JPH0123939B2 - - Google Patents

Info

Publication number
JPH0123939B2
JPH0123939B2 JP13831684A JP13831684A JPH0123939B2 JP H0123939 B2 JPH0123939 B2 JP H0123939B2 JP 13831684 A JP13831684 A JP 13831684A JP 13831684 A JP13831684 A JP 13831684A JP H0123939 B2 JPH0123939 B2 JP H0123939B2
Authority
JP
Japan
Prior art keywords
tube
gas
nozzle
double
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13831684A
Other languages
Japanese (ja)
Other versions
JPS6116531A (en
Inventor
Shigeaki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP13831684A priority Critical patent/JPS6116531A/en
Publication of JPS6116531A publication Critical patent/JPS6116531A/en
Publication of JPH0123939B2 publication Critical patent/JPH0123939B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法に関するもの
であり、半導体基板上に均一性よく、熱酸化薄膜
を設ける製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a thermally oxidized thin film with good uniformity on a semiconductor substrate.

従来例の構成とその問題点 近年、単結晶シリコンあるいは多結晶シリコン
上に熱酸化膜を形成させる方法として、高温酸素
ガス雰囲気中に水素ガスを噴出して、瞬時に酸化
せしめ、水蒸気ガスを生成し、この水蒸気ガスを
半導体基板に至らしめて基板表面を熱酸化する方
法が多く使用されている。かかる方法に使用する
反応管は、通常、多重管構造を有し、反応管内に
設けたノズル内に水素ガスを流通し、ノズルの外
側、即ち、反応管外管に酸素ガスを流通せしめ
る。水素ガスが噴出するノズル先端の温度は、通
常、600℃以上に保ち、噴出した水素ガスが酸素
ガスと瞬時に反応して、水蒸気ガスを生成する。
通常の例では、反応管内径が15cm程度にて、水素
ガス流量は1リツトル()以上、酸素ガスは数
以上流通させる。さらに、非常に薄い熱酸化膜
を、上記方法を用いて、高温で形成せしめる場
合、水素および酸素ガスの分圧を減らすために、
流量を極度に減らして、通常流量の1/10以下に希
釈する必要がある。希釈キヤリヤガスとして、通
常、窒素又はアルゴンガスを、水素および酸素ガ
スに加えて流通せしめるが、反応管内ノズルを用
いて希釈された反応ガスを流入させる場合、酸素
ガス雰囲気中に希釈された水素ガスを流入させる
方法、ないしは希釈酸素ガス雰囲気中に水素ガ
ス、ないしは希釈された水素ガスを流入せしめて
反応を起こさせる方法が、これまで通常、用いら
れている。
Conventional structure and problems In recent years, as a method for forming a thermal oxide film on single-crystal silicon or polycrystalline silicon, hydrogen gas is ejected into a high-temperature oxygen gas atmosphere to instantaneously oxidize and generate water vapor gas. However, a method of thermally oxidizing the surface of a semiconductor substrate by directing this water vapor gas to the semiconductor substrate is often used. The reaction tube used in such a method usually has a multi-tube structure, and allows hydrogen gas to flow through a nozzle provided in the reaction tube, and oxygen gas to flow outside the nozzle, that is, to the outer tube of the reaction tube. The temperature at the tip of the nozzle where hydrogen gas is ejected is usually kept at 600°C or higher, and the ejected hydrogen gas instantly reacts with oxygen gas to generate water vapor.
In a normal example, the inner diameter of the reaction tube is about 15 cm, the flow rate of hydrogen gas is 1 liter or more, and the flow rate of oxygen gas is more than 1 liter. Furthermore, when forming a very thin thermal oxide film at high temperature using the above method, in order to reduce the partial pressure of hydrogen and oxygen gas,
It is necessary to extremely reduce the flow rate and dilute it to less than 1/10 of the normal flow rate. Usually, nitrogen or argon gas is added to hydrogen and oxygen gas to flow as a diluted carrier gas. However, when diluted reaction gas is introduced using a nozzle in the reaction tube, diluted hydrogen gas is added to the oxygen gas atmosphere. Up to now, a method of causing a reaction by flowing hydrogen gas or diluted hydrogen gas into a diluted oxygen gas atmosphere has been commonly used.

かかる方法で、水素ガスと酸素ガスを反応させ
水蒸気ガスを生成させると、希釈キヤリヤガスの
速い流れによる反応の場所的および時間的不均一
が生じ、その結果、半導体基板上に形成された熱
酸化薄膜の膜厚にバラツキが生ずる欠点がある。
When hydrogen gas and oxygen gas are reacted to produce water vapor gas in such a method, the rapid flow of the diluted carrier gas causes spatial and temporal non-uniformity of the reaction, resulting in a thermally oxidized thin film formed on the semiconductor substrate. The disadvantage is that the film thickness varies.

発明の目的 本発明は、上記の欠点を除去し、半導体基板上
に膜厚バラツキの少ない熱酸化薄膜を形成する半
導体装置の製造方法を提案するものである。
OBJECTS OF THE INVENTION The present invention proposes a method for manufacturing a semiconductor device that eliminates the above-mentioned drawbacks and forms a thermally oxidized thin film with less variation in film thickness on a semiconductor substrate.

発明の構成 本発明の方法は、水素ガスと酸素ガスを不活性
キヤリヤガスで希釈する前に完全に反応させ、水
蒸気ガスを生成した後、希釈するものであり、こ
の方法と従来の方法との相違点は反応管内に設け
たノズルを二重管構造にして、ノズルの内管に水
素ガスを、ノズルの外管に酸素ガスを流通させ
る。この場合、外管を内管よりも長く設け、内管
の先端より外管が外に突出する構造にしておく、
さらにノズル後方の位置で、反応管の最後部より
不活性キヤリヤガスの導入口を1個所乃至複数個
所設ける。
Structure of the Invention The method of the present invention involves completely reacting hydrogen gas and oxygen gas before diluting them with an inert carrier gas to generate water vapor gas, which is then diluted. The point is that the nozzle provided in the reaction tube has a double-tube structure, and hydrogen gas flows through the inner tube of the nozzle, and oxygen gas flows through the outer tube of the nozzle. In this case, the outer tube is longer than the inner tube, and the outer tube protrudes outward from the tip of the inner tube.
Furthermore, at a position behind the nozzle, one or more inlet ports for inert carrier gas are provided from the rear end of the reaction tube.

かかる試料の構造を有する反応管を用いれば、
ノズル内管に導入された水素ガスは、ノズル内管
の先端よりノズル外管中に噴出して、ここでノズ
ル外管に導入された酸素ガスと瞬時に反応して水
蒸気ガスを生成する。このようにして生成された
水蒸気ガスはノズル外管より反応管中に流出し
て、希釈キヤリヤガスにより始めて希釈され、半
導体基板に向つて移送される。即ち、水素ガスと
酸素ガスの反応が完全に行なわれた後に希釈さ
れ、キヤリヤガスにより基板上に均一に移送され
るため、基板上での酸化反応が均一になり、膜厚
のバラツキの少ない熱酸化膜の形成が可能にな
る。
If a reaction tube having such a sample structure is used,
The hydrogen gas introduced into the nozzle inner tube is ejected from the tip of the nozzle inner tube into the nozzle outer tube, where it instantly reacts with the oxygen gas introduced into the nozzle outer tube to generate water vapor gas. The water vapor gas thus generated flows out from the nozzle outer tube into the reaction tube, is first diluted by the diluent carrier gas, and is transported toward the semiconductor substrate. In other words, after the hydrogen gas and oxygen gas have completely reacted, they are diluted and transferred uniformly onto the substrate by the carrier gas, resulting in a uniform oxidation reaction on the substrate and thermal oxidation with less variation in film thickness. This allows for the formation of a film.

実施例の説明 以下、図面を用いて本発明を詳細に説明する。Description of examples Hereinafter, the present invention will be explained in detail using the drawings.

図は、本発明の一実施例にかかる熱酸化薄膜形
成に用いる反応管の構造を模式的に示したもので
ある。図において、1は反応管で細長い円筒状の
石英管等により形成され、端部に2〜4よりなる
二重管構造ノズルと、不活性キヤリヤガスの導入
口5とを有する。二重管構造ノズルは、水素ガス
を流通せしめる内管2と酸素ガスを流通せしめる
外管3により構成される。外管3は、内管2より
長く設け、突出部4を有する。6は半導体基板を
支持するボートを示し、7は熱酸化膜を形成すべ
き半導体基板を示す。8は二重管ノズルおよび半
導体基板を加熱する炉の発熱体を示す。
The figure schematically shows the structure of a reaction tube used for forming a thermally oxidized thin film according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a reaction tube, which is formed of an elongated cylindrical quartz tube or the like, and has a double tube structure nozzle consisting of 2 to 4 at its end, and an inert carrier gas inlet 5. The double tube structure nozzle is composed of an inner tube 2 through which hydrogen gas flows and an outer tube 3 through which oxygen gas flows. The outer tube 3 is longer than the inner tube 2 and has a protrusion 4. 6 indicates a boat that supports a semiconductor substrate, and 7 indicates a semiconductor substrate on which a thermal oxide film is to be formed. 8 shows a double tube nozzle and a heating element of a furnace for heating a semiconductor substrate.

次に、直径100mmのシリコンウエーハ7に熱酸
化薄膜を形成する方法の具体例をのべる。反応管
1に内径150mmの石英管を用いる。二重管ノズル
部の構造は、直径10mm、長さ15cmの先端を開口と
した円筒管2に、毎分10c.c.乃至100c.c.の水素ガス
を流通させ、直径30mm、長さ20cmの先端を開口と
した外管3に、毎分20c.c.乃至200c.c.の酸素ガスを
流通せしめる。毎分10の窒素ガス乃至アルゴン
ガスを希釈ガスとして導入口5より流通せしめ
る。
Next, a specific example of a method for forming a thermally oxidized thin film on a silicon wafer 7 having a diameter of 100 mm will be described. A quartz tube with an inner diameter of 150 mm is used as the reaction tube 1. The structure of the double tube nozzle part is that hydrogen gas is passed through a cylindrical tube 2 with a diameter of 10 mm and a length of 15 cm with an opening at the tip at a rate of 10 c.c. to 100 c.c. per minute, and a diameter of 30 mm and a length of 20 cm. 20 c.c. to 200 c.c. per minute of oxygen gas is made to flow through the outer tube 3 whose tip is open. Nitrogen gas or argon gas is passed through the inlet 5 as a diluent gas at a rate of 10 per minute.

電気炉発熱体8により、ノズル先端部5は、
600℃以上の温度に、シリコンウエーハ7は、
1000℃乃至1200℃に加熱する。かかる条件下にお
いて、ノズル内管2より、外管3の先端部4に噴
出した微量水素ガスは、ここで微量酸素ガスと反
応して、微量の水蒸気ガスを生成する。反応生成
された水蒸気ガスは、ノズル先端部4より反応管
1内に流れ出し、ここで多量の不活性キヤリヤガ
スにより均一に希釈され、シリコンウエーハ7に
移送され、シリコンウエーハ表面に均一な熱酸化
薄膜を形成する。かかる方法によりウエーハ内、
ウエーハ間で膜厚バラツキの少ない数10乃至数
100オングストローム(Å)の熱酸化膜を形成す
ることができる。さらに不活性キヤリヤガスの流
れを均一にするために導入口5を複数個所設ける
こと、および二重管ノズルとボート6の間に邪魔
板を設けることも、本発明の効果を高めることに
役立つ。
The electric furnace heating element 8 causes the nozzle tip 5 to
The silicon wafer 7 is exposed to temperatures of 600℃ or higher.
Heat to 1000°C to 1200°C. Under such conditions, a trace amount of hydrogen gas ejected from the nozzle inner tube 2 to the tip 4 of the outer tube 3 reacts with a trace amount of oxygen gas to generate a trace amount of water vapor gas. The water vapor gas produced by the reaction flows out from the nozzle tip 4 into the reaction tube 1, where it is uniformly diluted with a large amount of inert carrier gas, and transferred to the silicon wafer 7, forming a uniform thermal oxidation thin film on the silicon wafer surface. Form. By this method, inside the wafer,
Number 10 to number 10 with little variation in film thickness between wafers
A thermal oxide film of 100 angstroms (Å) can be formed. Further, providing a plurality of inlet ports 5 to make the flow of the inert carrier gas uniform, and providing a baffle plate between the double pipe nozzle and the boat 6 also help to enhance the effects of the present invention.

発明の効果 本発明によると、二重管構造を有するノズル反
応管構成とすることにより、ノズル内管に水素ガ
スを導入し、外管内に導入した酸素ガスと高温で
完全に反応させることができるため、完全に水蒸
気とした後、石英反応管内の半導体基板まで送出
されるので半導体基板上に均一な酸化膜を形成す
ることができる。
Effects of the Invention According to the present invention, by adopting a nozzle reaction tube configuration having a double tube structure, hydrogen gas can be introduced into the nozzle inner tube and completely reacted with oxygen gas introduced into the outer tube at high temperature. Therefore, after being completely turned into water vapor, it is sent to the semiconductor substrate in the quartz reaction tube, so that a uniform oxide film can be formed on the semiconductor substrate.

以上、シリコンウエーハの熱酸化を例として、
本発明を説明してきたが、他の半導体基板または
金属基板等の表面に熱酸化薄膜を設ける場合にお
いても、同様な方法で、均一性のよい膜厚を有す
る熱酸化膜が得られることはいうまでもない。特
に、高温で多量の希釈不活性ガスを用いて、従来
方法では形成が困難な数10Åの熱酸化膜を形成す
る場合において、本発明は多大の効果を奏するも
のである。
The above is an example of thermal oxidation of silicon wafers.
Although the present invention has been described, it is possible to obtain a thermally oxidized film having a uniform thickness using the same method even when a thermally oxidized thin film is provided on the surface of other semiconductor substrates or metal substrates. Not even. In particular, the present invention is highly effective when forming a thermal oxide film of several tens of angstroms, which is difficult to form using conventional methods, using a large amount of diluted inert gas at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の半導体装置の製造方法に使用され
る装置の一実施例を示す断面図である。 1……反応管、2……二重ノズル内管、3……
二重ノズル外管、4……二重ノズル外管突出部、
5……希釈ガス導入口、6……ボート、7……半
導体ウエーハ、8……加熱炉。
The figure is a cross-sectional view showing one embodiment of a device used in the method of manufacturing a semiconductor device of the present invention. 1...Reaction tube, 2...Double nozzle inner tube, 3...
Double nozzle outer tube, 4...Double nozzle outer tube protrusion,
5... Dilution gas inlet, 6... Boat, 7... Semiconductor wafer, 8... Heating furnace.

Claims (1)

【特許請求の範囲】 1 二重構造のノズルを有する多重管構造反応管
を用い、二重構造ノズルの内管に水素ガスを流通
し、外管に酸素ガスを流通せしめて、前記二重管
構造ノズルの外管内で水素ガスと酸素ガスを反応
させた後に、反応管外管に流通させた不活性キヤ
リヤガスで希釈して、半導体基板に希釈水蒸気ガ
スを至らしめ、同半導体基板に酸化することを特
徴とする半導体装置の製造方法。 2 二重管構造ノズルに、先端部を、反応ガスの
流出開口部とする同心円筒状の石英管を用いる特
許請求の範囲第1項記載の半導体装置の製造方
法。
[Claims] 1. Using a multi-tube structure reaction tube having a double structure nozzle, hydrogen gas is passed through the inner tube of the double structure nozzle, and oxygen gas is caused to flow through the outer tube, so that the double tube structure is After hydrogen gas and oxygen gas are reacted in the outer tube of the structural nozzle, they are diluted with an inert carrier gas passed through the reaction tube outer tube, and the diluted water vapor gas is brought to the semiconductor substrate to oxidize the semiconductor substrate. A method for manufacturing a semiconductor device, characterized by: 2. The method of manufacturing a semiconductor device according to claim 1, wherein the double-tube structure nozzle includes a concentric cylindrical quartz tube whose tip portion serves as an outflow opening for the reaction gas.
JP13831684A 1984-07-03 1984-07-03 Manufacture of semiconductor device Granted JPS6116531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13831684A JPS6116531A (en) 1984-07-03 1984-07-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13831684A JPS6116531A (en) 1984-07-03 1984-07-03 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6116531A JPS6116531A (en) 1986-01-24
JPH0123939B2 true JPH0123939B2 (en) 1989-05-09

Family

ID=15219042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13831684A Granted JPS6116531A (en) 1984-07-03 1984-07-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6116531A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8603111A (en) * 1986-12-08 1988-07-01 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE APPLYING A SILICONE SURFACE ON ITS SURFACE WITH FIELD OXIDE AREAS.
KR970007113B1 (en) * 1987-09-01 1997-05-02 도오교오 에레구토론 사가미 가부시끼 가이샤 Oxdation apparatus
JP2678184B2 (en) * 1988-02-10 1997-11-17 東京エレクトロン株式会社 Oxidation furnace
JPH0669940B2 (en) * 1988-03-16 1994-09-07 ライオン株式会社 Anti-hair graying agent
JPH0867612A (en) * 1989-12-27 1996-03-12 Lion Corp Composition for hair

Also Published As

Publication number Publication date
JPS6116531A (en) 1986-01-24

Similar Documents

Publication Publication Date Title
US4851295A (en) Low resistivity tungsten silicon composite film
US4629635A (en) Process for depositing a low resistivity tungsten silicon composite film on a substrate
JP3207943B2 (en) Low temperature oxide film forming apparatus and low temperature oxide film forming method
JPH0123939B2 (en)
JPS6119101B2 (en)
US5227336A (en) Tungsten chemical vapor deposition method
JPS63283124A (en) Reaction furnace
JPS5821826A (en) Apparatus for manufacturing semiconductor
JPH06151414A (en) Gas-heating system
JPH07176498A (en) Reaction furnace with reaction gas preheater
JPS60147124A (en) Manufacture of semiconductor device
CA1065498A (en) Open tube gallium diffusion process for semiconductor devices
JP3032244B2 (en) Method for manufacturing semiconductor device
JP3156925B2 (en) Cold wall type single-wafer lamp heating furnace
JP3279466B2 (en) Semiconductor wafer processing apparatus and semiconductor device
JPS63216973A (en) System for feeding reactive gas to vapor phase reactor
JP2693465B2 (en) Semiconductor wafer processing equipment
JPH05152236A (en) Manufacture of semiconductor device
JPS62166527A (en) Formation of silicon oxide film
JPS587821A (en) Formation of metal and silicon compound layer
JPH04361527A (en) Surface processing method and application of semiconductor heat treatment jig
JP2005072377A (en) Method for manufacturing semiconductor device and substrate processor
JPS6191933A (en) Manufacturing apparatus of semiconductor device
JPS6390133A (en) Method for dry-etching silicon nitride film
JPS60246281A (en) Nitration for quartz material