JPH01239826A - Manufacture of reduced reoxidized semiconductor ceramic capacitor - Google Patents

Manufacture of reduced reoxidized semiconductor ceramic capacitor

Info

Publication number
JPH01239826A
JPH01239826A JP6663288A JP6663288A JPH01239826A JP H01239826 A JPH01239826 A JP H01239826A JP 6663288 A JP6663288 A JP 6663288A JP 6663288 A JP6663288 A JP 6663288A JP H01239826 A JPH01239826 A JP H01239826A
Authority
JP
Japan
Prior art keywords
composition
sheet
reduction
reduced
reoxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6663288A
Other languages
Japanese (ja)
Inventor
Yuichi Yamada
裕一 山田
Takeshi Iino
飯野 猛
Hiroshi Niwa
洋 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6663288A priority Critical patent/JPH01239826A/en
Publication of JPH01239826A publication Critical patent/JPH01239826A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1272Semiconductive ceramic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To manufacture a reduced reoxidized semiconductor capacitor with high yield by a method adapted for a mass production by laminating a molded sheet having a composition to which reduction resistant additive is added on the surface of the sheet containing the composition including as a main ingredient BaTiO3 and rare earth element oxide, sintering it, and then reducing it. CONSTITUTION:After a molded sheet 4 having a composition to which reduction resistant additive is added is laminated on the surface of the sheet 4 containing the composition including as a main ingredient BaTiO3 and rare earth element oxide, it is sintered to obtain a dielectric ceramic, the ceramic is reduced, reoxidized or merely reduced to form a surface dielectric layer 6. For example, a composition containing 88mol% of BaTiO3, 3mol% of Nd2O3 and 9mol% of TiO2 is of a composition 1, and the composition to which 1wt.% of CaTiO3 is added is of a composition 2. Five layers of the sheets 5 each containing the composition 1 are laminated on one layer of the sheet 4 containing the composition 2, one layer of the sheet 4 containing the composition 2 is laminated to be pressure thereon, and baked at 1300 deg.C in the air to obtain a dielectric ceramic. Then, it is reduced, reoxidized to form a surface dielectric 6, and electrodes 8 are then formed on both side faces thereof.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種電子機器に利用される還元再酸化型半導体
磁器コンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a reduction and reoxidation type semiconductor ceramic capacitor used in various electronic devices.

従来の技術 還元再酸化型半導体磁器コンデンサは小型で大容量が得
られるコンデンサとして実用化されている。BaTiO
3を主成分として、希土類元素酸化物等を添加した組成
が一般に知られており、粒径が1〜2μmの緻密なセラ
ミックが得られている。
Conventional reduction-reoxidation type semiconductor ceramic capacitors have been put into practical use as small capacitors that can provide large capacitance. BaTiO
A composition in which the main component is 3 and rare earth element oxides, etc. is generally known, and a dense ceramic with a particle size of 1 to 2 μm is obtained.

従来の還元再酸化型半導体コンデンサの断面は第4図に
示すようになシ、1は表面誘電体層、2は半導体層、3
は対向電極である。製造方法は次の通りである。コンデ
ンサの特性に応じた組成の混合原料に、有機系バインダ
を加えて、造粒、整粒、成形する。まず成形体を空気中
で焼成することによって誘電体磁器とする。次に還元雰
囲気中で熱処理することにより全体を半導体化し、さら
に空気中で熱処理することによシ表面に薄い誘電体層を
形成する。最後に両面に電極を付与してコンデンサとす
る。コンデンサの容量は誘電体層の厚みが薄い程大きく
なる。従って、薄い表面誘電体層をもつ還元再酸化型半
導体コンデンサは、一般のセラミックコンデンサに比べ
て大きな容量が得られることとなる。
The cross section of a conventional reduction and reoxidation type semiconductor capacitor is as shown in Fig. 4, where 1 is a surface dielectric layer, 2 is a semiconductor layer, and 3 is a surface dielectric layer.
is the counter electrode. The manufacturing method is as follows. An organic binder is added to a mixed raw material whose composition matches the characteristics of the capacitor, and the mixture is granulated, sized, and shaped. First, the molded body is fired in air to produce dielectric porcelain. Next, the entire structure is made into a semiconductor by heat treatment in a reducing atmosphere, and a thin dielectric layer is formed on the surface by further heat treatment in air. Finally, electrodes are applied to both sides to form a capacitor. The capacitance of a capacitor increases as the thickness of the dielectric layer decreases. Therefore, a reduction and reoxidation type semiconductor capacitor having a thin surface dielectric layer has a larger capacitance than a general ceramic capacitor.

発明が解決しようとする裸面 しかし、このような製造方法では、三回の熱処理が必要
であり、コンデンサの特性はそれらすべての影響を受け
る。特に、表面誘電体層1を形成する際の熱処理の条件
バラツキは、その厚みに大きな影響を及ぼし、静電容量
のバラツキ、破壊電圧の低下につながる゛ものである。
However, this manufacturing method requires three heat treatments, and the characteristics of the capacitor are affected by all of them. In particular, variations in heat treatment conditions when forming the surface dielectric layer 1 have a large effect on its thickness, leading to variations in capacitance and a decrease in breakdown voltage.

本発明は、このような点を改善するものであシ、量産に
適した方法で、還元再酸化型半導体コンデンサを歩留シ
良く製造する方法を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention aims to improve the above-mentioned problems and to provide a method for manufacturing a reduction-reoxidation type semiconductor capacitor with a high yield by a method suitable for mass production.

課題を解決するための手段 この課題を解決するために本発明は、BaTiOsを主
成分とし、希土類元素酸化物を含む組成の成形体シート
の表面に、耐還元性添加物をこの成形体組成に添加した
組成の成形体シートを積層した後、焼結して得られた誘
電体磁器を還元再酸化処理又は、還元処理のみを施すこ
とによって、表面誘電体層を形成する方法としたもので
ある。
Means for Solving the Problem In order to solve this problem, the present invention provides a surface of a molded sheet having a composition mainly composed of BaTiOs and containing a rare earth element oxide, and adding a reduction-resistant additive to this molded sheet composition. This method forms a surface dielectric layer by laminating molded sheets having the added composition and then sintering the resulting dielectric porcelain by subjecting it to reduction and reoxidation treatment or only reduction treatment. .

作用 このように、セラミックの内部と表面層の組成を変えた
誘電体磁器を還元処理すると、組成によって還元状態が
異なシ、その際に表面層に耐還元性物質を添加すれば、
その部分は完全に半導体化されず、あるいは条件によっ
ては誘電体のまま表面層として残ることになる。また表
面層の厚みを成形体シートの厚みとして予め設定してお
くことができるので、表面誘電体層の厚みの制御が容易
になり、そのため、静電容量のバラツキが抑えられ、破
壊電圧の低下も防ぐことができる。
Effect: When dielectric ceramics with different compositions of the inside and surface layer of the ceramic are reduced, the reduction state will differ depending on the composition.If a reduction-resistant substance is added to the surface layer at that time,
That portion may not be completely converted into a semiconductor, or depending on the conditions, may remain as a dielectric surface layer. In addition, since the thickness of the surface layer can be set in advance as the thickness of the molded sheet, the thickness of the surface dielectric layer can be easily controlled, which suppresses variations in capacitance and reduces breakdown voltage. can also be prevented.

実施例 以下実施例に基づき本発明の詳細な説明する。Example The present invention will be described in detail below based on Examples.

BaTiO388モルチ、Nd2O33モA/ % 、
TiO29モルチの組成を組成1とし、BaTiO3s
 sモルチ、Nd 2053 モ/l/ %、Ti02
9−Eル%、CaTiO31wt%の組成を組成2とす
る。組成1の配合組成のように各原料を秤量し、ボール
ミルで湿式混合した後乾燥した。この原料に、有機バイ
ンダーとしてポリビニルブチラール7wt%、可塑剤と
してジオクチルフタレー)3wt%、溶剤として酢酸n
ブチル50wt%を加え湿式混練し、濾過、脱泡後、8
層μmの厚みのシートを成形した。次に組成2について
も同様にして、厚み20μmのシートを成形した。
BaTiO388molti, Nd2O33moA/%,
The composition of TiO29 mortar is composition 1, and BaTiO3s
smolti, Nd 2053 mo/l/%, Ti02
A composition of 9-El% and 1wt% of CaTiO3 is defined as composition 2. Each raw material was weighed as in the composition of Composition 1, wet mixed in a ball mill, and then dried. This raw material contains 7 wt% polyvinyl butyral as an organic binder, 3 wt% dioctyl phthalate as a plasticizer, and acetic acid n as a solvent.
After adding 50 wt% of butyl and wet kneading, filtering and defoaming,
A sheet with a thickness of .mu.m was molded. Next, a sheet having a thickness of 20 μm was molded for Composition 2 in the same manner.

それぞれのシートを70mmX 130mmの形状に裁
断し、組成2のシート1層の上に組成1のシートを6層
積層し、さらにその上に組成2のシートを1層積層した
。次にこれらの積層体を圧着し、7mmX7mmの形状
に切断した。次にこれらをバインダーを除去した後、空
気中1300’Cの温度で2時間焼成して誘電体磁器を
得た。次にこれらの誘電体磁器を還元雰囲気(N2:u
2=95:5)中で1000℃で4時間還元処理し、さ
らに空気中で、1ooo℃で4時間再酸化処理して表面
誘電体層を形成した。次に両面の所定の位置に銀ペース
トをスクリーン印刷し、850’Cで焼付けて電極を形
成した。得られた還元再酸化型半導体コンデンサの断面
を第2図に、また、成形体シートの圧着体を第1図に示
す。第1図の組成2の成形体シート4の部分が第2図の
表面誘電体層6となり、組成1の成形体シート6の部分
が半導体層7となる。8は対向電極である。ここで、コ
ンデンサとしての特性は、表面誘電体層6を形成する組
成2によって決まる。
Each sheet was cut into a shape of 70 mm x 130 mm, six sheets of composition 1 were laminated on one layer of sheet of composition 2, and one layer of sheet of composition 2 was further laminated thereon. Next, these laminates were crimped and cut into a shape of 7 mm x 7 mm. Next, after removing the binder, these were fired in air at a temperature of 1300'C for 2 hours to obtain dielectric porcelain. Next, these dielectric ceramics were placed in a reducing atmosphere (N2:u
2=95:5) at 1000° C. for 4 hours, and then re-oxidized in air at 100° C. for 4 hours to form a surface dielectric layer. Next, silver paste was screen printed at predetermined positions on both sides and baked at 850'C to form electrodes. FIG. 2 shows a cross section of the obtained reduced and reoxidized semiconductor capacitor, and FIG. 1 shows a pressed body of the molded sheet. The portion of the molded sheet 4 of Composition 2 in FIG. 1 becomes the surface dielectric layer 6 of FIG. 2, and the portion of the molded sheet 6 of Composition 1 becomes the semiconductor layer 7. 8 is a counter electrode. Here, the characteristics as a capacitor are determined by the composition 2 forming the surface dielectric layer 6.

比較用として、組成1をもつ従来の還元再酸化型半導体
コンデンサを作り、特性を比較した。単位面積当りの静
電容量、誘電損失(tanδ)、破壊電圧(BDV)、
及び静電容量のバラツキを測定した結果を第1表に示す
。静電容量及びtanδは0.1 ’I 、 I KH
2(7)条件で測定し、BD”/は昇圧破壊方式を用い
て、コンデンサの両極間に1mA以上の電流が流れる直
前の電圧を測定した。
For comparison, a conventional reduction-reoxidation semiconductor capacitor having composition 1 was made and its characteristics were compared. Capacitance per unit area, dielectric loss (tanδ), breakdown voltage (BDV),
Table 1 shows the results of measuring the variation in capacitance. Capacitance and tan δ are 0.1'I, IKH
Measurements were made under conditions 2(7), and BD''/ was measured using a step-up breakdown method to measure the voltage immediately before a current of 1 mA or more flows between the two poles of the capacitor.

く第  1  表〉 第1表から明らかなように、本発明の製造方法によれば
静電容量等の特性を従来方法と同等に保ちながら、その
バラツキを低減し、BD’/の低下も防ぐことができた
Table 1 As is clear from Table 1, the manufacturing method of the present invention reduces variations in capacitance and other properties while keeping them the same as in the conventional method, and also prevents a decrease in BD'/. I was able to do that.

なお、本実施例では希土類元素酸化物としてNd2O3
を用いたが、他の希土類元素(例えば、La。
Note that in this example, Nd2O3 was used as the rare earth element oxide.
was used, but other rare earth elements (e.g. La.

Ca、Pr、Sm、Eu、Gd、Dyなど)でも良く、
耐還元性添加物としてはζMgTiO3、人β203な
どを用いても良い。
Ca, Pr, Sm, Eu, Gd, Dy, etc.) may be used,
As the reduction-resistant additive, ζMgTiO3, human β203, etc. may be used.

また、組成2の成形体シート4を片面にのみ積層するこ
とによって、第3図に示すような還元再酸化型半導体磁
器コンデンサも容易に製造できる。
Furthermore, by laminating the molded sheet 4 of composition 2 on only one side, a reduction and reoxidation type semiconductor ceramic capacitor as shown in FIG. 3 can be easily manufactured.

発明の効果 以上のように、本発明によれば、BaTi05を主成分
として、希土類元素酸化物を含む組成の成形体シートの
表面に、耐還元性添加物を該成形体組成に添加した組成
の成形体シートを積層した後、焼結して得られた誘電体
磁器を還元・再酸化処理又は、還元処理のみを施して表
面誘電体層を形成することによって、表面誘電体層の厚
みをあらかじめ設定でき、静電容量のバラツキを低減し
、破壊電圧の低下を防ぐことができる。
Effects of the Invention As described above, according to the present invention, a reduction resistant additive is added to the surface of a molded sheet having BaTi05 as a main component and a rare earth element oxide. After laminating the molded sheets, the dielectric ceramic obtained by sintering is subjected to reduction/reoxidation treatment or only reduction treatment to form a surface dielectric layer, so that the thickness of the surface dielectric layer can be adjusted in advance. can be set, reducing variations in capacitance and preventing a drop in breakdown voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の還元再酸化型半導体磁器コンデンサの
製造方法による圧着体の断面図、第2図は本発明の実施
例による還元再酸化型半導体磁器コンデンサの断面図、
第3図は本発明の実施例による還元再酸化型半導体磁器
コンデンサの他の例の断面図、第4図は従来の還元再酸
化型半導体磁器コンデンサの断面図である。 4・・・・・・組成2の成形体シート、5・・・・・・
組成1の成形体シート、6・・・・・・表面誘電体層、
7・・・・・・半導体層、8・・・・・・対向電極。
FIG. 1 is a sectional view of a crimped body according to the method for manufacturing a reduction and reoxidation type semiconductor ceramic capacitor of the present invention, and FIG. 2 is a sectional view of a reduction and reoxidation type semiconductor ceramic capacitor according to an embodiment of the present invention.
FIG. 3 is a sectional view of another example of the reduction and reoxidation type semiconductor ceramic capacitor according to the embodiment of the present invention, and FIG. 4 is a sectional view of a conventional reduction and reoxidation type semiconductor ceramic capacitor. 4... Molded sheet of composition 2, 5...
Molded sheet of composition 1, 6...surface dielectric layer,
7... Semiconductor layer, 8... Counter electrode.

Claims (1)

【特許請求の範囲】[Claims] BaTiO_3を主成分とし、希土類元素酸化物を含む
組成の成形体シートの表面に、耐還元性添加物を前記組
成に添加した組成の成形体シートを積層した後、焼結し
て得られた誘電体磁器を還元再酸化処理又は、還元処理
のみを施すことによって、表面誘電体層を形成すること
を特徴とした還元再酸化型半導体磁器コンデンサの製造
方法。
A dielectric obtained by laminating a molded sheet having a composition in which a reduction-resistant additive is added to the above composition on the surface of a molded sheet having a composition mainly composed of BaTiO_3 and containing a rare earth element oxide, and then sintering the molded sheet. A method for manufacturing a reduction and reoxidation type semiconductor ceramic capacitor, characterized in that a surface dielectric layer is formed by subjecting body ceramic to reduction and reoxidation treatment or only reduction treatment.
JP6663288A 1988-03-18 1988-03-18 Manufacture of reduced reoxidized semiconductor ceramic capacitor Pending JPH01239826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6663288A JPH01239826A (en) 1988-03-18 1988-03-18 Manufacture of reduced reoxidized semiconductor ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6663288A JPH01239826A (en) 1988-03-18 1988-03-18 Manufacture of reduced reoxidized semiconductor ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH01239826A true JPH01239826A (en) 1989-09-25

Family

ID=13321461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6663288A Pending JPH01239826A (en) 1988-03-18 1988-03-18 Manufacture of reduced reoxidized semiconductor ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH01239826A (en)

Similar Documents

Publication Publication Date Title
JP2615977B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
US9688582B2 (en) Dielectric ceramic composition and ceramic electronic device
JPH0666219B2 (en) Multilayer ceramic capacitors
JP3419713B2 (en) Manufacturing method of multilayer ceramic chip capacitor
JPS62256422A (en) Laminated type porcelain capacitor
JP2003277136A (en) Dielectric ceramic composition and multilayer ceramic electronic parts
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JPH0524653B2 (en)
JPH01239826A (en) Manufacture of reduced reoxidized semiconductor ceramic capacitor
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JP3620314B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JPH04188504A (en) Dielectric porcelain composition
JPH0477698B2 (en)
JP2847822B2 (en) Method for manufacturing dielectric porcelain and method for manufacturing multilayer ceramic capacitor
JPH01239828A (en) Manufacture of reduced reoxidized semiconductor ceramic capacitor
JP2681981B2 (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JPH0714741A (en) Multilayer base metal ceramic capacitor and production thereof
JPH01236610A (en) Manufacture of reduction-reoxidation type semiconductor porcelain capacitor
JPH056710A (en) Dielectric porcelain composition
JP2720531B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JPH05283278A (en) Manufacture of laminated ceramic chip capacitor
JPH0518203B2 (en)
JPH01239827A (en) Manufacture of reduced reoxidized semiconductor ceramic capacitor
JP2954298B2 (en) Dielectric porcelain composition
JPH08171814A (en) Dielectric ceramic composition and laminated ceramic capacitor using thereof