPMAX以上の場合には演算制御装置12から与えられる指令によりポンプ7が駆動されるため、メタノール貯槽6からのメタノールMはポンプ7により管路8,5を介して流動脱窒槽1内へ供給されている。
【0035】
流動脱窒槽1においては、脱窒菌を付着された担体が流動化しており、脱窒菌は無酸素状態のもとで原水W1中のBOD或いはメタノールMと好気性濾床2からの処理水W2に含まれている硝酸性窒素(NO3 -)とにより硝酸呼吸を行う。
【0036】
その結果、流動脱窒槽1では硝酸性窒素が還元されて窒素ガス(N2ガス)が発生し、発生した窒素ガスは大気中へ放出されて排水中から除去され、脱窒が完了する。
【0037】
上述の操作でメタノールMを添加するのは、次のような理由による。すなわち、脱窒には硝酸性窒素或いは亜硝酸性窒素の2〜6倍のBOD(有機物)が必要で、有機物が不足している場合には、有機物を添加する必要があり、この有機物としてメタノールを使用するのである。
【0038】
なお、脱窒の際の反応は硝酸性窒素の場合は[化1]に示すようになり、亜硝酸性窒素の場合は[化2]に示すようになる。
【0039】
【化1】
CH3OH+H2O→CO2+3(H2
2NO3 -+5(H2)→N2+2OH-+4H2
【0040】
【化2】
2NO2 -+3(H2)→N2+2OH-+2H2
【0041】
流動脱窒槽1で脱窒が行われた排水はオーバーフローして好気性濾床2に供給され、汚水中のBODやBOD以外の有機物はBOD分解菌により分解されてアンモニア性窒素となり、アンモニア性窒素は硝化菌により硝化されて硝酸性窒素となる(硝化工程)。
【0042】
而して、このようにして好気性濾床2で排水を処理して生成された処理水W2は、ポンプ9により圧送され、一部は管路10から管路5を介して流動脱窒槽1へ循環し、前述したごとく処理水W2に含まれていた硝酸性窒素NO3 -は脱窒菌が硝酸呼吸を行うことにより、還元されて窒素ガスが発生し、発生した窒素ガスは大気中へ放出されて排水中から除去され、脱窒が完了する。
【0043】
一方、流動脱窒槽1内の排水のORP値はORP検出器11により一定の時間間隔(例えば6秒間隔)で検出されて演算制御装置12へ与えられ、演算制御装置12では今回与えられたORP値ORP1と所定時間TX前(例えば10分前)に与えられたORP値ORP2とからORP値の時間変化率ΔORPが[数1]により一定の時間間隔(例えば6秒間隔)で演算される。
【0044】
【数1】
ΔORP=(ORP1−ORP2)/TX
【0045】
又、演算制御装置12で求められたORP値の時間変化率ΔORPは予め設定されたORP値の時間変化率の上限値ΔORPMAX及び下限値ΔORPMINと比較される。
【0046】
而して、ORP値の時間変化率ΔORPが上限値ΔORPMAX以上の場合(ΔORP≧ΔORPMAX)には演算制御装置12からポンプ7へ起動指令を与え、ポンプ7によりメタノールMを管路8,5を介して流動脱窒槽1へ供給し、流動脱窒槽1内の排水中に添加する。上限値ΔORPMAXとしては例えば10mV/10分とする。
【0047】
脱窒が進行して流動脱窒槽1内の硝酸性窒素が減少すると、ORP検出器11で検出されるORP値は下降し、又硝酸性窒素がある状態まで減少すると、硝酸性窒素の減少速度が低下するため、ORP値の時間変化率ΔORPも低下する。
【0048】
而して、ORP値の時間変化率ΔORPが下限値ΔORPMIN以下に下降(ΔORP≦ΔORPMIN)したら演算制御装置12からポンプ7へ停止指令を与え、ポンプ7を停止してメタノールMの供給を中止する。下限値ΔORPMINとしては例えば−10mV/10分とする。
【0049】
ポンプ7が停止してメタノールMの流動脱窒槽1への供給が停止され、その結果、流動脱窒槽1の硝酸性窒素が再び増加し始めると、ORP検出器11により検出されるORP値が上昇し、又硝酸性窒素の増加速度が上昇するため、ORP値の時間変化率ΔORPも増加する。
【0050】
而して、ORP値の時間変化率ΔORPが上限値ΔORPMAXまで上昇すると演算制御装置12からポンプ7へ再び起動指令が与えられてポンプ7が起動され、メタノールMの流動脱窒槽1への供給が再開される。
【0051】
ORP値の時間変化率ΔORPの上限値ΔORPMAXと下限値ΔORPMINは以下のようにして決定する。すなわち脱窒の状況により急激に変化するORP値の時間変化率ΔORPは、排水の温度、pH、含有物質の種類及び量、溶存酸素の量等の変化、換言すれば排水の性状の変化に伴うORP値の時間変化率ΔORPよりも十分に大きいため、設定値をXとYの間にすることにより、硝酸性窒素の検出を確実に行うことができる。そこで、ORP値の時間変化率ΔORPの上限値と下限値はXとYの間にとる。
【0052】
又、装置の運転開始時(スタート時)には、スタート開始時から所定時間前(例えば10分前)までのORP値のデータはないから、ポンプ7の起動、停止の動作を決定することができないため、経験等に基づいてORP値の初期設定を行う。
【0053】
上述のごとくORP値の時間変化率ΔORPにより制御を行った場合の時間とORP値の関係は図2のグラフに示され、図2のグラフの一部を拡大すると共に時間と硝酸性窒素濃度の関係は図3のグラフに示されている。図2、3のグラフにおいては、ORP値約−390mVでメタノールの供給が開始され、ORP値約−180mVでメタノールの供給が停止されている。
【0054】
而して、図2のグラフにおいては、ORP値の時間変化率によりメタノールの供給量を制御する場合には、ORP値自体によりメタノールの供給量を制御する場合(図4参照)よりも、ORP値の時間変化率の絶対値が大きい(ピークが鋭い)ことが分る。
【0055】
これは、ORP値の時間変化率によりメタノールの供給量を制御する場合には、ORP値によりメタノールの供給量を制御する場合よりも硝酸性窒素の有無(0.1mg/L程度)を短時間で確実に検出でき、効率の良いメタノールの供給が行われていることを意味する。
【0056】
又、図3のグラフは、本発明の実施の形態例においては、硝酸性窒素が低減した場合には、時間遅れが生じることなくポンプ7が停止し、従ってメタノールMが過剰に供給されることがないことを示している。
【0057】
本発明の実施の形態においては、ORP値の時間変化率ΔORPを検出してメタノールMの供給、停止を行うようにしているため、排水の性状の変化により、脱窒が良好に行われている際のORP値や脱窒の終点におけるORP値が変化してベース変動が生じた場合にも、ベース変動の影響を受けることなく、流動脱窒槽1内の微量な硝酸性窒素を瞬時に正確に検出することが可能となる。
【0058】
このため、流動脱窒槽1に対しては適正な量のメタノールの供給が可能となってメタノール不足による脱窒不良がなくなると共に過剰なメタノールの供給をなくすことができ、メタノールの費用を節約することができる。
【0059】
なお、本発明の実施の形態例においては、有機物としてメタノールを用いる場合について説明したが、有機炭素源ならメタノールに限らず種々の有機物(例えばエタノール、酢酸等)の使用が可能なこと、ORP検出器としては該検出器の電極に硫酸還元菌のような微生物を付着させた、いわゆる微生物センサをもちいることも可能なこと、硝酸性窒素だけではなく、亜硝酸性窒素に対しても適用可能なこと、その他、本発明の要旨を逸脱しない範囲内で種々変更を加え得ること、等は勿論である。
【0060】
【発明の効果】
本発明の窒素除去方法及び装置によれば、適正な有機物の供給が可能となるため、有機物の不足による脱窒不良がなくなると共に過剰な有機物の供給をなくすことができ、有機物の費用を節約することができるという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の窒素除去方法及び装置の実施の形態の一例を示すブロック図である。
【図2】本発明の実施の形態における時間とORP値との関係を表わすグラフである。
【図3】図2のグラフの一部を拡大すると共に時間と硝酸性窒素濃度との関係をも示すグラフである。
【図4】従来の窒素除去方法において制御が良好に行われている際の時間とORP値との関係を示すグラフである。
【図5】図4のグラフの一部を拡大すると共に時間と硝酸性窒素濃度との関係をも示すグラフである。
【図6】従来の窒素除去方法において制御に異常を来たした場合の時間とORP値との関係を示すグラフである。
【符号の説明】
1 流動脱窒槽
7 ポンプ
11 ORP検出器(酸化還元電位検出器)
12 演算制御装置
M メタノール(有機物)
ORP 酸化還元電位値
ΔORP 時間変化率
ΔORPMAX 上限値
ΔORPMIN 下限値
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to nitrogen that can remove nitrogen from wastewater containing nitrate nitrogen or nitrite nitrogen, such as waste liquid and domestic wastewater after being used for metal surface treatment discharged from a metal material factory. The present invention relates to a removal method and apparatus.
[0002]
[Prior art]
For example, since nitrate nitrogen is an oxidizing substance, the oxidation-reduction potential value (hereinafter referred to as ORP value) increases as the concentration of nitrate nitrogen in the drainage increases.
[0003]
Further, when nitrate nitrogen is reduced and removed as nitrogen gas by the denitrification reaction, the nitrate nitrogen concentration decreases, and when the nitrate nitrogen concentration decreases, the ORP value decreases. In other words, the wastewater containing nitrate nitrogen changes its ORP value according to the concentration of nitrate nitrogen.
[0004]
Therefore, using this principle, the nitrate nitrogen concentration in the wastewater is detected as an ORP value, and the detected ORP value is used to control the amount of organic matter sources such as methanol required for denitrification. Various chemical denitrification methods have been proposed.
[0005]
Thus, as such a biological denitrification treatment method, for example, (1) the amount of methanol supplied to the wastewater is set so that the ORP value that allows good denitrification is set and the ORP value of the wastewater becomes the set value. One-value control method to control (2) Binary value to control the amount of methanol supplied to the waste water so that the ORP value that allows good denitrification is wide and the ORP value of the waste water is between the upper and lower limits There are control methods.
[0006]
In the above-mentioned conventional method, in any one of (1) and (2), the temperature, pH, type and amount of contained substances, the amount of dissolved oxygen, etc. do not change, and in the system where the properties are substantially constant, ORP The relationship between the value and the nitrate nitrogen concentration is reproducible. For this reason, the ORP value when denitrification is performed well and the ORP value when denitrification ends (end point of denitrification) are substantially constant, and ORP One-value control and binary control by value can be performed satisfactorily.
[0007]
[Problems to be solved by the invention]
However, even if the concentration of nitrate nitrogen in the wastewater does not change, if the wastewater temperature, pH, type and amount of contained substances, dissolved oxygen amount, etc. change and the properties of the wastewater change, denitrification is good. Since the ORP value at the time of execution and the ORP value at the end point of denitrification fluctuate from the original value (base fluctuation), good one-value control is necessary unless the set value of the ORP value is changed in accordance with the change in drainage properties Binary control cannot be performed.
[0008]
However, in the case of binary control, since the set value of the ORP value has a range, it is possible to cope with fluctuations in the ORP value due to the change in the property of drainage to some extent as compared with the single value control. If the change is large, we can't cope with it.
[0009]
In general, when the nitrate nitrogen concentration changes, a time delay of several tens of minutes occurs until the ORP value becomes a stable value corresponding to the nitrate nitrogen concentration. Although the nitrate nitrogen concentration is lower than the reference value, and in the case of binary control, methanol is supplied into the waste water even though the nitrate nitrogen concentration is lower than the lower limit value. There is a possibility that a good denitrification treatment cannot be performed due to an excessive supply.
[0010]
By the way, the relationship between time and ORP value in the case of performing conventional binary control is shown in the graphs of FIGS.
[0011]
FIG. 4 is a graph showing the relationship between the time and the ORP value when the conventional binary control is satisfactorily performed. In line (i), the supply of methanol is started at the ORP value of −190 mV, and methanol at −210 mV. The case where the supply of is stopped is shown.
[0012]
FIG. 5 is a graph showing an enlarged part of the curve of FIG. 4 and also showing the relationship between time and nitrate nitrogen concentration. During time T, although nitrate nitrogen is not detected, This shows that methanol is being supplied, and that methanol is excessively supplied.
[0013]
Further, FIG. 6 is a graph showing the relationship between the time and the ORP value when an abnormality occurs in the conventional binary control. The supply of methanol is started when the ORP value is −160 mV, and the supply of methanol is stopped when the ORP value is −180 mV. Shows when to do. However, the ORP value at the start of the supply of methanol causes base fluctuations as indicated by the straight line B rising to the right in FIG. 6, indicating that normal control is not performed.
[0014]
In view of the above situation, the present invention detects the nitrogen nitrate concentration in the waste water and the nitrogen nitrogen is no longer present. It was made for the purpose of making it possible to perform removal.
[0015]
[Principle of the present invention]
When shifting from a state in which nitrate nitrogen is present in the waste water to a state in which nitrate nitrogen is not present, the change in the ORP value indicated to the ORP detector is slow, and therefore the ORP value indicated to the ORP detector is determined to be nitrate. It takes several tens of minutes (refer to the portion of time T in FIG. 5) to reach the original ORP value in which no nitrogen exists.
[0016]
However, the rate of change of the ORP value per unit time (hereinafter referred to as the time rate of change of the ORP value) changes immediately when the nitrate nitrogen concentration changes.
[0017]
Therefore, in the present invention, not the ORP value itself, but the time change rate of the ORP value is obtained, and when the time change rate of the ORP value becomes a certain value or more, it is determined that nitrate nitrogen exists. When the time change rate of the ORP value became a certain value or less, it was determined that nitrate nitrogen was not present, and the supply of methanol was stopped.
[0018]
Thus, by performing such control, it is possible to quickly detect a state in which nitrate nitrogen does not exist, and it is possible to prevent wasteful supply of methanol and perform nitrogen removal satisfactorily.
[0019]
[Means for Solving the Problems]
In the present invention, when wastewater containing at least one of nitrate nitrogen and nitrite nitrogen is biologically reduced and denitrified, the concentration of nitrate nitrogen or nitrite nitrogen concentration in the wastewater is reduced. A nitrogen removal method for controlling the amount of organic matter added according to fluctuations,
Regardless of the oxidation-reduction potential value in the wastewater,
When the time change rate of the oxidation-reduction potential value in the wastewater is equal to or higher than a predetermined upper limit value, supply organic matter into the wastewater,
The supply of the organic matter to the waste water is stopped when the value becomes equal to or lower than a predetermined lower limit value smaller than a predetermined zero.
[0020]
Further, the present invention provides a concentration of nitrate nitrogen or nitrite nitrogen in wastewater when biologically reducing and denitrifying wastewater containing at least one of nitrate nitrogen and nitrite nitrogen. A nitrogen removal device that controls the amount of organic matter added according to concentration fluctuations,
An oxidation-reduction potential detector for detecting the oxidation-reduction potential value of the wastewater in the flow denitrification tank that reduces nitrate nitrogen or nitrite nitrogen to nitrogen gas by the action of denitrifying bacteria, and this time detected by the oxidation-reduction potential detector From the oxidation-reduction potential value of and the oxidation-reduction potential value detected a predetermined time ago, the time change rate of the oxidation-reduction potential value is obtained,
When the obtained time change rate is equal to or higher than a predetermined upper limit value of the time change rate, a command signal for driving a pump for supplying organic matter to the fluid denitrification tank is output regardless of the oxidation-reduction potential value in the waste water ,
An arithmetic control device is provided that outputs a command signal for stopping the pump regardless of the oxidation-reduction potential value in the waste water when the obtained time change rate is equal to or less than a lower limit value smaller than zero of the predetermined time change rate. Is.
[0021]
Therefore, in the present invention, the base fluctuation is also affected when the ORP value at the time of denitrification being favorably performed due to the change in the properties of the waste water or the ORP value at the end point of the denitrification changes. Therefore, it is possible to detect the nitrate nitrogen concentration or the nitrite nitrogen concentration instantly and accurately.
[0022]
For this reason, it is possible to supply an appropriate amount of organic matter to the fluidized denitrification tank, eliminating denitrification failure due to lack of organic matter, eliminating excessive organic matter supply, and saving the cost of organic matter. it can.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0024]
FIG. 1 shows an example of an embodiment of the present invention.
[0025]
In the figure, 1 is a fluid denitrification tank. Thus, the fluid denitrification tank 1 keeps the waste water mixed with the raw water W1, the treated water W2, and the methanol M in the tank 1 in an anaerobic state without dissolved oxygen, and attaches denitrifying bacteria as a biofilm to the surface. The solid particulate carrier is fluidized in the tank 1, and nitrate nitrogen NO 3 in the waste water is reduced to nitrogen gas N 2 and removed by the action of denitrifying bacteria.
[0026]
Reference numeral 2 denotes an aerobic filter bed installed downstream of the fluid denitrification tank 1. Thus, the aerobic filter bed 2 holds a solid particulate carrier in which the wastewater from the fluid denitrification tank 1 is dissolved and in which oxygen is dissolved and a BOD-degrading bacterium and nitrifying bacteria are attached to the surface as a biofilm. 2 slowly move upward from below, decompose and remove organic matter and BOD in the wastewater by BOD-degrading bacteria, nitrify ammonia nitrogen to convert ammonia into nitric acid by nitrifying bacteria, and treat treated water W2 To obtain (nitrification step).
[0027]
3 is a control tank for storing process waste water and domestic waste water containing nitrate nitrogen, and 4 is a pump for feeding waste water in the control tank 3 as raw water W1 to the fluid denitrification tank 1 via the pipeline 5.
[0028]
A methanol storage tank 6 stores methanol as an organic substance, and a pump 7 supplies the methanol M in the methanol storage tank 6 into the pipe line 5 through the pipe line 8.
[0029]
9 is a pump for circulating a part of the treated water W2 that has been treated and flowed out in the aerobic filter bed 2 downstream of the pipe 8 connection portion of the pipe 5 through the pipe 10, and the remaining treatment. The water W2 passes through a pipe line 10a branched from the pipe line 10 on the upstream side of the pump 9, and can be supplied to a disinfection tank (not shown).
[0030]
11 is an ORP detector for continuously detecting the ORP value (oxidation-reduction potential value ORP) of the waste water in the flow denitrification tank 1, and 12 is the ORP value from the ORP value detected by the ORP detector 11. The time change rate ΔORP is obtained, and when the time change rate ΔORP reaches a predetermined upper limit value ΔORPMAX, a start command is given to the pump 7, and when the time change rate ΔORP reaches a predetermined lower limit value ΔORPMIN, a stop command is given to the pump 7. This is an arithmetic control device. As an electrode of the ORP detector 11, a saturated KCl silver chloride electrode, a saturated KCl sugar cane electrode, a 3.3MKCl chloride electrode, a 3MKCl electrode, etc. are used. In the case of a saturated KCl silver chloride electrode, a reference hydrogen electrode is used. The potential value is about 200 mV lower than that when it was present. Hereinafter, the ORP value described in the present specification is a value based on a saturated KCl silver chloride electrode as an electrode of the ORP detector.
[0031]
Next, the operation of the embodiment of the present invention will be described.
[0032]
The waste water in the adjustment tank 3 is supplied from the pipe 5 to the fluid denitrification tank 1 by the pump 4 as raw water W1.
[0033]
At the same time, a part of the treated water W2 from the aerobic filter bed 2 is supplied to the fluid denitrification tank 1 through the pipes 10 and 5 by the pump 9.
[0034]
Further, when the time change rate ΔORP of the ORP value obtained by the arithmetic control device 12 based on the ORP value detected by the ORP detector 11 is equal to or higher than a predetermined upper limit value ΔORPMAX, a command given from the arithmetic control device 12 is used. Since the pump 7 is driven, the methanol M from the methanol storage tank 6 is supplied into the fluid denitrification tank 1 via the pipe lines 8 and 5 by the pump 7.
[0035]
In the fluid denitrification tank 1, the carrier to which the denitrifying bacteria are attached is fluidized, and the denitrifying bacteria are converted into BOD or methanol M in the raw water W1 and the treated water W2 from the aerobic filter bed 2 in an oxygen-free state. including nitrate nitrogen (NO 3 -) and performs nitrate respiration by.
[0036]
As a result, in the fluid denitrification tank 1, nitrate nitrogen is reduced to generate nitrogen gas (N 2 gas), and the generated nitrogen gas is released into the atmosphere and removed from the waste water, completing the denitrification.
[0037]
The reason why methanol M is added in the above operation is as follows. That is, denitrification requires 2 to 6 times the BOD (organic matter) of nitrate nitrogen or nitrite nitrogen, and if the organic matter is insufficient, it is necessary to add the organic matter. Is used.
[0038]
The reaction at the time of denitrification is as shown in [Chemical Formula 1] in the case of nitrate nitrogen and as shown in [Chemical Formula 2] in the case of nitrite nitrogen.
[0039]
[Chemical 1]
CH 3 OH + H 2 O → CO 2 +3 (H 2 )
2NO 3 +5 (H 2 ) → N 2 + 2OH + 4H 2 O
[0040]
[Chemical 2]
2NO 2 +3 (H 2 ) → N 2 + 2OH + 2H 2 O
[0041]
Wastewater denitrified in the fluid denitrification tank 1 overflows and is supplied to the aerobic filter bed 2, and BOD in wastewater and organic substances other than BOD are decomposed by BOD-degrading bacteria to become ammoniacal nitrogen, and ammonia nitrogen Is nitrated by nitrifying bacteria to become nitrate nitrogen (nitrification process).
[0042]
Thus, the treated water W2 generated by treating the waste water in the aerobic filter bed 2 in this way is pumped by the pump 9, and a part of the fluid denitrification tank 1 from the pipe line 10 through the pipe line 5 is fed. circulated to, nitrate nitrogen NO 3 contained in the treated water W2 as described above - by the denitrifying bacteria performs nitrate respiration, are reduced nitrogen gas is generated, the nitrogen gas generated is discharged into the atmosphere Is removed from the wastewater, and denitrification is completed.
[0043]
On the other hand, the ORP value of the waste water in the flow denitrification tank 1 is detected by the ORP detector 11 at a constant time interval (for example, every 6 seconds) and given to the arithmetic control device 12, and the arithmetic control device 12 gives the ORP given this time. From the value ORP1 and the ORP value ORP2 given before the predetermined time TX (for example, 10 minutes before), the time change rate ΔORP of the ORP value is calculated at a constant time interval (for example, every 6 seconds) by [Equation 1].
[0044]
[Expression 1]
ΔORP = (ORP1-ORP2) / TX
[0045]
The ORP value temporal change rate ΔORP obtained by the arithmetic and control unit 12 is compared with a preset upper limit value ΔORPMAX and lower limit value ΔORPMIN of the ORP value.
[0046]
Thus, when the time rate of change ΔORP of the ORP value is equal to or greater than the upper limit value ΔORPMAX (ΔORP ≧ ΔORPMAX), a start command is given from the arithmetic control unit 12 to the pump 7, and methanol 7 is supplied to the pipes 8 and 5 by the pump 7. To the fluid denitrification tank 1 and added to the waste water in the fluid denitrification tank 1. The upper limit value ΔORPMAX is, for example, 10 mV / 10 minutes.
[0047]
When denitrification progresses and nitrate nitrogen in the flow denitrification tank 1 decreases, the ORP value detected by the ORP detector 11 decreases, and when nitrate nitrogen is reduced to a certain state, the decrease rate of nitrate nitrogen. Decreases, the ORP value temporal change rate ΔORP also decreases.
[0048]
Thus, when the time change rate ΔORP of the ORP value falls below the lower limit value ΔORPMIN (ΔORP ≦ ΔORPMIN), a stop command is given from the arithmetic and control unit 12 to the pump 7, and the pump 7 is stopped and the supply of methanol M is stopped. . The lower limit value ΔORPMIN is, for example, −10 mV / 10 minutes.
[0049]
When the pump 7 is stopped and the supply of methanol M to the fluid denitrification tank 1 is stopped, and as a result, the nitrate nitrogen in the fluid denitrification tank 1 starts to increase again, the ORP value detected by the ORP detector 11 increases. In addition, since the increase rate of nitrate nitrogen increases, the time change rate ΔORP of the ORP value also increases.
[0050]
Thus, when the time change rate ΔORP of the ORP value rises to the upper limit value ΔORPMAX, the operation control device 12 gives a start command to the pump 7 again to start the pump 7, and the supply of the methanol M to the fluid denitrification tank 1 is started. Resumed.
[0051]
The upper limit value ΔORPMAX and the lower limit value ΔORPMIN of the time change rate ΔORP of the ORP value are determined as follows. That is, the ORP value temporal change rate ΔORP that changes rapidly depending on the denitrification situation is associated with changes in the temperature, pH, type and amount of contained substances, the amount of dissolved oxygen, in other words, changes in the properties of the drainage. Since it is sufficiently larger than the time change rate ΔORP of the ORP value, nitrate nitrogen can be reliably detected by setting the set value between X and Y. Therefore, the upper limit value and the lower limit value of the time change rate ΔORP of the ORP value are between X and Y.
[0052]
At the start of operation of the device (at the start), there is no ORP value data from the start of the operation until a predetermined time (for example, 10 minutes before). Since this is not possible, the ORP value is initially set based on experience and the like.
[0053]
As described above, the relationship between the time and the ORP value when the ORP value is controlled based on the time change rate ΔORP is shown in the graph of FIG. 2, and a part of the graph of FIG. The relationship is shown in the graph of FIG. In the graphs of FIGS. 2 and 3, the supply of methanol is started at an ORP value of about −390 mV, and the supply of methanol is stopped at an ORP value of about −180 mV.
[0054]
Thus, in the graph of FIG. 2, when the supply amount of methanol is controlled by the time rate of change of the ORP value, the ORP is more effective than when the supply amount of methanol is controlled by the ORP value itself (see FIG. 4). It can be seen that the absolute value of the time change rate of the value is large (the peak is sharp).
[0055]
This is because when the amount of methanol supplied is controlled by the rate of change of the ORP value over time, the presence or absence of nitrate nitrogen (about 0.1 mg / L) is shorter than when the amount of methanol supplied is controlled by the ORP value. This means that the methanol can be reliably detected and the methanol is being supplied efficiently.
[0056]
Also, the graph of FIG. 3 shows that in the embodiment of the present invention, when nitrate nitrogen is reduced, the pump 7 is stopped without causing a time delay, and therefore methanol M is excessively supplied. It shows that there is no.
[0057]
In the embodiment of the present invention, since the time change rate ΔORP of the ORP value is detected to supply and stop the methanol M, the denitrification is favorably performed due to the change in the properties of the waste water. Even if the ORP value at the time or the ORP value at the end point of denitrification changes and the base fluctuates, a minute amount of nitrate nitrogen in the fluid denitrification tank 1 is instantly and accurately not affected by the base fluctuation. It becomes possible to detect.
[0058]
For this reason, an appropriate amount of methanol can be supplied to the fluid denitrification tank 1, denitrification failure due to methanol shortage can be eliminated, and excessive methanol supply can be eliminated, thereby saving the cost of methanol. Can do.
[0059]
In the embodiment of the present invention, the case where methanol is used as the organic substance has been described. However, the organic carbon source is not limited to methanol, and various organic substances (for example, ethanol, acetic acid, etc.) can be used, ORP detection. It is possible to use a so-called microbial sensor in which microorganisms such as sulfate-reducing bacteria are attached to the electrode of the detector, and can be applied not only to nitrate nitrogen but also to nitrite nitrogen Of course, various modifications can be made without departing from the scope of the present invention.
[0060]
【The invention's effect】
According to the nitrogen removing method and apparatus of the present invention, since it is possible to supply an appropriate organic matter, it is possible to eliminate the denitrification failure due to the shortage of the organic matter and eliminate the supply of the excessive organic matter, thereby saving the cost of the organic matter. It is possible to achieve an excellent effect of being able to.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of an embodiment of a nitrogen removal method and apparatus according to the present invention.
FIG. 2 is a graph showing the relationship between time and ORP value in the embodiment of the present invention.
FIG. 3 is a graph showing a relationship between time and nitrate nitrogen concentration while enlarging a part of the graph of FIG. 2;
FIG. 4 is a graph showing the relationship between time and ORP value when control is performed well in a conventional nitrogen removal method.
FIG. 5 is a graph showing a relationship between time and nitrate nitrogen concentration while enlarging a part of the graph of FIG. 4;
FIG. 6 is a graph showing a relationship between time and ORP value when abnormality occurs in control in a conventional nitrogen removal method.
[Explanation of symbols]
1 Flow denitrification tank 7 Pump 11 ORP detector (redox potential detector)
12 Arithmetic control device M Methanol (organic)
ORP Redox potential value ΔORP Time change rate ΔORPMAX Upper limit ΔORPMIN Lower limit

Claims (2)

硝酸性窒素或いは亜硝酸性窒素のうち少くとも何れか一方を含む排水を生物学的に還元処理して脱窒する際に、排水の硝酸性窒素濃度或いは亜硝酸性窒素濃度の変動に応じて有機物の添加量を制御する窒素除去方法であって、
排水中の酸化還元電位値の如何にかかわらず、
排水中の酸化還元電位値の時間変化率が予め定めた所定の上限値以上になったら前記排水中に有機物を供給し、
予め定めたゼロより小さい所定の下限値以下になったら前記排水への有機物の供給を停止することを特徴とする窒素除去方法。
When wastewater containing at least one of nitrate nitrogen or nitrite nitrogen is biologically reduced and denitrified, depending on the fluctuation of nitrate nitrogen concentration or nitrite nitrogen concentration in the wastewater A nitrogen removal method for controlling the amount of organic matter added,
Regardless of the oxidation-reduction potential value in the wastewater,
When the rate of time change of the oxidation-reduction potential value in the wastewater is equal to or higher than a predetermined upper limit value, supply organic matter into the wastewater,
A method for removing nitrogen, comprising: stopping supply of organic matter to the waste water when a predetermined lower limit value smaller than a predetermined zero is reached.
硝酸性窒素或いは亜硝酸性窒素のうち少くとも何れか一方を含む排水を生物学的に還元処理して脱窒する際に、排水の硝酸性窒素濃度或いは亜硝酸性窒素濃度の変動に応じて有機物の添加量を制御する窒素除去装置であって、
脱窒菌の働きにより硝酸性窒素或いは亜硝酸性窒素を窒素ガスに還元する流動脱窒槽内の排水の酸化還元電位値を検出する酸化還元電位検出器と、該酸化還元電位検出器で検出した今回の酸化還元電位値と所定時間前に検出した酸化還元電位値とから酸化還元電位値の時間変化率を求め、
求めた時間変化率が予め定めた時間変化率の上限値以上の場合は排水中の酸化還元電位値の如何にかかわらず前記流動脱窒槽へ有機物を供給するポンプを駆動する指令信号を出力し、
求めた時間変化率が予め定めた時間変化率のゼロより小さい下限値以下の場合は排水中の酸化還元電位値の如何にかかわらず前記ポンプを停止させる指令信号を出力する演算制御装置を設けたことを特徴とする窒素除去装置。
When wastewater containing at least one of nitrate nitrogen or nitrite nitrogen is biologically reduced and denitrified, depending on the fluctuation of nitrate nitrogen concentration or nitrite nitrogen concentration in the wastewater A nitrogen removal device for controlling the amount of organic matter added,
An oxidation-reduction potential detector that detects the oxidation-reduction potential value of the waste water in the flow denitrification tank that reduces nitrate nitrogen or nitrite nitrogen to nitrogen gas by the action of denitrifying bacteria, and this time detected by the oxidation-reduction potential detector From the oxidation-reduction potential value of and the oxidation-reduction potential value detected a predetermined time ago, the time change rate of the oxidation-reduction potential value is obtained,
When the obtained time change rate is equal to or higher than a predetermined upper limit value of the time change rate, a command signal for driving a pump for supplying organic matter to the fluid denitrification tank is output regardless of the oxidation-reduction potential value in the waste water ,
An arithmetic control device is provided for outputting a command signal for stopping the pump regardless of the oxidation-reduction potential value in the waste water when the obtained time change rate is equal to or less than a lower limit value smaller than zero of the predetermined time change rate. A nitrogen removing apparatus characterized by that.
JP26411697A 1997-08-07 1997-09-29 Nitrogen removal method and apparatus Expired - Lifetime JP4037491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26411697A JP4037491B2 (en) 1997-08-07 1997-09-29 Nitrogen removal method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21359297 1997-08-07
JP9-213592 1997-08-07
JP26411697A JP4037491B2 (en) 1997-08-07 1997-09-29 Nitrogen removal method and apparatus

Publications (2)

Publication Number Publication Date
JPH11104691A JPH11104691A (en) 1999-04-20
JP4037491B2 true JP4037491B2 (en) 2008-01-23

Family

ID=26519880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26411697A Expired - Lifetime JP4037491B2 (en) 1997-08-07 1997-09-29 Nitrogen removal method and apparatus

Country Status (1)

Country Link
JP (1) JP4037491B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919138B2 (en) * 2001-02-20 2012-04-18 新東工業株式会社 Waste water denitrification equipment

Also Published As

Publication number Publication date
JPH11104691A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP2010099560A (en) Air supply system and air supply method
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP4576845B2 (en) Nitrogen-containing waste liquid treatment method
JP2006204967A (en) Denitrification method and denitrification apparatus
JP4037491B2 (en) Nitrogen removal method and apparatus
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JP4190145B2 (en) Efficient addition method of organic carbon source for denitrification
JP3811270B2 (en) Redox potential detector
JP2912901B1 (en) Treatment method for nitrogen-containing wastewater
JP3677811B2 (en) Biological denitrification method
JP2003112194A (en) Method for controlling nitrogen removing process
JP4835580B2 (en) Nitrogen-containing waste liquid treatment method
JPH08224594A (en) Biological nitrification and denitrification device
JPH0691294A (en) Operation control method of batch type active sludge treatment
JP3279008B2 (en) Control method of intermittent aeration type activated sludge method
JPH09290298A (en) Method of adjusting feed methanol quantity and aerated quantity in nitrifying/denitrifying device
JP3396959B2 (en) Nitrification method and apparatus
JP2001179296A (en) Method for treating water containing nitrate ions and/or nitrite ions
JP3134145B2 (en) Wastewater biological denitrification method
JPH0362480B2 (en)
JP4743100B2 (en) Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term