JPH01241706A - Manufacture of oxide superconductor - Google Patents

Manufacture of oxide superconductor

Info

Publication number
JPH01241706A
JPH01241706A JP63070141A JP7014188A JPH01241706A JP H01241706 A JPH01241706 A JP H01241706A JP 63070141 A JP63070141 A JP 63070141A JP 7014188 A JP7014188 A JP 7014188A JP H01241706 A JPH01241706 A JP H01241706A
Authority
JP
Japan
Prior art keywords
wire
layer
superconductor
powder
b3cu5oy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63070141A
Other languages
Japanese (ja)
Inventor
Atsushi Kume
篤 久米
Yoshimitsu Ikeno
池野 義光
Kenji Goto
謙次 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63070141A priority Critical patent/JPH01241706A/en
Publication of JPH01241706A publication Critical patent/JPH01241706A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductor wire of a high mechanical strength and excellent superconductivity by making only the part made with powder of B3Cu5Oy melt and diffusion-react with a formed body portion made of a compositional ratio of A2B1Cu1O5. CONSTITUTION:An oxide layer 3 made of A2B1Cu1O5 is compress-formed around a bar-shaped core body 2 made of a metal such as Ni. After forming an oxide layer 4 made of the compositional ratio of B3Cu5Oy on the outer circumferential surface of the layer 3 and filling into a metallic pipe, wire drawing process is performed to obtain a wire material 1. The wire material 1 is then heated at a temperature higher than the melting point of the B3Cu5Oy and lower than the melting point of the A2B1Cu1O5. As a result, only the external layer made of B3Cu5Oy melts and the molten substance diffusion-reacts with the inner layer 3 to form a superconductor layer 6. By further gradually cooling the formed substance, a superconductor wire 7 is obtained. (A is an element of the group IIIa and B is an element of the group IIa.) This makes it possible to manufacture a superconductor wire of an excellent superconductivity and a high mechanical strength.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、例えば核磁気共鳴イメージング装置、粒子
加速器等のマグネット用コイルなどに使用可能な酸化物
系超電導線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for producing an oxide-based superconducting wire that can be used, for example, in magnet coils for nuclear magnetic resonance imaging devices, particle accelerators, and the like.

「従来の技術」 近時、常電導状態から超電導状態に遷移する臨界温度(
1rc)が液体窒素温度以上の高い値を示す酸化物系超
電導材料が種々発見されつつある。
"Conventional technology" Recently, the critical temperature at which the normal conductive state transitions to the superconducting state (
Various oxide-based superconducting materials are being discovered that exhibit a high value of 1rc) higher than the liquid nitrogen temperature.

そして、このような酸化物系超電導材料からなる超電導
線を製造するには、例えばY −n a−Cu−0系の
超電導体を備えた超電導線の場合、Y、03粉末とI3
 a COs粉末とCuO粉末とを混合した混合粉末を
銅、銀などの金属パイプ内に充填し、次いで縮径加工お
よび熱処理を順次行い、上記混合粉末を焼結せしめてこ
れを超電導体とし、超電導線を得る方法が知られている
In order to manufacture a superconducting wire made of such an oxide-based superconducting material, for example, in the case of a superconducting wire comprising a Y-na-Cu-0-based superconductor, Y,03 powder and I3 powder are used.
a A mixed powder of COs powder and CuO powder is filled into a metal pipe made of copper, silver, etc., and then diameter reduction processing and heat treatment are performed sequentially to sinter the mixed powder to make it a superconductor. It is known how to obtain the line.

「発明が解決しようとする課題」 しかしながら、上記の超電導線の製造方法にあっては以
下に述べるような不都合がある。
"Problems to be Solved by the Invention" However, the above method for manufacturing a superconducting wire has the following disadvantages.

この製法によって得られた超電導線では、混合粉末から
作製された超電導体が、弔に固相反応である焼結によっ
て生成されているので、超電導体内部に微細な空孔が多
数存在しよって十分に高い圧密度を有するには至らず、
したがって臨界電流密度などの超電導特製に高い値が得
られず、また機械的郷土にも劣るといった問題がある。
In the superconducting wire obtained by this manufacturing method, the superconductor made from mixed powder is produced by sintering, which is a solid phase reaction, so there are many fine pores inside the superconductor. It does not have a high degree of consolidation,
Therefore, there are problems in that high values such as critical current density cannot be obtained especially for superconductors, and mechanical properties are also inferior.

この発明は上記事情に鑑みてなされたもので、その目的
とするところは、空孔率ゼロの理論密度に近い、高密度
の超電導体の作製を可能とし、これにより優れた超電導
特性を示し、かつ高い機械的強度を有する超電導線の製
造を可能とする方法を提供することにある。
This invention was made in view of the above circumstances, and its purpose is to enable the production of a high-density superconductor close to the theoretical density with zero porosity, thereby exhibiting excellent superconducting properties, Another object of the present invention is to provide a method that makes it possible to manufacture a superconducting wire having high mechanical strength.

「課題を解決するための手段」 この発明では、一般式A −13−Cu−0として表さ
れる酸化物系超電導体を備えた超電導線を製造するにあ
たり、AtBtCu+Osの組成比からなる酸化物の層
を棒状の芯体の外周上に圧縮形成して棒状の成形体とし
、次に、この成形体の外周面上に113Cu5Oyの組
成比からなる酸化物の層を形成して全体を前駆体とし、
次いでこの前駆体を金属パイプに充填して複合体とし、
次いでこの複合体に伸線加工を行って線材とし、その後
上記n3Cus−Oyの融点より高< A t g +
 CII r Osの最点より低い温度1ミて上記線材
を加熱し、酸化物系超21X導線を製造することを上記
問題点の解決手段とした。
"Means for Solving the Problem" In the present invention, in manufacturing a superconducting wire including an oxide superconductor represented by the general formula A-13-Cu-0, an oxide having a composition ratio of AtBtCu+Os is used. A layer is compressed and formed on the outer periphery of a rod-shaped core to form a rod-shaped molded body, and then a layer of oxide having a composition ratio of 113Cu5Oy is formed on the outer peripheral surface of this molded body, and the entire body is used as a precursor. ,
This precursor is then filled into a metal pipe to form a composite,
Next, this composite is wire-drawn to make a wire rod, and then the melting point of n3Cus-Oy is higher than the melting point of n3Cus-Oy.
The solution to the above problem was to produce an oxide-based super 21X conducting wire by heating the wire to a temperature 1 mm lower than the maximum point of CII r Os.

以下、この発明の酸化物系超電導線の製造方法を図面を
利用して詳しく説明ずろ。なお、ここで説明する例は、
本発明を、Y + Bat C1130X(ただし、x
−7−δ、0≦δ≦5とする。)の組成比で表される酸
化物系超電導体を備えた超電導線の製造方法に適用した
場合のものとする。
Hereinafter, the method for manufacturing an oxide-based superconducting wire according to the present invention will be explained in detail with reference to the drawings. The example explained here is
The present invention can be applied to Y + Bat C1130X (where x
−7−δ, 0≦δ≦5. ) is applied to a method for manufacturing a superconducting wire equipped with an oxide-based superconductor represented by the composition ratio.

まず、Y*na+Cu10gの組成比からなる酸化物の
粉末を小径円柱状の芯体の外周上に圧粉して円柱状の成
形体とする。ここで、Ytna+Cu+Osの組成比か
らなる酸化物の粉末を作製するには、Yt−032Ba
CO3,Cuoの原料粉末をモル比で1:l:lに混合
し、これを大気中にて800〜950℃程度で6〜30
時1m程度仮焼し、徐冷した後、粉砕して粒径を0.1
〜4μm程度に揃え、粉末とする。また、芯体としては
、Ni、Au、Ag、PL等の融点950℃以上程度の
金属棒(金属線)が用いられる。さらに、この場合に上
記成形体の作製方法としては、上記粉末に予め水あるい
は有機セルロース等の粘結剤を適宜添加して該粉末をペ
ースト状に調整し、これを芯体に所定厚さとなるように
付着せしめ、その後ラバープレス法などの静水圧加圧法
によって圧縮成形する方法などが好適に採用される。
First, oxide powder having a composition ratio of Y*na+10 g of Cu is pressed onto the outer periphery of a small-diameter cylindrical core to form a cylindrical molded body. Here, in order to produce an oxide powder having a composition ratio of Ytna+Cu+Os, Yt-032Ba
Mix raw material powders of CO3 and Cuo at a molar ratio of 1:l:l, and heat this in the air at about 800-950°C for 6-30°C.
After being calcined for about 1 m and slowly cooled, it is crushed to a particle size of 0.1
The powder is made into a powder of about 4 μm. Further, as the core, a metal rod (metal wire) of Ni, Au, Ag, PL, etc. having a melting point of about 950° C. or more is used. Furthermore, in this case, the method for producing the molded body is to prepare the powder into a paste by appropriately adding water or a binder such as organic cellulose to the powder, and apply this to the core to a predetermined thickness. Preferably, a method is employed in which the material is adhered as described above and then compression molded by a hydrostatic pressing method such as a rubber press method.

次に、この成形体の外周面上に111ascusOY 
(ただし、5≦y≦15とする。)の組成比からなる酸
化物の粉末を塗布して酸化物層を形成し、全体を前駆体
とする。ここで、n az Cus Oyの組成比から
なる酸化物の粉末を作製するには2BaCO5゜CuO
の原料粉末をモル比で3:5に混合し、これを大気中に
て800〜950℃程度で6〜30時間程度仮焼し、徐
冷した後、粉砕して粒径を0.1〜4μ貫程度に揃え、
粉末とする。また、この粉末の上記成形体への塗布法と
しては、該粉末に予め水あるいは有機セルロース等の粘
結剤を適宜添加し、これにより粉末をペースト状に調整
して上記成形体に付着せしめる方法などが好適に採用さ
れろ。
Next, 111ascusOY was applied on the outer peripheral surface of this molded body.
(However, 5≦y≦15.) An oxide powder having a composition ratio of 5≦y≦15 is applied to form an oxide layer, and the whole is used as a precursor. Here, to produce an oxide powder with a composition ratio of n az Cus Oy, 2BaCO5°CuO
The raw material powders are mixed at a molar ratio of 3:5, and this is calcined in the air at about 800 to 950°C for about 6 to 30 hours, slowly cooled, and then crushed to a particle size of 0.1 to 950°C. Align to about 4μ kan,
Make into powder. Further, as a method for applying this powder to the above molded body, water or a binder such as organic cellulose is appropriately added to the powder in advance, and the powder is thereby prepared into a paste state and is adhered to the above molded body. etc. should be suitably adopted.

次いで、この前駆体を金属パイプ内に充填して)(合体
とする。ここで、金属パイプとしては、銀、白金、パラ
ジウム等の融点が950℃以」二程度で酸素透過性を有
する金属が好適に用いられるが、銅等の金属、あるいは
ステンレス等の合金を用いることら可能である。
Next, this precursor is filled into a metal pipe (combined).The metal pipe is made of a metal such as silver, platinum, palladium, etc., which has a melting point of about 950°C or higher and has oxygen permeability. Although it is preferably used, metals such as copper or alloys such as stainless steel can also be used.

次いで、この複合体に伸線加工を行って第1図に示すよ
うなtla材を得る。ここで、第1図において符号lは
線材であり、この線材1は上記芯体からなる芯線2と、
この芯線2の外周上を覆う、上記Y * r3 a +
 Cu 10 @の組成比の内層3と、さらにこの内層
3を覆う上記n as Cus Oyの組成比の外層4
と、上記金属バイブが圧延されてなる金属層5とから構
成されたものである。また、この場合に伸線加工として
は、例えば線引き加工や溝付き口−ルを用いて行う圧延
加工、さらには鍛造法などの技術が採用される。
Next, this composite is subjected to a wire drawing process to obtain a TL material as shown in FIG. Here, in FIG. 1, the symbol l is a wire rod, and this wire rod 1 has a core wire 2 made of the above-mentioned core,
The above Y * r3 a + covering the outer periphery of this core wire 2
An inner layer 3 having a composition ratio of Cu 10@, and an outer layer 4 having a composition ratio of n as Cus Oy, which further covers this inner layer 3.
and a metal layer 5 formed by rolling the metal vibrator. In this case, as the wire drawing process, techniques such as wire drawing, rolling using a grooved mouth, and forging are employed.

その後、上記nasCu5Oyの融点(約904℃)よ
り高(Ymna+Cu+Osの融点(950〜970℃
程度)より低い温度、すなわち905〜950℃程度の
温度にて上記線材!を加熱する。すると線材lにおいて
は、IB as Cus Oyからなる外54のみが溶
融し、この溶融物が、溶融されず単に焼結される内層3
と相互に拡散して反応し、第2図に示4゛ようにY 、
n atc L130 Kの組成比で表される超電導層
6を生成する。さらに、これを徐冷することにより、超
電導層6を有してなる超電導線7が得られる。
After that, the melting point of Ymna+Cu+Os (950 to 970°C) is higher than the melting point of nasCu5Oy (about 904°C).
degree) at a lower temperature, that is, at a temperature of about 905 to 950°C! heat up. Then, in the wire l, only the outer layer 54 made of IB as Cus Oy melts, and this melt melts into the inner layer 3 which is simply sintered without being melted.
They diffuse and react with each other, and as shown in Figure 2, Y,
A superconducting layer 6 having a composition ratio of n atc L130 K is produced. Furthermore, by slowly cooling this, a superconducting wire 7 having a superconducting layer 6 is obtained.

このような酸化物系超電導線の製造方法にあっては、n
 a3 Cus Oyからなる外層4のみを溶融U・し
め、これにより内層3と相互に拡散反応させてY+Ba
tCusOxの組成比の超電導56を生成するので、得
られた超電導層6における超電導体の密度が高いものと
なって空孔率ゼロの理論密度に近付く。また、得られた
超電導IQ7にあっては、芯体からなる芯線2が挿通さ
れていることにより、十分に高い機械的強度を有するも
のとなる。
In the method for manufacturing such an oxide-based superconducting wire, n
a3 Only the outer layer 4 made of Cus Oy is melted and sealed with U, thereby causing a mutual diffusion reaction with the inner layer 3 to form Y+Ba.
Since the superconductor 56 having a composition ratio of tCusOx is generated, the density of the superconductor in the obtained superconducting layer 6 becomes high and approaches the theoretical density with zero porosity. Moreover, the obtained superconducting IQ7 has sufficiently high mechanical strength because the core wire 2 made of the core body is inserted therethrough.

なお、上記例においては、本発明をY+natC□−O
Kの組成比で表される超電導体を備えた超電導線の製造
に適用した場合の例を示したが、本発明はこれに限るこ
となく、他にも一般式ArB*Cu5−Oxで表される
組成比の超電導体を備えた超電導線の製造に適用するこ
とができる。
In addition, in the above example, the present invention is defined as Y+natC□-O
Although an example has been shown in which the present invention is applied to the production of a superconducting wire having a superconductor represented by the composition ratio of The present invention can be applied to manufacturing a superconducting wire having a superconductor having a composition ratio of

また、成形体として円柱状のものを作製したが、他に例
えば角柱状のものとしてらよい。
Further, although a cylindrical molded body was produced, it may also be formed into a prismatic shape, for example.

「実施例」 以下、実施例によりこの発明をさらに具体的に説明する
"Examples" The present invention will be explained in more detail below using Examples.

まず、Y *Os、 11 aCOs、 Cuo のそ
れぞれ粉末をI:I:I(モル比)で混合し、混合粉末
を作製した。そして、これを大気中にて950℃で24
時間仮焼し、徐冷した後、粉砕して粒径を0.1〜1μ
lに揃え、粉末とし、さらにこの粉末に有機セルロース
を加えてペースト状に調整した。そして、予め用意した
外径I MM1長さl0czの円柱状ニッケル棒を芯体
とし、これの外周面上に上記ペースト状に調整した粉末
を厚さ7RJ1程度に塗布し付着せしめ、さらにラバー
プレス法により外径6R11,の円柱状に成形して成形
体とした。この場合に上記の原料粉末として、Y ! 
Osには純度99゜99%のらのを、またBa COs
およびCuOには99.9%のものを用いた。
First, powders of Y*Os, 11aCOs, and Cuo were mixed at a molar ratio of I:I:I to prepare a mixed powder. Then, this was heated at 950℃ for 24 hours in the atmosphere.
After being calcined for an hour and slowly cooled, it is crushed to a particle size of 0.1 to 1μ.
The powder was prepared into a powder, and organic cellulose was added to the powder to prepare a paste. Then, using a previously prepared cylindrical nickel rod with an outer diameter of 1 mm and a length of 10 cz as a core, the powder prepared into a paste was applied and adhered to the outer circumferential surface of the rod to a thickness of about 7 RJ1, and then a rubber press method was applied. The molded product was molded into a cylindrical shape with an outer diameter of 6R11. In this case, as the above raw material powder, Y!
Os has a purity of 99°99%, and BaCOs
And CuO of 99.9% was used.

次に、[3aCOs (純度99.9%)およびCu−
0(純度99.9%)のそれぞれの粉末を3=5(モル
比)で混合し、混合粉末を作製した。そして、これを大
気中にて900℃で24時間仮焼し、徐冷した後、粉砕
して粒径を0.1〜1μ肩に揃え、粉末とし、さらにこ
の粉末に有機セルロースを加えてペースト状にし、これ
を上記成形体の外周面上に厚さ0,5JIJI程度に塗
布し付着0°しめて前駆体とした。
Next, [3aCOs (purity 99.9%) and Cu-
0 (purity 99.9%) were mixed at a ratio of 3=5 (mole ratio) to produce a mixed powder. Then, this is calcined in the air at 900℃ for 24 hours, slowly cooled, and then crushed to make a powder with a particle size of 0.1 to 1μ, and organic cellulose is added to this powder to make a paste. This was coated onto the outer circumferential surface of the molded article to a thickness of about 0.5 JIJI, and the adhesion was tightened to 0° to obtain a precursor.

次いで、この時躯体を外径12xm、内径8 xx。Next, at this time, the outer diameter of the frame was 12 x m and the inner diameter was 8 xx.

長さ13CIの銀パイプ内に充填して複合体とし、さら
に、この複合体に伸線加工を行って外径2.4xm、長
さ3.25.wの線材を得た。
A silver pipe with a length of 13 CI is filled into a composite body, and this composite body is then wire-drawn to have an outer diameter of 2.4 x m and a length of 3.25 mm. A wire rod of w was obtained.

その後、このtIa材を920’Cの温度にて連続的に
加熱し、上述のペースト状にして塗布した外層部分のみ
を溶融せしめ、成形体部分と相互に拡散反応させてY1
0a*cusoxの組成比で表される超電導層を生成し
、さらにこれを連続的に徐冷して超電導線を得た。
Thereafter, this tIa material was continuously heated at a temperature of 920'C to melt only the outer layer part which was applied in the form of a paste, and caused a mutual diffusion reaction with the molded body part to cause Y1
A superconducting layer having a composition ratio of 0a*cusox was produced, and this was further slowly cooled to obtain a superconducting wire.

こめようにして得た超電導線における超電導体の超電導
特性を調べたところ、液体窒素中にて臨界電流密度(J
c)が3800 A/cm”程度の値を示した。
When we investigated the superconducting properties of the superconductor in the superconducting wire obtained in this way, we found that the critical current density (J
c) showed a value of about 3800 A/cm''.

「発明の効果」 以上説明したように、この発明の酸化物系超電導線の製
造方法は、rl 3CusOyの粉末からなる部分のみ
を溶融せしめ、これによりA I B r Cu + 
Osの組成比からなる成形体部分と相互に拡散反応せし
めてAr[3*Cu5OXの組成比の超電導体層を生成
するものであるので、従来法の固相反応である焼結によ
って生成するのに比較して短時間で超電導体層を生成す
ることができ、また得られた超電導体層における超電導
体の密度を十分に高く、空孔亭ゼロの理論密度に近いも
のとすることができ、したがって臨界電流密度などの超
電導特性に優れ超電導線を作製することができろ。また
、この得られた超電導線にあっては、芯体からなる芯線
が挿通されていることにより、十分に高い機械的強度を
aするものとなる。
"Effects of the Invention" As explained above, the method for manufacturing an oxide-based superconducting wire of the present invention melts only the portion consisting of rl 3CusOy powder, thereby A I B r Cu +
Since the superconductor layer having a composition ratio of Ar[3*Cu5OX is produced by a mutual diffusion reaction with the molded body part having a composition ratio of Os, it is different from that produced by sintering, which is a solid phase reaction in the conventional method. It is possible to generate a superconductor layer in a short time compared to , and the density of the superconductor in the obtained superconductor layer can be made sufficiently high to be close to the theoretical density of Kukotei zero, Therefore, it is possible to fabricate superconducting wires with excellent superconducting properties such as critical current density. Furthermore, the obtained superconducting wire has a sufficiently high mechanical strength because the core wire made of the core body is inserted therethrough.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の超電導線の製造方法の
一具体例を説明するためのもので、第1図は線材の概略
もが成因、第2図は超電導線の概略構成図である。 !・・・・・・線材、2・・・・・・芯線、3・・・・
・・内層、4・・・・・・外層、5・・・・・・金属層
、6・・・・・・超電導層、7・・・・・・超電導線。
Figures 1 and 2 are for explaining a specific example of the method for manufacturing a superconducting wire of the present invention. Figure 1 shows a schematic diagram of the formation of the wire, and Figure 2 shows a schematic diagram of the structure of the superconducting wire. be. ! ...Wire, 2...Core wire, 3...
...Inner layer, 4...Outer layer, 5...Metal layer, 6...Superconducting layer, 7...Superconducting wire.

Claims (1)

【特許請求の範囲】[Claims] 一般式A−B−Cu−O(ただし、AはY,Sc,La
,Yb,Er,Ho,Dy等の周期律表第IIIa族元素
のうち1種あるいは2種以上を示し、BはSr,Ba,
Ca等の周期律表第IIa族元素のうち1種あるいは2種
以上を示す。)として表される酸化物系超電導体を備え
た超電導線を製造する方法であって、A_2B_1Cu
_1O_5の組成比からなる酸化物の層を棒状の金属製
芯体の外周上に圧縮形成して棒状の成形体とし、次に、
この成形体の外周面上にB_3−Cu_5Oy(ただし
、5≦y≦15とする。)の組成比からなる酸化物の層
を形成して全体を前駆体とし、次いでこの前駆体を金属
パイプ内に充填して複合体とし、次いでこの複合体に伸
線加工を行って線材とし、その後上記B_3Cu_5O
yの融点より高くA_2B_1Cu_1O_5の融点よ
り低い温度にて上記線材を加熱することを特徴とする酸
化物系超電導線の製造方法。
General formula A-B-Cu-O (where A is Y, Sc, La
, Yb, Er, Ho, Dy, etc., represents one or more elements of group IIIa of the periodic table, and B represents Sr, Ba,
Indicates one or more elements of group IIa elements of the periodic table, such as Ca. A_2B_1Cu
A layer of oxide having a composition ratio of _1O_5 is compressed and formed on the outer periphery of a rod-shaped metal core to form a rod-shaped molded body, and then,
A layer of oxide having a composition ratio of B_3-Cu_5Oy (5≦y≦15) is formed on the outer peripheral surface of this molded body, and the entire body is used as a precursor, and this precursor is then placed inside a metal pipe. The above B_3Cu_5O
A method for manufacturing an oxide superconducting wire, characterized in that the wire is heated at a temperature higher than the melting point of y and lower than the melting point of A_2B_1Cu_1O_5.
JP63070141A 1988-03-24 1988-03-24 Manufacture of oxide superconductor Pending JPH01241706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63070141A JPH01241706A (en) 1988-03-24 1988-03-24 Manufacture of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63070141A JPH01241706A (en) 1988-03-24 1988-03-24 Manufacture of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01241706A true JPH01241706A (en) 1989-09-26

Family

ID=13422994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63070141A Pending JPH01241706A (en) 1988-03-24 1988-03-24 Manufacture of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01241706A (en)

Similar Documents

Publication Publication Date Title
JPH01241706A (en) Manufacture of oxide superconductor
JPH01241708A (en) Manufacture of oxide superconductor wire
JPH01241711A (en) Manufacture of oxide superconductor wire
JP2846361B2 (en) Manufacturing method of oxide superconducting coil
JPH01241707A (en) Manufacture of oxide superconductor wire
JP2727565B2 (en) Superconductor manufacturing method
JPH01241713A (en) Manufacture of oxide superconductor wire
JPS63285155A (en) Oxide type superconductive material and production thereof
JPH02129812A (en) Manufacture of ceramic superconductor product
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JPH01241709A (en) Manufacture of oxide superconductor wire
JPH0518778B2 (en)
JPH01241710A (en) Manufacture of oxide superconductor wire
JPH01170003A (en) Manufacture of oxide superconducting coil
JPH01144517A (en) Oxide-based superconductive cable
JPH04259203A (en) Manufacture of ceramic superconductor coil
JPH03110715A (en) Ceramics superconducting conductor
JPH02158013A (en) Manufacture of oxide superconductive compact
JPH01241717A (en) Manufacture of oxide superconductor wire
JPS63314723A (en) Manufacture of superconductive material
JPH04138629A (en) Manufacture of superconducting insulated wire
JPH02229753A (en) Preparation of ductile composite containing superconductive ceramic oxide
JPH03110714A (en) Ceramic superconducting conductor
JPH0471113A (en) Manufacture of oxide superconducting wire
JPH02278616A (en) Manufacture of multicore-type oxide superconductor