JPH01241041A - Optical recording method - Google Patents

Optical recording method

Info

Publication number
JPH01241041A
JPH01241041A JP63066028A JP6602888A JPH01241041A JP H01241041 A JPH01241041 A JP H01241041A JP 63066028 A JP63066028 A JP 63066028A JP 6602888 A JP6602888 A JP 6602888A JP H01241041 A JPH01241041 A JP H01241041A
Authority
JP
Japan
Prior art keywords
thin film
mixed
group
recording medium
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066028A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Masato Harigai
真人 針谷
Katsuhiko Tani
克彦 谷
Eriko Chiba
千葉 恵理子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63066028A priority Critical patent/JPH01241041A/en
Publication of JPH01241041A publication Critical patent/JPH01241041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To obtain an optical recording medium which can repeatedly record and reproduce information at high sensitivity, high speed, high S/N, and low error rate by providing a 1st thin film consisting of at least one kind of group Ib elements and the 2nd thin film consisting of at least one kind of group IVb elements on a base. CONSTITUTION:The 1st thin film 2 consisting of the group Ib elements and the 2nd thin film 3 consisting of the group IVb element are provided on the base. The 1st thin film and the 2nd thin film are melted and mixed when a light beam for recording is projected on the recording medium. The light reflectivity of the mixed part is thereby largely changed from the original state before the mixing. The light beam for reproducing of such a small output which does not affect the properties of both the 1st and 2nd thin films is, therefore, projected on this recording medium and the change rate of the light reflectivity of the above-mentioned mixed part is detected at the time of reproduction. The light beam of about the middle output to separate the mixed elements of the group Ib and the group IVb is projected on the mixed part to heat said part to a low temp. and to separate the mixed elements of the mixed part at the time of erasing. The information is thereby repeatedly recorded and reproduced at the high sensitivity, high speed, high S/N and low error rate.

Description

【発明の詳細な説明】 投帆分災 本発明は光ビームにより繰返し情報の記録、再生及び消
去が可能な光記録方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical recording method capable of repeatedly recording, reproducing and erasing information using a light beam.

丈米斂監 特開昭62−183042号にはAuGe合金薄膜を有
する光情報記録媒体にレーザー光のような光ビームを入
射して繰返し情報を記録、再生及び消去する光記録方法
が開示されている。この方法は記録時は記録媒体に記録
用の高出力光ビームを入射、高温度加熱してその部分の
合金薄膜を溶融し、AuGeの共晶を形成しく356℃
でできる)、これにより溶融部の光反射率を変化せしめ
(再生はこの変化量を小出力の光ビームで検知すること
により行なう、)、消去時はこの記録媒体に消去用の中
出力光ビームを入射して前記溶融部を低温加熱してAu
及びGeの各相に分離するというものである。この方法
で合金薄膜における光反射率の変化はAu量が多い程、
顕著なので、この薄膜中には35〜92atm%もの多
量のAuを含有させている。しかしAuは光反射率が高
く、従って光吸収性が悪いので、このような合金薄膜を
用いた光情報記録媒体は熱感度が低く、また記録時の光
反射率の変化も小さいので、高速、高S/N、且つ低エ
ラー率で情報を記録及び再生することは困難である。ま
たこの記録媒体のようにAuを含む溶融層に02が触れ
ると、非可逆性のGe02(Geには戻らない)が形成
され易いため、合金薄膜は保護膜等で被覆する必要があ
る(GeはAuが存在しなければ600℃位までは化学
的に安定である)。
Japanese Unexamined Patent Publication No. 183042/1989, directed by Atsushi Takebei, discloses an optical recording method in which a light beam such as a laser beam is incident on an optical information recording medium having an AuGe alloy thin film to repeatedly record, reproduce, and erase information. There is. During recording, this method injects a high-power recording light beam into the recording medium and heats it at a high temperature to melt the alloy thin film in that area and form an AuGe eutectic at 356°C.
This changes the light reflectance of the molten part (reproduction is performed by detecting this change with a low-power light beam), and when erasing, a medium-power light beam for erasing is applied to the recording medium. The molten part is heated at a low temperature by injecting Au.
and Ge phases. With this method, the change in light reflectance in the alloy thin film increases as the amount of Au increases.
Since this is a significant amount of Au, this thin film contains as much as 35 to 92 atm % of Au. However, since Au has a high light reflectance and therefore poor light absorption, optical information recording media using such alloy thin films have low thermal sensitivity and small changes in light reflectance during recording, so they can be used at high speeds. It is difficult to record and reproduce information with high S/N and low error rate. Furthermore, when 02 comes into contact with a molten layer containing Au like in this recording medium, irreversible Ge02 (which does not return to Ge) is likely to be formed, so the alloy thin film needs to be covered with a protective film etc. is chemically stable up to about 600°C in the absence of Au).

且−一五 本発明の目的は高感度、高速、高Sハ、且つ低エラー率
で情報を繰返し記録及び再生し得る光記録方法を提供す
ることである。
Furthermore, it is an object of the present invention to provide an optical recording method capable of repeatedly recording and reproducing information with high sensitivity, high speed, high S, and low error rate.

且−一双 本発明の記録方法は支持体上に第1b族元素の少くとも
1種からなる第一薄膜と第rVb族元素の少なくとも1
種からなる第二薄膜とを有する光情報記録媒体に対し、
記録時は記録用光ビームを入射、高温加熱してその部分
の第一薄膜及び第二薄膜を溶融、混合し、再生時は再生
用光ビームを入射して前記混合部の光反射率の変化量を
検出し、更に消去時は消去用光ビームを入射、低温加熱
して前記混合部の混合元素を分離せしめることを特徴と
するものである。
In the recording method of the present invention, a first thin film comprising at least one group 1b element and at least one rVb group element are formed on a support.
For an optical information recording medium having a second thin film consisting of a seed,
During recording, a recording light beam is incident and heated to a high temperature to melt and mix the first thin film and second thin film in that area, and during playback, a reproduction light beam is incident and the light reflectance of the mixed area changes. The present invention is characterized in that the amount of the mixed elements in the mixed portion is detected, and when erasing, an erasing light beam is incident and heated at a low temperature to separate the mixed elements in the mixed portion.

Auの光反射率はGeの光反射率と著しく異なるので(
Auの方がはるかに半導体レーザー光反射率が高い) 
、 Geの単独層及びAuGeの共晶層(AuとGeと
の混合層でもよい)でも光反射率が大巾に異なって来る
。例えば波長780nmの光に対する光反射率はGe単
独層では43%であるのに対し、AuGe共晶層では7
0%である。またAuGe共晶層は前記公開公報にも記
載されるように、低温加熱により容易にAu及びGeの
各層に分離する。本発明者らは支持体上にGe含有量の
多いAuGeとAu含有量の多いAuGe層とを順次設
けた試料A、及び前記層順序とは逆に、支持体上にAu
含有量の多いAuGe層とGe含有量の多いAuGe層
とを順次設けた試料Bを作り、これら試料に消去用(中
出力)レーザー光を入射して低温加熱すると、試料Aの
場合は表面側にAuが、また支持体側にGeが集まり(
分離し)、一方、試料Bの場合は逆に表面側にGeが、
また支持体側にAuが集まることを見出した。従って消
去時は従来のように均一なAu+Ge混合層(合金層)
よりも、最初からAu及びGeの各単層に分離して設け
た方が分離し易い、この場合、Au層とGe層との形成
順序は本発明のように支持体上にAu層及びついでGa
層を設けたタイプの方がよい、これは前述のようにAu
を含む溶融層が0□に触れると、Geの場合は非可逆性
のGeO□ができ易いからである。但し溶融部分を大き
くして全面にGem、を形成した場合は非可逆の記録が
可能である0以上の事はGe以外の他の第IVb族元素
、例えばSi、Sn、Pb、(好ましくはSi)、及び
Au以外の他の第1b族、例えばCu 、 Agについ
ても言える。
Since the optical reflectance of Au is significantly different from that of Ge (
(Au has a much higher semiconductor laser light reflectance)
The light reflectance of a single layer of Ge and a eutectic layer of AuGe (a mixed layer of Au and Ge may also be used) differs widely. For example, the light reflectance for light with a wavelength of 780 nm is 43% for a Ge single layer, while for an AuGe eutectic layer it is 780 nm.
It is 0%. Furthermore, as described in the above-mentioned publication, the AuGe eutectic layer is easily separated into Au and Ge layers by low-temperature heating. The present inventors have developed a sample A in which an AuGe layer with a high Ge content and an AuGe layer with a high Au content were sequentially provided on a support, and a sample A in which an AuGe layer with a high Ge content and an AuGe layer with a high Au content were sequentially provided on a support.
Sample B is prepared in which an AuGe layer with a high content of Ge and an AuGe layer with a high Ge content are sequentially provided, and when these samples are heated at a low temperature by entering an erasing (medium power) laser beam, in the case of sample A, the surface side Au gathers on the side, and Ge gathers on the support side (
On the other hand, in the case of sample B, Ge is on the surface side,
It was also found that Au gathers on the support side. Therefore, when erasing, a uniform Au+Ge mixed layer (alloy layer) is used as before.
It is easier to separate the Au layer and the Ge layer from the beginning if they are separated from each other.In this case, the order in which the Au layer and the Ge layer are formed is as follows: Ga
It is better to use a layered type, which is made of Au as mentioned above.
This is because if the molten layer containing Ge touches 0□, irreversible GeO□ is likely to be formed in the case of Ge. However, if the molten part is enlarged and Ge is formed on the entire surface, irreversible recording is possible. ), and other Group 1b materials other than Au, such as Cu and Ag.

本発明方法で用いられる光情報記録媒体は基本的には第
1図に示すように支持体1(透明でも不透明でもよい)
上に第1b族元素の第一薄膜2と第rVb族元素の第二
薄膜3とを設けたものであるが、支持体が透明ならば第
2図に示すようにこれら薄膜の形成順序を逆にしてもよ
い。
The optical information recording medium used in the method of the present invention basically consists of a support 1 (which may be transparent or opaque) as shown in FIG.
A first thin film 2 of a group 1b element and a second thin film 3 of an rVb group element are provided on the top, but if the support is transparent, the order of forming these thin films can be reversed as shown in FIG. You may also do so.

なお第2図中1′は透明支持体である。Note that 1' in FIG. 2 is a transparent support.

このような光情報記録媒体を作るには第1図のタイプの
場合はプラスチック、セラミック。
In the case of the type shown in Figure 1, plastics and ceramics are used to make such optical information recording media.

ガラス等の支持体上に真空蒸着法、スパッタリング法等
のPvD法(物理的気相成長法);その他の薄膜形成法
で第1b族元素の第一薄膜を形成し、更にその上に同様
な方法で第IVb族元素の第二薄膜を形成すればよく、
また第2図のタイプの場合は透明支持体上に同様な方法
で第二薄膜及び第一薄膜を順次形成すればよい。なお第
1図のタイプの場合は第二薄膜上に、また第2図のタイ
プの場合は第一薄膜上に更に保護膜として二酸化珪素、
二酸化チタン、窒化珪素、窒化アルミニウム等の透明誘
電体膜を設けてもよい。いずれにしても第一薄膜及び第
二薄膜の厚さは各々10〜500nm、好ましくはl(
1〜50nm程度である。
A first thin film of a group 1b element is formed on a support such as glass using a PvD method (physical vapor deposition method) such as a vacuum evaporation method or a sputtering method; The second thin film of the group IVb element may be formed by the method,
In the case of the type shown in FIG. 2, the second thin film and the first thin film may be sequentially formed on the transparent support by the same method. In addition, in the case of the type shown in Fig. 1, silicon dioxide is added as a protective film on the second thin film, and in the case of the type shown in Fig. 2, on the first thin film.
A transparent dielectric film of titanium dioxide, silicon nitride, aluminum nitride, or the like may be provided. In any case, the thickness of the first thin film and the second thin film is 10 to 500 nm, preferably l(
It is about 1 to 50 nm.

以上のような光情報記録媒体を用いて本発明方法を実施
するにはまず記録時は第一薄膜及び第二薄膜が溶融する
程度の高出力の記録用光ビームを記録媒体に入射(第1
図のタイプの場合は第二薄膜側から、また第2図のタイ
プの場合は支持体側から入射)、高温加熱してその部分
の第一薄膜及び第二薄膜を溶融、混合する。これにより
混合部の光反射率は混合前の元の状態に比べて大巾に変
化する。従って再生時はこの記録媒体に第−及び第二の
両薄膜の物性に影響を与えないような小出力の再生用光
ビームを入射して前記混合部の光反射率の変化量を検出
する。また消去時は前記混合部の第1b族及び第IVb
族の混合元素が分離する程度の中出力の光ビームを入射
、低温加熱して混合部の混合元素を分離する。
To carry out the method of the present invention using the optical information recording medium as described above, first, during recording, a recording light beam of high power is incident on the recording medium (the first thin film and the second thin film are melted).
In the case of the type shown in the figure, the light enters from the second thin film side, and in the case of the type shown in Figure 2, it enters from the support side), and is heated at high temperature to melt and mix the first thin film and the second thin film in that part. As a result, the light reflectance of the mixed portion changes significantly compared to the original state before mixing. Therefore, during reproduction, a low-output reproduction light beam that does not affect the physical properties of both the first and second thin films is incident on the recording medium, and the amount of change in the light reflectance of the mixing portion is detected. Also, during erasing, the group 1b and group IVb of the mixed section
A medium-power light beam is applied, which is sufficient to separate the mixed elements of the group, and is heated at a low temperature to separate the mixed elements in the mixed part.

以下に本発明を実施例によって説明する。The present invention will be explained below by way of examples.

実施例1  ・ ガラス板(米国コーニング社製$ 7059)上に5 
X 10−’Torrの減圧下、室温でAuを真空蒸着
して500人厚0第一薄膜を形成した後、その上に同じ
条件でGeを真空蒸着して同じ厚さの第二薄膜を形成す
ることにより光情報記録媒体を作った。なお各薄膜の状
態をX線回折で調べたところ、第一薄膜は結晶膜、第二
薄膜は非晶質膜であった。
Example 1 ・5 sheets were placed on a glass plate (manufactured by Corning, USA, $7059).
After vacuum-depositing Au at room temperature under a reduced pressure of By doing so, we created an optical information recording medium. When the state of each thin film was examined by X-ray diffraction, it was found that the first thin film was a crystalline film and the second thin film was an amorphous film.

次にこの記録媒体に対し出力20mwの半導体レーザー
を用いて直径約1mのレーザービームを第二薄膜側から
入射させ、その部分を450℃に昇温せしめた。昇温前
後のレーザー光(波長780nm)に対する反射率を測
定したところ、昇温前の45%に対し、昇温後は77%
であった。また昇温部の状態をX線回折法で調べたとこ
ろ、AuGeのγ相が確認された。次にレーザー光の出
力を174に下げて5mWとし、これを同様に第二薄膜
側から入射させ、表面温度を70℃に上昇させ、冷却後
再び光反射率を測定したところ、48%であった。また
この時の昇温部をX線回折法で調べたところ、AuGe
のγ相(共晶)は殆んど消失していた。なおレーザー光
入射部は昇温前はGeの金属色であったが、450℃昇
温後は若干Auの金色がかった色となり、また70℃昇
温後はこの金色がかった色は消失し、再びGeの金属色
に戻った。
Next, a laser beam with a diameter of about 1 m was applied to this recording medium from the second thin film side using a semiconductor laser with an output of 20 mw, and the temperature of that part was raised to 450°C. When we measured the reflectance to laser light (wavelength 780 nm) before and after heating up, it was 45% before heating up, but 77% after heating up.
Met. Furthermore, when the state of the heated section was examined by X-ray diffraction, the γ phase of AuGe was confirmed. Next, the output of the laser light was lowered to 174 to 5 mW, and this was similarly applied from the second thin film side, the surface temperature was raised to 70°C, and after cooling, the light reflectance was measured again, and it was 48%. Ta. In addition, when the temperature rising part at this time was examined by X-ray diffraction method, it was found that AuGe
The γ phase (eutectic) had almost disappeared. The laser beam incident area had a Ge metallic color before the temperature was raised, but after the temperature was raised to 450°C, it became a slightly gold-like color of Au, and after the temperature was raised to 70°C, this golden color disappeared. It returned to the metallic color of Ge.

以上の昇温−冷却操作を繰返してもレーザー光入射部の
光反射率は上記とほぼ同様であった。
Even if the above heating-cooling operation was repeated, the light reflectance of the laser beam incidence part remained almost the same as above.

比較例1 実施例1と同じガラス板上に5 X 10−’Torr
の減圧下、室温でAu(27at+++%) Ge(7
3atm%)合金を真空蒸着して1000人厚の薄膜を
形成することにより光情報記録媒体を作った。このもの
のレーザー光(波長780nm)に対する反射率は63
%であった。以下、実施例1と同様にレーザー光入射に
より450℃まで昇温したところ、冷却後の反射率は7
0%となった。引続き70℃に昇温したところ、冷却後
の反射率は67%であった。
Comparative Example 1 5 x 10-'Torr on the same glass plate as Example 1
Au(27at+++%) Ge(7
An optical information recording medium was produced by vacuum-depositing a 3 atm% alloy to form a thin film with a thickness of 1000 nm. The reflectance of this material for laser light (wavelength 780 nm) is 63
%Met. Hereinafter, when the temperature was raised to 450°C by laser beam incidence as in Example 1, the reflectance after cooling was 7.
It became 0%. When the temperature was subsequently raised to 70° C., the reflectance after cooling was 67%.

比較例2 蒸着源としてAu(50atm%) Ge(50atm
%)合金を用いた他は比較例1と同じ方法で光情報記録
媒体を作った。このもののレーザー光(波長780nn
+)に対する反射率は66%であった。以下実施例1と
同様にレーザー光入射により450℃まで昇温したとこ
ろ、冷却後の反射率は72%となった。引続き70℃に
昇温したところ、冷却後の反射率は67%であった。
Comparative Example 2 Au (50 atm%) Ge (50 atm%) was used as the vapor deposition source.
%) An optical information recording medium was produced in the same manner as in Comparative Example 1 except that the alloy was used. This laser light (wavelength 780nn)
+) reflectance was 66%. Thereafter, as in Example 1, the temperature was raised to 450° C. by laser beam incidence, and the reflectance after cooling was 72%. When the temperature was subsequently raised to 70° C., the reflectance after cooling was 67%.

効−一−1 本発明方法は薄膜を第1b族元素系と第IVb族元素系
とに分離した光情報記録媒体を用いるので、高感度、高
速、高S/N、且つ低エラー率で情報を繰返し記録、再
生することができる。
Effect-1-1 Since the method of the present invention uses an optical information recording medium in which the thin film is separated into a group 1b element system and a group IVb element system, information can be recorded with high sensitivity, high speed, high S/N, and low error rate. can be recorded and played repeatedly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜2図は本発明方法で用いられる光情報記録媒体の
断面図である。
1 and 2 are cross-sectional views of an optical information recording medium used in the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、支持体上に第 I b族元素の少なくとも1種からな
る第一薄膜と第IVb族元素の少なくとも1種からなる第
二薄膜とを有する光情報記録媒体に対し、記録時は記録
用光ビームを入射、高温加熱してその部分の第一薄膜及
び第二薄膜を溶融、混合し、再生時は再生用光ビームを
入射して前記混合部の光反射率の変化量を検出し、更に
消去時は消去用光ビームを入射、低温加熱して前記混合
部の混合元素を分離せしめることを特徴とする光記録方
法。
1. For an optical information recording medium having a first thin film made of at least one group Ib element and a second thin film made of at least one group IVb element on a support, recording light is applied during recording. The beam is incident and heated at a high temperature to melt and mix the first thin film and the second thin film in that part, and at the time of reproduction, a reproduction light beam is made incident and the amount of change in light reflectance of the mixed part is detected, and further An optical recording method characterized in that during erasing, an erasing light beam is incident and heated at a low temperature to separate the mixed elements in the mixed portion.
JP63066028A 1988-03-19 1988-03-19 Optical recording method Pending JPH01241041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066028A JPH01241041A (en) 1988-03-19 1988-03-19 Optical recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066028A JPH01241041A (en) 1988-03-19 1988-03-19 Optical recording method

Publications (1)

Publication Number Publication Date
JPH01241041A true JPH01241041A (en) 1989-09-26

Family

ID=13304046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066028A Pending JPH01241041A (en) 1988-03-19 1988-03-19 Optical recording method

Country Status (1)

Country Link
JP (1) JPH01241041A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183042A (en) * 1986-02-06 1987-08-11 Toshiba Corp Information recording and reproducing method
JPS62204442A (en) * 1986-03-03 1987-09-09 Toshiba Corp Optical recording medium and its recording method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183042A (en) * 1986-02-06 1987-08-11 Toshiba Corp Information recording and reproducing method
JPS62204442A (en) * 1986-03-03 1987-09-09 Toshiba Corp Optical recording medium and its recording method

Similar Documents

Publication Publication Date Title
US4651172A (en) Information recording medium
US5194363A (en) Optical recording medium and production process for the medium
US6190750B1 (en) Rewritable optical information medium
JPS62183042A (en) Information recording and reproducing method
KR100753968B1 (en) Rewritable optical information recording medium
JPS61269247A (en) Reversible optical information recording and reproducing method
US4879205A (en) Information storage medium and a method of manufacturing the same
JPH04838B2 (en)
JPH01241041A (en) Optical recording method
JPS61190734A (en) Information recording medium
JP2577349B2 (en) Optical recording medium
JPH0777040B2 (en) Optical recording medium
JPH0746442B2 (en) Optical information recording medium
JPH04134644A (en) Optical information recording member
JP3176582B2 (en) Recording and erasing information
JP2506772B2 (en) Optical information recording member
JPH09198712A (en) Optical information recording medium and its production
JPH04228126A (en) Optical information recording medium
JPS63167440A (en) Method for recording or recording and erasing information
JPH10289478A (en) Optical information recording medium and its production
JPH0363178A (en) Data recording membrane and data recording and reproducing method
JP3138514B2 (en) Information optical recording medium and recording / reproducing method thereof
JPH02151481A (en) Membrane for recording data and method for recording and reproducing data
RU2127915C1 (en) Information medium for optical storage device
JP2892025B2 (en) Optical recording medium