JPH01239070A - Metal ceramic bonded material - Google Patents

Metal ceramic bonded material

Info

Publication number
JPH01239070A
JPH01239070A JP6586488A JP6586488A JPH01239070A JP H01239070 A JPH01239070 A JP H01239070A JP 6586488 A JP6586488 A JP 6586488A JP 6586488 A JP6586488 A JP 6586488A JP H01239070 A JPH01239070 A JP H01239070A
Authority
JP
Japan
Prior art keywords
ceramic
metal
recess
solder
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6586488A
Other languages
Japanese (ja)
Other versions
JP2572803B2 (en
Inventor
Nobuo Tsuno
伸夫 津野
Takashi Ando
安藤 孝志
Yoshiatsu Nakasuji
中筋 善淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63065864A priority Critical patent/JP2572803B2/en
Priority to US07/236,145 priority patent/US4942999A/en
Priority to CA000576044A priority patent/CA1319249C/en
Priority to DE3889044T priority patent/DE3889044T2/en
Priority to EP88308054A priority patent/EP0307131B1/en
Priority to US07/312,667 priority patent/US5028162A/en
Priority to EP89301814A priority patent/EP0333339B1/en
Priority to DE68925128T priority patent/DE68925128T2/en
Priority to EP92118285A priority patent/EP0530854B1/en
Priority to DE89301814T priority patent/DE68906692T2/en
Publication of JPH01239070A publication Critical patent/JPH01239070A/en
Application granted granted Critical
Publication of JP2572803B2 publication Critical patent/JP2572803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a metal ceramic bonded material having high bond strength and high reliability at room temperature and high temperature, wherein strong chemical bond between a protruded part of a ceramic member and a solder material is avoided at a bond end part of bonded parts between the outer surface of the protruded part of a ceramic member and an inner surface of a dented part of a metallic member. CONSTITUTION:A protruded part 2 of a ceramic member 1 is bonded to a dented part 4 of a metallic member 3 by soldering by using a solder 5. In the bonding, the solder 5 is not strongly bonded to the dented part 2 of the member 1 by chemical bond at a given distance l from the bond end 6. In order to make this constitution, for example, the dented part 2 of part not to be firmly stuck by chemical bond is coated with a substance such as graphite not to bonded to a solder and ordinary soldering operation is carried out. Namely, the whole inner surface of the dented part 4 of the member 3 at a position to be bonded is electroplated with Ni and part of the distance l not to be chemically bonded from the bond end 6 of a position of the protruded part 2 of the member 1 to be bonded is coated with a graphite, a substance not to be bonded to a solder. Then bonding is carried out by using the active metallic solder to give the aimed metallic ceramic bonded material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミック部材と金属部材とをろう材を介して
一体的に接合してなる金属・セラミックス接合体に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a metal-ceramic bonded body formed by integrally bonding a ceramic member and a metal member via a brazing material.

(従来の技術) ジルコニア、窒化珪素、炭化珪素等のセラミックスは、
機械的強度、耐熱性、耐摩耗性にすぐれているため、ガ
スタービンエンジン部品、エンジン部品等の高温構造材
料あるいは耐摩耗材料として実用化が図られている。し
かし、セラミックスは一般に硬くて脆いため、金属材料
に比較して成形加工性が劣る。また、靭性が乏しいため
、衝撃力に対する抵抗が弱い。このため、セラミック材
料のみでエンジン部品のような機械部品を形成すること
は難しく、一般には金属部材とセラミック部材を接合し
た複合構造体としての形で使用されることが多い。
(Conventional technology) Ceramics such as zirconia, silicon nitride, and silicon carbide are
Because it has excellent mechanical strength, heat resistance, and wear resistance, it is being put into practical use as a high-temperature structural material or wear-resistant material for gas turbine engine parts, engine parts, etc. However, since ceramics are generally hard and brittle, their moldability is inferior to that of metal materials. In addition, since it has poor toughness, it has low resistance to impact forces. For this reason, it is difficult to form mechanical parts such as engine parts only from ceramic materials, and they are generally used in the form of a composite structure in which a metal member and a ceramic member are bonded together.

接合に際して、セラミック部材の凸部外表面を金属部材
の凹部内表面にろう付けにより接合した接合部において
、セラミック部材の凸部外表面と金属部材の凹部内表面
との間に存在するろう材が前記凸部と接する面の全面で
化学的接合により強固に固着した構造の金属・セラミッ
クス接合体が知られている。
During joining, at the joint where the outer surface of the convex part of the ceramic member is joined to the inner surface of the concave part of the metal member by brazing, the brazing material existing between the outer surface of the convex part of the ceramic member and the inner surface of the concave part of the metal member is A metal-ceramic bonded body is known that has a structure in which the entire surface in contact with the convex portion is firmly fixed by chemical bonding.

(発明が解決しようとする課題) 一般に、セラミック部材の凸部と金属部材の凹部とをろ
う付けにより接合する際、ろう材の凝固点から室温まで
温度を下げるとき、金属部材やろう材の熱膨張率が大き
くセラミック部材の熱膨張率が小さいため、熱膨張率の
差により金属部材やろう材の方が収縮量は多くなる。し
かしながら、上述しようにセラミック部材の凸部とろう
材とが接する面の全面で化学的接合により強固に固着し
ている構造においては、降温時の金属部材やろう材の収
縮時にろう材とセラミック部材が強固に固着し、ろう材
とセラミック部材の接合界面でのすべりが不可能である
ため、金属部材やろう材の収縮力がセラミック部材に及
び、セラミック部材中に無理な引張応力が発生する欠点
があった。また、凸部先端表面と凹部底面との関係、さ
らには直径と接合長さの関係には充分な検討が加えられ
ていなかった。
(Problem to be Solved by the Invention) Generally, when joining a convex part of a ceramic member and a concave part of a metal member by brazing, when the temperature is lowered from the freezing point of the brazing material to room temperature, thermal expansion of the metal member or the brazing material occurs. Since the coefficient of thermal expansion of the ceramic member is large and the coefficient of thermal expansion of the ceramic member is small, the amount of shrinkage of the metal member and the brazing material is greater due to the difference in the coefficient of thermal expansion. However, in a structure in which the convex portion of the ceramic member and the brazing material are firmly fixed by chemical bonding on the entire surface of the contact surface as described above, when the metal member or the brazing material contracts when the temperature drops, the brazing material and the ceramic material is firmly fixed and cannot slip at the bonding interface between the brazing material and the ceramic component, so the shrinkage force of the metal component or brazing material is applied to the ceramic component, causing unreasonable tensile stress in the ceramic component. was there. Further, sufficient consideration has not been given to the relationship between the tip surface of the convex portion and the bottom surface of the concave portion, and furthermore, the relationship between the diameter and the joining length.

そのため、特に、セラミック部材中の接合端部には引張
の応力集中が増大し、この応力集中により接合体の曲げ
やねじりに対する強度が低下し、信頼性も低下する欠点
があった。
Therefore, tensile stress concentration increases particularly at the joint ends of the ceramic member, and this stress concentration reduces the strength of the joined body against bending and torsion, resulting in a decrease in reliability.

本発明の目的は上述した課題を解消して、室温ならびに
高温のいずれにおいても接合強度が高く信頼性も高い金
属・セラミックス接合体を提供しようとするものである
An object of the present invention is to solve the above-mentioned problems and provide a metal-ceramic bonded body with high bonding strength and reliability both at room temperature and high temperature.

(課題を解決するための手段) 本発明の金属・セラミックス接合体の第1発明は、セラ
ミック部材に設けた凸部が金属部材に設けた凹部に挿入
されて、しかもろう付けにより一体的に接合されている
構造の金属・セラミックス接合体において、 前記セラミック部材の凸部外表面と金属部材の凹部内表
面との接合部のうちの少なくとも接合端部では、前記凸
部と前記ろう材とが化学的接合により強固に固着してい
ないことを特徴とするものである。
(Means for Solving the Problems) A first aspect of the metal-ceramic joined body of the present invention is that the convex portion provided on the ceramic member is inserted into the recessed portion provided on the metal member, and is integrally joined by brazing. In the metal-ceramic bonded body having a structure, the protrusion and the brazing material are chemically bonded at least at the joint end of the joint between the outer surface of the protrusion of the ceramic member and the inner surface of the recess of the metal member. It is characterized by the fact that it is not firmly fixed by joints.

また、本発明の金属・セラミックス接合体の第2発明は
、セラミック部材に設けた凸部が金属部材に設けた凹部
に挿入されて、しかも前記凸部の外周面と前記凹部の内
周面とがろう付けにより一体的に接合されている構造の
金属・セラミックス接合体において、 前記セラミック部材の凸部先端表面と前記金属部材の凹
部底面との間に空間またはろうと非接合性物質からなる
低弾性中間体を介在させるとともに、この空間または中
間体の厚さGが以下の式を満たすよう構成したことを特
徴とするものであるニ−〉(α−α′ ) x (TS
 −TR)ここで、Ll:金属部材の凹部底面から接合
端までの距get α:金属部材の熱膨張率 α′ :セラミック部材の熱膨張率 TS;ろうの凝固温度 TS:室温。
Further, in a second aspect of the metal-ceramic bonded body of the present invention, the convex portion provided on the ceramic member is inserted into the recessed portion provided on the metal member, and the outer circumferential surface of the convex portion and the inner circumferential surface of the recessed portion In a metal-ceramic bonded body having a structure in which two parts are integrally joined by brazing, there is a space between the tip surface of the convex part of the ceramic member and the bottom face of the concave part of the metal part, or a low elasticity material made of a substance that does not bond with the solder. This is characterized by the interposition of an intermediate body, and a structure in which the thickness G of this space or the intermediate body satisfies the following formula.
-TR) Here, Ll: distance from the bottom of the recess of the metal member to the joint end get α: coefficient of thermal expansion of the metal member α': coefficient of thermal expansion of the ceramic member TS; solidification temperature of the solder TS: room temperature.

さらに、本発明の金属・セラミックス接合体の第3発明
は、セラミック部材に設けた凸部が金属部材に設けた凹
部に挿入されて、しかもろう付けにより一体的に接合さ
れている構造の金属・セラミックス接合体において、 前記金属部材の凹部とセラミック部材の凸部との間の軸
方向の接合長さをL2、該凸部の直径をDとしたときに
、 0.2 ≦L2/D≦0.39 の関係を満たすように接合することを特徴とするもので
ある。
Furthermore, the third aspect of the metal/ceramic bonded body of the present invention is a metal/ceramic bonded body having a structure in which a protrusion provided on a ceramic member is inserted into a recess provided in a metal member and is integrally joined by brazing. In the ceramic bonded body, when the axial joining length between the concave portion of the metal member and the convex portion of the ceramic member is L2, and the diameter of the convex portion is D, 0.2≦L2/D≦0 It is characterized by being joined so as to satisfy the following relationship: .39.

(作 用) 上述した第1発明の構成において、前記接合部のうち少
なくとも接合端部では、ろう材とセラミック部材の凸部
が化学的接合により強固に固着していないため、セラミ
ック部材中の接合端部に金属部材あるいはろう材とセラ
ミック部材との間の熱膨張差による引張の応力集中が低
減され、接合体の曲げやねじりに対する強度が増大して
信頼性も高くなる。また、ろう材のような柔らかい金属
がセラミック部材の凸部と金属部材の凹部の間に介在す
るため、緩衝材の効果も得られる。さらに、セラミック
部材と金属部材との化学的接合がおこなわれている接合
界面より外側にもろう材が介在するため、腐食性のガス
が化学的接合がおこなわれている接合界面に浸入するこ
とを防ぐことができる。
(Function) In the configuration of the first invention described above, at least at the joint end of the joint part, the brazing material and the convex part of the ceramic member are not firmly fixed by chemical bonding, so that the joint in the ceramic member is not firmly fixed. The tensile stress concentration due to the difference in thermal expansion between the metal member or brazing material and the ceramic member at the end portion is reduced, and the strength of the joined body against bending and torsion is increased, resulting in higher reliability. Furthermore, since a soft metal such as a brazing material is interposed between the convex portion of the ceramic member and the concave portion of the metal member, the effect of a cushioning material can also be obtained. Furthermore, since the brazing material is present outside the bonding interface where the chemical bonding between the ceramic component and the metal component is occurring, it is possible to prevent corrosive gases from entering the bonding interface where the chemical bonding is occurring. It can be prevented.

さらに、前記接合部のろう材がセラミック部材の凸部外
周面全面と化学的接合により強固に固着していない接合
体は、後述の実施例で示すように曲げ強度が最も高いた
め、ターボチャージャロータのような曲げ荷重がかかる
部品には好適に適用できる。
Furthermore, a bonded body in which the brazing material of the bonded part is not firmly fixed to the entire outer circumferential surface of the convex part of the ceramic member through chemical bonding has the highest bending strength as shown in the examples below, and therefore the turbocharger rotor It can be suitably applied to parts that are subjected to bending loads such as.

しかし、ろう材が前記凸部外周面全面と化学的接合によ
り強固に固着していない接合体は、接合部全体の温度が
ターボチャージャロータの接合部よりもより高温、例え
ば600℃となると、セラミック部材と金属部材との熱
膨張差による焼ばめ効果が減少するため、接合強度が低
下する心配がある。
However, in a bonded body in which the brazing material is not firmly fixed to the entire outer circumferential surface of the convex portion through chemical bonding, when the temperature of the entire bonded portion becomes higher than that of the bonded portion of the turbocharger rotor, for example, 600°C, the ceramic Since the shrink fit effect due to the difference in thermal expansion between the member and the metal member is reduced, there is a concern that the bonding strength will be reduced.

ここで、ろう材とセラミック部材とが化学的接合により
強固に固着していないとは、ろう材がセラミック部材と
互いに接触して存在しているだけのことであり、ろう材
とセラミック部材とが接触界面で強固な化学的接合をせ
ず、ろう材がセラミック部材を機械的に締め付ける接合
をしている状態を意味している。また、接合端部とは、
前記凹部開口部付近でセラミンク部材とろう材とが接合
した接合部の端部を意味している。
Here, the fact that the brazing material and the ceramic member are not firmly fixed by chemical bonding means that the brazing material and the ceramic material are in contact with each other; This refers to a state in which the brazing material mechanically tightens the ceramic member without making a strong chemical bond at the contact interface. Also, the joint end is
It means the end of the joint where the ceramic member and the brazing material are joined near the opening of the recess.

上述の接合部のうち接合端部でろう材とセラミック部材
とが化学的接合により強固に固着しないようにするため
には、後述の活性金属ろうを用いてろう付けを行なう場
合は、ろうと接合性を持たない物質からなる薄い層をセ
ラミック部材に設けた凸部外表面の接合端部に対応する
位置に形成することにより、また活性金属を含有しない
ろうを用いてろう付けを行なう場合は、セラミック部材
に設けた凸部外表面の接合予定位置のうちの接合端部に
対応する位置以外にはメタライズ層を形成し、接合端部
に対応する位置にはメタライズ層を形成しないことによ
り、達成することができる。
In order to prevent the solder metal and the ceramic member from firmly adhering due to chemical bonding at the joint end of the joint described above, when brazing is performed using the active metal solder described below, it is necessary to By forming a thin layer of a material that does not have any active metal on the outer surface of the ceramic component at a position corresponding to the joining edge, or when brazing with a solder that does not contain active metals, the ceramic This is achieved by forming a metallized layer on the outer surface of the convex part of the member at positions other than those corresponding to the joint ends, and not forming metallized layers at positions corresponding to the joint ends. be able to.

また、金属部材の凹部にはNiメツキを施すことにより
、該凹部とろうとの濡れが良くなるためより好ましい。
Further, it is more preferable to apply Ni plating to the recessed portion of the metal member, since this improves the wettability between the recessed portion and the solder.

なお、金属部材とセラミック部材との接合をセラミック
部材の凸部外周面と金属部材の凹部内周面との間に限定
するとともに、セラミック部材の凸部先端と金属部材凹
部底面との間に空間またはろうと非接合性物質からなる
低弾性中間体または該物質からなる膜を介在させてセラ
ミック部材の凸部先端表面と金属部材の凹部底面との接
合あるいは接触を妨げると、セラミック部材の凸部先端
および接合端部での残留応力による応力集中が緩和され
、曲げやねじりに対し破壊しにくく、信頼性が高い金属
・セラミックス接合体を得ることができ、さらに好まし
い。
Note that the bonding between the metal member and the ceramic member is limited between the outer peripheral surface of the protrusion of the ceramic member and the inner peripheral surface of the recess of the metal member, and a space is created between the tip of the protrusion of the ceramic member and the bottom of the recess of the metal member. Alternatively, if a low-elasticity intermediate made of wax and a non-bonding substance or a film made of the substance is interposed to prevent bonding or contact between the top surface of the convex part of the ceramic member and the bottom surface of the concave part of the metal member, the tip of the convex part of the ceramic member Furthermore, it is possible to obtain a highly reliable metal-ceramic bonded body that is less likely to break due to bending or twisting and is more preferable because the stress concentration due to residual stress at the bonded end is alleviated.

また、上記凸部外周面と金属部材凹部内周面との接触部
のみでろう付けすると、接合端に発生する残留応力を緩
和でき、さらに接合端部以外の接合部ではろうとセラミ
ック部材ならびに金属部材が化学的接合により強固に固
着し、両部材の間に強固な接合部が形成されるために室
温から高温までの接合強度が強くなるばかりでなく、接
合温度からの冷却に際して焼成め効果が付加されるので
、安定して高強度が得られ好ましい。
Furthermore, by brazing only the contact area between the outer circumferential surface of the convex portion and the inner circumferential surface of the concave portion of the metal member, the residual stress generated at the joint end can be alleviated, and furthermore, at the joint portion other than the joint end, the solder and the ceramic member and the metal member is firmly fixed by chemical bonding, and a strong bond is formed between both parts, which not only increases the bonding strength from room temperature to high temperature, but also adds a firing effect when cooling from the bonding temperature. This is preferable because high strength can be stably obtained.

接合部の上記位置への限定は、ろうと接合性を持たない
物質からなる薄い膜をセラミック部材に設けた凸部先端
表面へ形成させることや、該物質からなる中間体または
空間を金属部材に設けた凹部底面とセラミック部材に設
けた凸部先端表面との間に配置すること、およびそれら
を組合せて行う。
The bonding portion can be limited to the above position by forming a thin film made of a substance that does not have bonding properties with wax on the tip surface of the convex part provided on the ceramic member, or by providing an intermediate body or space made of the substance on the metal member. The ceramic member may be disposed between the bottom surface of the concave portion and the tip surface of the convex portion provided on the ceramic member, or a combination thereof may be performed.

ここで、凸部外周面とは凸部の外側側面のことであり、
凸部先端表面を含まないが、凸部外表面とは凸部の外側
表面全体のことであり、凸部先端表面を含む。同様に、
凹部内周面とは凹部の内側側面のことであり、凹部底面
を含まないが、凹部内表面とは凹部の内側表面全体のこ
とであり、凹部底面を含む。
Here, the outer circumferential surface of the convex portion refers to the outer side surface of the convex portion,
Although it does not include the tip surface of the convex portion, the outer surface of the convex portion refers to the entire outer surface of the convex portion and includes the tip surface of the convex portion. Similarly,
The inner peripheral surface of the recess refers to the inner side surface of the recess and does not include the bottom surface of the recess, but the inner surface of the recess refers to the entire inner surface of the recess and includes the bottom surface of the recess.

上述した第2発明の構成において、使用する金属、セラ
ミックス、ろうの各材料により決定される厚さGの空間
またはろうと非接合性物質からなる低弾性中間体を設け
ることにより、セラミック部材と金属部材との間の熱膨
張差によるセラミック部材の凸部先端表面と金属部材の
凹部底面との相互干渉を防止するとともに、セラミック
部材と金属部材との接合界面における接合端部での残留
応力による応力集中が低減され、その結果曲げやねじり
に対して十分な強度を有し、信頼性の高い接合体を得る
ことができる。厚さGが(α−α′)X (TS −T
ll ) XLI以上であればよいのは、ろう付は時の
冷却期間中で考え得る金属部材とセラミック部材との熱
膨張差による収縮量の差以上の空間または中間体を設け
れば、少なくとも金属部材の凹部底面とセラミック部材
の凸部先端表面とが直接接触し相互干渉しないためであ
る。
In the configuration of the second invention described above, the ceramic member and the metal member can be bonded by providing a space having a thickness G determined by each material of the metal, ceramic, and solder used, or by providing a low-elasticity intermediate made of a substance that does not bond with the solder. This prevents mutual interference between the top surface of the protrusion of the ceramic member and the bottom surface of the recess of the metal member due to the difference in thermal expansion between them, and also prevents stress concentration due to residual stress at the joint end at the joint interface between the ceramic member and the metal member. As a result, a joined body having sufficient strength against bending and torsion and high reliability can be obtained. Thickness G is (α−α′)X (TS −T
ll) XLI or above is sufficient for brazing, as long as a space or an intermediate body larger than the difference in shrinkage due to the thermal expansion difference between the metal member and the ceramic member during the cooling period is provided. This is because the bottom surface of the concave portion of the member and the tip surface of the convex portion of the ceramic member are in direct contact and do not interfere with each other.

なお、該空間や該中間体の厚さGはろう付は時のろうの
凝固点温度において設けられる厚さであればよい。また
、該厚さの管理が難しいため、該厚さGはろう付けし冷
却後において設けられた厚さであるほうがより好ましい
。さらに、該中間体の厚さGとしては、接合前の室温に
おける厚さであってもよい。この場合は、量産化するに
際し、該厚さを管理することにより、容易に接合強度が
大きく、信頼性の高い接合体を得ることができる。
Note that the thickness G of the space and the intermediate body may be a thickness provided at the freezing point temperature of the solder during brazing. Moreover, since it is difficult to control the thickness, it is more preferable that the thickness G is a thickness provided after brazing and cooling. Furthermore, the thickness G of the intermediate may be the thickness at room temperature before bonding. In this case, by controlling the thickness during mass production, a bonded body with high bonding strength and high reliability can be easily obtained.

接合部として、ろう付けをセラミック部材に設けた凸部
の外周面と金属部材に設けた凹部の内周面との間で行な
うとともに、前記凸部先端表面と前記凹部底面との間に
空間またはろうと非接合物質からなる中間体を介在させ
る方法としては、ろうと接合性を持たない物質からなる
薄い膜を前記凸部先端表面に形成させることや、該物質
からなる中間体を前記凹部底面と前記凸部先端表面との
間に配置すること、およびそれらを組合せて行う。
As a joint, brazing is performed between the outer circumferential surface of a convex portion provided on a ceramic member and the inner circumferential surface of a concave portion provided on a metal member, and a space or Methods for interposing an intermediate made of a substance that does not bond to the wax include forming a thin film made of a substance that does not bond to the wax on the tip surface of the convex portion, or interposing an intermediate made of the substance between the bottom surface of the concave portion and the surface of the convex portion. and the tip surface of the convex portion, and a combination thereof.

上述した第3発明の構成において、金属部材凸部直径で
あるDにより最適な接合長さし2を選択することにより
、セラミック部材と金属部材との熱膨張差に起因する接
合部の接合端部に発生する応力集中を低減することがで
き、その結果、接合体の曲げやねじりに対する強度が向
上して信頼性も向上する。ここで、L2/Dの値が0.
2以上で0.39以下と限定したのは、後述する実施例
から明らかなように、L2/Dの値が0.39よりも大
きいと破壊曲げ荷重が低下して所望の強度を達成できな
いためである。また、L2/Dの値が0.2未満である
とろう付は面積が減少し、接合強度が低下するため、引
張強度が低下するとともに、セラミック部材の凸部が金
属部材の凹部とのろう付は部より容易に離脱するためで
ある。
In the configuration of the third invention described above, by selecting the optimal bonding length 2 based on the diameter D of the convex portion of the metal member, the bonding end of the bonding portion due to the difference in thermal expansion between the ceramic member and the metal member can be reduced. As a result, the strength of the joined body against bending and torsion is improved, and reliability is also improved. Here, the value of L2/D is 0.
The reason why it is limited to 2 or more and 0.39 or less is because, as is clear from the examples described later, if the value of L2/D is larger than 0.39, the breaking bending load decreases and the desired strength cannot be achieved. It is. In addition, if the value of L2/D is less than 0.2, the brazing area will decrease and the bonding strength will decrease, resulting in a decrease in tensile strength and the possibility that the convex part of the ceramic member will not meet the concave part of the metal member. The reason for this is that it can be easily removed from the part.

ただし、接合長さL2とは金属部材の凹部内周面とセラ
ミック部材の凸部外周面との間でろう材により接合され
た長さである。
However, the bonding length L2 is the length of the bond between the inner circumferential surface of the recess of the metal member and the outer circumferential surface of the convex portion of the ceramic member by the brazing material.

なお、金属部材とセラミック部材との接合をセラミック
部材の凸部外周面と金属部材の凹部内周面との間に限定
するとともに、セラミック部材の凸部先端と金属部材凹
部底面との間に空間またはろうと非接合性物質からなる
低弾性中間体または該物質からなる膜を介在させてセラ
ミック部材の凸部先端表面と金属部材の凹部底面との接
合あるいは接触を妨げると、セラミック部材の凸部先端
および接合端部での残留応力による応力集中が緩和され
、曲げやねじりに対し破壊しにくく、信頼性が高い金属
・セラミックス接合体を得ることができ、さらに好まし
い。
Note that the bonding between the metal member and the ceramic member is limited between the outer peripheral surface of the protrusion of the ceramic member and the inner peripheral surface of the recess of the metal member, and a space is created between the tip of the protrusion of the ceramic member and the bottom of the recess of the metal member. Alternatively, if a low-elasticity intermediate made of wax and a non-bonding substance or a film made of the substance is interposed to prevent bonding or contact between the top surface of the convex part of the ceramic member and the bottom surface of the concave part of the metal member, the tip of the convex part of the ceramic member Furthermore, it is possible to obtain a highly reliable metal-ceramic bonded body that is less likely to break due to bending or twisting and is more preferable because the stress concentration due to residual stress at the bonded end is alleviated.

また、上記凸部外周面と金属部材凹部内周面との接触部
のみでろう付けすると、接合端部に発生する残留応力を
緩和でき、さらにろうとセラミック部材ならびに金属部
材が反応し、両部材の間に強固な接合部が形成されるた
めに室温から高温までの接合強度が強くなるばかりでな
く、接合温度からの冷却に際して焼成め効果が付加され
るので、安定して高強度が得られ好ましい。
Furthermore, by brazing only the contact area between the outer circumferential surface of the convex portion and the inner circumferential surface of the concave portion of the metal member, the residual stress generated at the joint end can be alleviated, and furthermore, the solder reacts with the ceramic member and the metal member, causing the bonding of both members. Since a strong joint is formed between the two, not only does the joint strength from room temperature to high temperature become stronger, but also a firing effect is added when cooling from the joining temperature, so high strength can be stably obtained, which is preferable. .

接合部の上記位置への限定は、ろうと接合性を持たない
物質からなる薄い膜をセラミック部材に設けた凸部先端
表面へ形成させることや、該物質からなる中間体または
空間を金属部材に設けた凹部底面とセラミック部材に設
けた凸部先端表面との間に配置すること、およびそれら
を組合せて行う。
The bonding portion can be limited to the above position by forming a thin film made of a substance that does not have bonding properties with wax on the tip surface of the convex part provided on the ceramic member, or by providing an intermediate body or space made of the substance on the metal member. The ceramic member may be disposed between the bottom surface of the concave portion and the tip surface of the convex portion provided on the ceramic member, or a combination thereof may be performed.

ろうと接合性を持たない物質の一例としては、黒鉛があ
る。前記凸部先端表面への黒鉛膜の形成は、黒鉛粒子懸
濁液を刷毛またはスプレーによる塗布、あるいは浸漬な
どで容易に行うことができる。また、前記中間体として
は、例えば黒鉛繊維からなるスライバー、フェルト、ウ
ェブ、ウェブ焼結体、織布のような低弾性体を単独でま
たは組合わせて使用すると好ましい。
Graphite is an example of a material that does not bond with solders. The graphite film can be easily formed on the tip surface of the convex portion by applying a graphite particle suspension with a brush or spray, or by dipping. Further, as the intermediate body, it is preferable to use a low elastic body such as a sliver made of graphite fiber, felt, web, web sintered body, or woven fabric alone or in combination.

さらに、前記中間体を前記凸部先端表面と前記凹部底面
との間に介在させると、接合部位の限定を容易にしかも
確実に行なえるので、接合後にセラミック部材の接合端
に生じる残留応力の低減と管理が可能となり、接合強度
の増大とばらつきの減少が達成される。
Furthermore, when the intermediate body is interposed between the tip surface of the convex portion and the bottom surface of the recessed portion, the joining area can be easily and reliably limited, thereby reducing residual stress generated at the joining end of the ceramic member after joining. This makes it possible to increase bond strength and reduce variation.

低弾性体からなる中間体の介在は、ろうと前記凹部底面
との接合を阻止する効果だけでなく、接合温度からの冷
却に際しセラミック部材と金属部材との収縮量の差によ
り生じる前記凸部先端と前記凹部底面の相互干渉を防止
し、接合部に過大な残留応力が発生することを阻止する
効果と、溶融したろうを凸部外周面と凹部内周面の間の
隙間に効率良く浸透させる効果も有している。
The interposition of the intermediate body made of a low elastic material not only has the effect of preventing the solder from joining with the bottom surface of the concave portion, but also prevents the tip of the convex portion caused by the difference in the amount of shrinkage between the ceramic member and the metal member upon cooling from the bonding temperature. The effect of preventing mutual interference between the bottom surfaces of the recess and the generation of excessive residual stress in the joint, and the effect of efficiently penetrating the molten solder into the gap between the outer peripheral surface of the convex part and the inner peripheral surface of the recess. It also has

セラミック部材と金属部材とのろう付けによる接合を行
なうために使用するろう材は、セラミック部材と化学的
接合が可能な活性金属元素を含有する活性金属ろうであ
ると好ましい。
The brazing material used to join the ceramic member and the metal member by brazing is preferably an active metal brazing material containing an active metal element capable of chemically bonding to the ceramic member.

該ろうとしては、活性金属元素を含む合金ろうであって
もよいし、金属基材の上に活性金属元素を被覆した構造
のろう材でもよい。ろう材に対する活性金属の添加量の
調整、取り扱いの容易さあるいは製造の容易さを考慮す
ると、金属基材の上に活性金属元素を被覆した構造のろ
う材の使用が好ましく、金属基材の上に活性金属元素を
蒸着した構造のろう材の使用がより好ましい。このよう
な活性金属元素としては、被接合セラミック部材が少な
くとも窒化物および/または炭化物を含むセラミックス
の場合には、Zr、 Ti、 Ta、 Hf、  V。
The solder may be an alloy solder containing an active metal element, or a brazing material having a structure in which a metal base material is coated with an active metal element. Considering adjustment of the amount of active metal added to the brazing filler metal, ease of handling, and ease of manufacturing, it is preferable to use a brazing filler metal with a structure in which the active metal element is coated on the metal base. It is more preferable to use a brazing material having a structure in which an active metal element is vapor-deposited. Examples of such active metal elements include Zr, Ti, Ta, Hf, and V when the ceramic member to be joined is a ceramic containing at least a nitride and/or a carbide.

Cr、 La、 Sc、  YおよびMoからなる群か
ら選ばれた少なくとも一種の金属元素が好ましく、被接
合セラミック部材が酸化物セラミックスの場合には、B
e、 ZrおよびT1からなる群から選ばれる少なくと
も一種の金属元素が好ましい。
At least one metal element selected from the group consisting of Cr, La, Sc, Y and Mo is preferable, and when the ceramic member to be joined is an oxide ceramic, B
At least one metal element selected from the group consisting of e, Zr and T1 is preferred.

上記活性金属ろうは、セラミックスとの濡れ性が良いの
で、セラミック部材に対してメタライズ処理のような特
別な前処理をする必要はない。また、金属部材に対して
はNiメツキをすればろうに対しての濡れが良くなる。
Since the active metal solder has good wettability with ceramics, there is no need to perform special pretreatment such as metallization treatment on the ceramic member. Furthermore, if the metal member is plated with Ni, it will be better wetted by the wax.

従って、該ろうを使用すれば所定の接合位置へ毛細管現
象を利用して溶融ろうを浸透させることができるので、
接合予定位置にろう材を配置せずとも被接合部に形成す
る隙間の管理を行うだけで、気泡やひけなどの欠陥の少
ないろう付けを行うことができる。
Therefore, if this solder is used, it is possible to infiltrate the molten solder into a predetermined joining position using capillary action.
Even without placing a brazing material at the planned joining position, brazing can be performed with fewer defects such as bubbles and sink marks by simply managing the gap formed in the parts to be joined.

活性金属を含有しないろうで例えば、上述の第1発明の
接合体のろう付けを行う場合は、セラミック部材の凸部
外表面の接合予定位置のうち接合端部と対応する以外の
位置にメタライズ層を設けて該メタライズ層にN1メツ
キを施し、より好ましくは金属部材の凹部内表面の少な
くとも接合予定位置にN1メンキを施すことにより、上
述の活性金属を含むろうの場合と同様の効果が得られる
。この場合、メタライズ層を設けていない凸部の接合端
部の対応位置では、存在するろう材と凸部とが化学的接
合により強固に固着していない。同様に凸部先端表面に
メタライズ層を設けないと、ろうとセラミックが反応し
ないので接合されず、凸部先端表面と凹部底面との間に
空間が形成される。
For example, when brazing the joined body of the first invention described above with a solder that does not contain an active metal, a metallized layer is placed at a position other than the joint end of the planned joint position on the outer surface of the convex part of the ceramic member. By applying N1 plating to the metallized layer, and more preferably applying N1 plating to at least the intended bonding position on the inner surface of the recess of the metal member, the same effect as in the case of the above-mentioned active metal-containing solder can be obtained. . In this case, the existing brazing material and the protrusion are not firmly fixed by chemical bonding at the corresponding position of the joining end of the protrusion where the metallized layer is not provided. Similarly, if a metallized layer is not provided on the tip surface of the convex portion, the solder and ceramic will not react and will not be bonded, and a space will be formed between the tip surface of the convex portion and the bottom surface of the concave portion.

さらに、金属部材の凹部内表面の接合予定位置にN1メ
ツキを施すことにより、該凹部内表面とろうとの濡れが
良くなるので、より好ましい。
Furthermore, it is more preferable to apply N1 plating to the intended joining position on the inner surface of the recess of the metal member, since this improves the wettability between the inner surface of the recess and the solder.

さらにまた、セラミック部材の凸部外表面と金属部材の
凹部内表面の接合予定位置のうち接合端部と対応する以
外の位置に、活性金属の箔を配置し、凸部外表面の接合
端部と対応する位置に黒鉛等のろうと非接合物質からな
る薄い層を形成し、金属部材の凹部底面には、活性金属
を含まないろう材を配置してろう付けを行うことにより
、活性金属ろうを使用したと同様の効果を得ることも出
来る。
Furthermore, active metal foil is placed at a position other than the joint end of the planned joining position between the outer surface of the convex part of the ceramic member and the inner surface of the recess of the metal member, and By forming a thin layer of a non-bonding substance such as graphite at the corresponding position, and placing a brazing filler metal that does not contain active metal on the bottom of the recess of the metal member and performing brazing, active metal solder can be applied. You can also get the same effect as using it.

本発明の金属・セラミックス接合体を形成するセラミッ
ク材料としてはいずれの材料でもよいが、実用性を考慮
すると、窒化珪素、炭化珪素、サイアロン、ジルコニア
、アルミナ、ムライト、チタン酸アルミニウムおよびコ
ージェライトよりなる群から選ばれた少なくとも一種の
セラミック材料とするのが好ましい。これらのセラミッ
ク材料のいずれを使用するかは、本発明の金属・セラミ
ックス接合体の使用目的と接合すべき金属材料やろうの
種類に応じて決定すればよい。
The ceramic material forming the metal-ceramic bonded body of the present invention may be any material, but in consideration of practicality, it is made of silicon nitride, silicon carbide, sialon, zirconia, alumina, mullite, aluminum titanate, and cordierite. Preferably, it is at least one ceramic material selected from the group consisting of: Which of these ceramic materials to use may be determined depending on the purpose of use of the metal-ceramic bonded body of the present invention and the type of metal material and solder to be bonded.

さらにまた、第1発明、第2発明および第3発明のうち
のいずれかの発明を組み合わせればセラミック部材の凸
部の接合端部に発生する応力集中をさらに低減でき、よ
り接合部の強度が強く、信頼性の高い金属・セラミック
ス接合体を得ることができる。
Furthermore, by combining any one of the first, second, and third inventions, it is possible to further reduce stress concentration occurring at the joint end of the convex portion of the ceramic member, further increasing the strength of the joint. A strong and reliable metal-ceramic bonded body can be obtained.

(実施例) 第1図(a)〜(C)はそれぞれ本発明の第1発明であ
る金属・セラミックス接合体の一例を示す部分断面図で
ある。各実施例において、セラミック部材1の凸部2と
金属部材3の凹B4とをろう5を使用してろう付けによ
り接合するとともに、接合端6から所定距離βだけろう
5がセラミック部材1の凸部2と化学的接合により強固
に固着しないよう構成している。以後、この所定距離β
を化学的非接合距離と呼ぶ。セラミック部材1の凸部2
とろう5とが化学的接合による強固な固着をしないよう
にするためには、例えば化学的接合により強固に固着さ
せない部分のセラミック部材1の凸部2に黒鉛等のろう
と非接合物質を塗り通常のろう付は操作を実施すること
により達成できる。
(Example) FIGS. 1A to 1C are partial cross-sectional views showing an example of a metal-ceramic bonded body according to the first aspect of the present invention. In each example, the convex portion 2 of the ceramic member 1 and the concave B4 of the metal member 3 are joined by brazing using the solder 5, and the solder 5 is connected to the convex portion of the ceramic member 1 by a predetermined distance β from the joint end 6. The structure is such that it is not firmly fixed to the portion 2 by chemical bonding. From now on, this predetermined distance β
is called the chemical non-bonding distance. Convex portion 2 of ceramic member 1
In order to prevent the solder 5 from being firmly fixed by chemical bonding, for example, the convex portion 2 of the ceramic member 1 that is not to be firmly fixed by chemical bonding is usually coated with a non-bonding substance such as graphite. Brazing can be achieved by performing an operation.

第1図(a)に示した実施例では、接合予定位置の金属
部材3の凹部4の内表面全面にN1メツキを施すととも
に、セラミック部材1の凸部2の接合予定位置の接合端
6から化学的非接合距離βの部分にろうと非接合物質で
ある黒鉛を施した後、活性金薫ろう5を使用して接合す
ることにより、凹部4の内表面とセラミック部材1の凸
部2の外表面との間の接合予定位置の接触面を全面ろう
付けし、接合端6より化学的非接合距離βの部分におけ
る凸部4と活性金属ろう5とは化学的接合により強固に
固着していない構造の金属・セラミックス接合体を示し
ている。なお、通常の活性金属元素を含有しないAgろ
うを使用するときは、上述した凹部4の内表面全面への
Niメツキ後、化学的非接合距離βの部分を除く接合予
定位置の凸部2の外表面全面にメタライズ層を設け、該
メタライズ層にNiメツキを施すことにより、同様な接
合を達成することができる。
In the embodiment shown in FIG. 1(a), N1 plating is applied to the entire inner surface of the recess 4 of the metal member 3 at the planned joining position, and from the joining end 6 of the convex part 2 of the ceramic member 1 at the planned joining position. After applying wax and graphite, which is a non-bonding substance, to the part of the chemical non-bonding distance β, the inner surface of the recess 4 and the outer surface of the convex part 2 of the ceramic member 1 are bonded using activated gold fume wax 5. The entire surface of the contact surface at the planned joining position with the surface is brazed, and the convex portion 4 and the active metal solder 5 at the part of the chemically non-bonding distance β from the joining end 6 are not firmly fixed due to chemical joining. The structure shows a metal-ceramic bonded body. In addition, when using a normal Ag solder that does not contain active metal elements, after Ni plating the entire inner surface of the recess 4 described above, the convex part 2 at the planned joining position excluding the part of the chemical non-bonding distance β is Similar bonding can be achieved by providing a metallized layer over the entire outer surface and plating the metallized layer with Ni.

第1図(b)に示す実施例では、接合予定位置の凹部4
の少なくとも内周面にN1メツキを施し、化学的非接合
距離βの部分および凸部2の先端表面には黒鉛を塗布し
た後、活性金属ろう5を使用して凸部2の外周面と凹部
4の内周面との間でろう付けにより接合するとともに、
接合端6より化学的非接合距離での部分における凸部4
と活性金属ろう5とは化学的接合により強固に固着せず
、凹部4の底面と凸部2の先端表面との間に空間7を設
けた構造を示している。
In the embodiment shown in FIG. 1(b), the recess 4 at the planned joining position is
N1 plating is applied to at least the inner circumferential surface of the convex portion 2, and graphite is applied to the portion of the chemical non-bonding distance β and the tip surface of the convex portion 2, and then the outer circumferential surface of the convex portion 2 and the concave portion are bonded using active metal solder 5. It is joined by brazing to the inner circumferential surface of 4, and
Convex portion 4 at a chemically non-bonding distance from the bonding end 6
The active metal solder 5 is not firmly fixed by chemical bonding, and a space 7 is provided between the bottom surface of the concave portion 4 and the tip surface of the convex portion 2.

第1図(C)に示す実施例では、接合予定位置の凹部4
の少なくとも内周面にN1メツキを施し、化学的非接合
距離βの部分と凸部2の先端表面に黒鉛を塗布するとと
もに、凹部4の底面であって凸部2の先端表面と接触す
る位置にろうと非接合物質からなる低弾性中間体である
黒鉛フェルト8と該黒鉛フェルト上に活性金属ろうとを
設け、凸部2を凹部4内に挿入して接合用組立体を形成
した後、該接合用組立体を真空中で加熱し、該ろうを溶
融させ、さらに毛細管現象を利用して、溶融ろうを接合
予定位置へ浸透させ、凸部2の外周面と凹部4の内周面
との間でろう付けにより接合するとともに、接合端6よ
り化学的非接合距離βの部分における凸部4と活性金属
ろう5とは化学的接合により強固に固着せず、凹部4の
底面と凸部2の先端表面との間に中間体が存在し、凹部
4の底面と凸部2の先端表面とが接合あるいは直接接触
していない構造を示している。
In the embodiment shown in FIG. 1(C), the recess 4 at the planned joining position is
N1 plating is applied to at least the inner circumferential surface of , and graphite is applied to the part of the chemical non-bonding distance β and the tip surface of the convex portion 2 , and the bottom surface of the concave portion 4 is in contact with the tip surface of the convex portion 2 . Graphite felt 8, which is a low-elasticity intermediate made of wax and a non-bonding substance, is provided with an active metal solder on the graphite felt, and the convex portion 2 is inserted into the concave portion 4 to form a bonding assembly, and then the bonding is performed. The solder assembly is heated in a vacuum to melt the solder, and the molten solder is penetrated into the intended joining position using capillary action to form a bond between the outer circumferential surface of the convex portion 2 and the inner circumferential surface of the recessed portion 4. At the same time, the convex part 4 and the active metal solder 5 at a chemically non-bonded distance β from the joint end 6 are not firmly fixed due to chemical bonding, and the bottom surface of the concave part 4 and the convex part 2 are This shows a structure in which an intermediate body exists between the bottom surface of the concave portion 4 and the tip surface of the convex portion 2, and the bottom surface of the concave portion 4 and the tip surface of the convex portion 2 are not joined or in direct contact with each other.

上述した第1図(b)、 (C)に示すように、凹部4
の底面と凸部2の先端表面とが空間Tまたは黒鉛フェル
ト8により直接接触しない構造あるいは接合していない
構造の実施例においては、凹部4の底面と凸部2の先端
表面とが接触している場合や接合されている場合に生じ
る凸部2の先端や接合端6の近傍での応力集中を防止で
きるため好ましい。
As shown in FIGS. 1(b) and 1(c) above, the recess 4
In an embodiment in which the bottom surface of the concave portion 4 and the tip surface of the convex portion 2 are not in direct contact with each other by the space T or the graphite felt 8 or are not joined, the bottom surface of the concave portion 4 and the tip surface of the convex portion 2 are in contact with each other. This is preferable because stress concentration in the vicinity of the tip of the convex portion 2 or the joint end 6, which occurs when the convex portion 2 is bonded or bonded, can be prevented.

第2図(a)、ら)はそれぞれ本発明の第2発明である
金属・セラミックス接合体の一例を示す部分断面図であ
る。各実施例においては、セラミック部材11の凸部1
2と金属部材13の凹部14とは前記凸部12の外周面
と前記凹部14の内周面との間の該凹部14の底面から
接合端18までの距離りで底部に空間または中間体を厚
さGとなるようろう付けにより接合した例を示している
FIGS. 2(a) and 2(a) are partial cross-sectional views showing an example of a metal-ceramic bonded body according to the second aspect of the present invention. In each embodiment, the convex portion 1 of the ceramic member 11
2 and the recess 14 of the metal member 13 is a space or an intermediate body at the bottom between the outer peripheral surface of the projection 12 and the inner peripheral surface of the recess 14 at a distance from the bottom of the recess 14 to the joint end 18. An example is shown in which the parts are joined by brazing to have a thickness of G.

第2図(a)に示す実施例では、接合予定位置の凹部1
4の少なくとも内周面にN+メツキを施し、凸部12の
先端表面には黒鉛を塗布した後、活性金属ろう15を使
用して凸部12の外周面と凹部14の内周面との間の凹
部14の底面から接合端18までの距離がLlとなるよ
う接合するとともに、凹部14の底面と凸部12の先端
表面との間に厚さGの空間16を設けた構造を示してい
る。なお、通常の活性金属元素を含有しないAgろうを
使用するときは、上述した凹部14の少なくとも内周面
へのNiメツキ後、接合予定位置の凸部12の外周面に
メタライズ層を設け、該メタライズ層にN1メツキを施
すことにより、同様な接合を達成することができる。
In the embodiment shown in FIG. 2(a), the recess 1 at the planned joining position is
After applying N+ plating to at least the inner circumferential surface of the convex portion 12 and applying graphite to the tip surface of the convex portion 12, active metal solder 15 is used to connect the outer circumferential surface of the convex portion 12 and the inner circumferential surface of the concave portion 14. The structure is shown in which they are joined so that the distance from the bottom of the recess 14 to the joining end 18 is Ll, and a space 16 with a thickness G is provided between the bottom of the recess 14 and the tip surface of the protrusion 12. . Note that when using an ordinary Ag solder that does not contain active metal elements, after Ni plating is applied to at least the inner circumferential surface of the recess 14 described above, a metallized layer is provided on the outer circumferential surface of the protrusion 12 at the planned joining position. A similar bond can be achieved by applying N1 plating to the metallized layer.

第2図(b)に示す実施例では、接合予定位置の凹部1
4の少なくとも内周面にNiメツキを施し、凹部14の
底面の上に厚さGのろうと非接合性物質からなる低弾性
中間体である黒鉛フェルト17と、該黒鉛フェルトの上
に活性金属ろうとを配置し、凸部12の先端表面に黒鉛
を塗布した後、凸部12を凹部14内に挿入して接合用
組立体を形成するとともに、該接合用組立体を真空中で
加熱し、該ろうを溶融させ、さらに毛細管現象を利用し
て、溶融ろうを接合予定位置へ浸透させ、凸部12の外
周面と凹部14の内周面との間の凹部14の底面から接
合端18までの距離がLlとなるようろう付けにより接
合し、凹部14の底面と凸部12の先端表面との間に中
間体が存在し、凹部14の底面と凸部12の先端表面と
が接合あるいは直接接触していない構造を示している。
In the embodiment shown in FIG. 2(b), the recess 1 at the planned joining position is
Ni plating is applied to at least the inner circumferential surface of the recess 14, and a graphite felt 17 having a thickness G, which is a low elastic intermediate made of a wax and a non-bonding material, is placed on the bottom surface of the recess 14, and an active metal solder is placed on the graphite felt. After applying graphite to the tip surface of the convex portion 12, the convex portion 12 is inserted into the concave portion 14 to form a bonding assembly, and the bonding assembly is heated in a vacuum. The solder is melted, and the molten solder permeates into the planned joining position using capillary phenomenon, and the area from the bottom of the recess 14 between the outer circumferential surface of the protrusion 12 and the inner circumferential surface of the recess 14 to the joining end 18 is melted. They are joined by brazing so that the distance is Ll, and an intermediate body exists between the bottom surface of the recess 14 and the front end surface of the projection 12, and the bottom surface of the recess 14 and the front end surface of the projection 12 are joined or in direct contact. It shows a structure that is not.

本発明では、第2図(a)、 (b)に示す実施例にお
いて、セラミック部材および金属部材の熱膨張率をα′
およびαとするとともに、活性金属ろうまたはろう5の
凝固温度をT5、室温をTRとした場合に、空間または
中間体の厚さGをG/Ll  >(α−α′ ) X 
(TS −TR)を満たす値となるよう設計すれば、良
好な接合体を得ることができる。
In the present invention, in the embodiment shown in FIGS. 2(a) and 2(b), the coefficient of thermal expansion of the ceramic member and the metal member is α'
and α, and when the solidification temperature of the active metal solder or solder 5 is T5 and the room temperature is TR, the thickness G of the space or intermediate body is G/Ll > (α−α′)
A good bonded body can be obtained by designing to a value that satisfies (TS - TR).

第3図(a)〜(C)はそれぞれ本発明の第3発明にお
ける金属・セラミックス接合体の一例を示す部分断面図
である。各実施例において、セラミック部材21の凸部
22と金属部材23の凹B24とをろう25を使用して
ろう付けにより接合するとともに、凸部22と凹部24
との間の軸方向の接合長さをL2、凸部の直径をDとし
たときに、0.2≦L2/D≦0.39の条件を満たす
ように設けた例を示している。
FIGS. 3(a) to 3(C) are partial cross-sectional views showing an example of a metal-ceramic bonded body according to the third aspect of the present invention. In each embodiment, the convex part 22 of the ceramic member 21 and the concave part B24 of the metal member 23 are joined by brazing using the solder 25, and the convex part 22 and the concave part 24
An example is shown in which the length of the joint in the axial direction between the two is L2, and the diameter of the convex portion is D, and the condition of 0.2≦L2/D≦0.39 is satisfied.

第3図(a)に示した実施例では、接合予定位置の金属
部材23の凹部24の内表面全面にN+メツキを施した
後、活性金属ろう25を使用して接合することにより、
凹部24の内表面とセラミック部材21の凸部22の外
表面の接触面とを実質的に全面ろう付けした構造を示し
ている。なお、通常の活性金属元素を含有しなも鳳gろ
うを使用するときは、上述した凹部24の内表面全面へ
のNiメツキ後、接合予定位置の凸部22の外表面全面
にメタライズ層を設け、該メタライズ層にNiメツキを
施すことにより、同様な接合を達成することができる。
In the embodiment shown in FIG. 3(a), after N+ plating is applied to the entire inner surface of the recess 24 of the metal member 23 at the planned joining position, the active metal solder 25 is used to join.
This shows a structure in which substantially the entire surface of the contact surface between the inner surface of the recess 24 and the outer surface of the protrusion 22 of the ceramic member 21 is brazed. In addition, when using a normal Namoho gauze containing an active metal element, after Ni plating the entire inner surface of the recess 24 described above, a metallized layer is applied to the entire outer surface of the protrusion 22 at the planned bonding position. Similar bonding can be achieved by providing a metallized layer and plating the metallized layer with Ni.

第3図(b)に示す実施例では、接合予定位置の凹部2
4の少なくとも内周面にN1メツキを施し、凸部22の
先端表面には黒鉛を塗布した後、活性金属ろう25を使
用して凸部2の外周面と凹部4の内周面との間でろう付
けにより接合するとともに、凹部24の底面と凸部22
の先端表面との間に、空間26を設けた構造を示してい
る。
In the embodiment shown in FIG. 3(b), the recess 2 at the planned joining position is
After applying N1 plating to at least the inner peripheral surface of the projection 2 and applying graphite to the tip surface of the projection 22, an active metal solder 25 is used to connect the outer peripheral surface of the projection 2 and the inner peripheral surface of the recess 4. At the same time, the bottom of the recess 24 and the protrusion 22 are joined by brazing.
A structure is shown in which a space 26 is provided between the tip surface and the tip surface.

第3図(C)に示す実施例では、接合予定位置の凹部2
4の少なくとも内周面にNiメツキを施し、凸部22の
先端表面に黒鉛を塗布し、凹部24の底面であって凸部
22の先端表面に接触する位置にろうと非接合性物質か
らなる低弾性中間体である黒鉛フェルト27と該黒鉛フ
ェルト上に活性金属ろうとを設け、凸部22を凹部24
内に挿入して接合用組立体を形成した後、該接合用組立
体を真空中で加熱し、該ろうを溶融させ、さらに毛細管
現象を利用して、溶融ろうを接合予定位置へ浸透させ、
凸部22の外周面と凹部24の内周面との間でろう付け
により接合するとともに、凹部24の底面と凸部22の
先端表面との間に中間体が存在し、凹部24の底面と凸
部22の先端表面とが接合あるいは直接接触していない
構造を示している。
In the embodiment shown in FIG. 3(C), the recess 2 at the planned joining position is
Ni plating is applied to at least the inner peripheral surface of the convex portion 22, graphite is applied to the tip surface of the convex portion 22, and a low material made of a non-bonding substance is placed on the bottom of the concave portion 24 at a position that contacts the tip surface of the convex portion 22. Graphite felt 27 is an elastic intermediate, and an active metal solder is provided on the graphite felt, and the convex portion 22 is connected to the concave portion 24.
After inserting the solder into the solder to form a joining assembly, the joining assembly is heated in a vacuum to melt the solder, and further, using capillary action, the molten solder penetrates into the intended joining position,
The outer circumferential surface of the convex portion 22 and the inner circumferential surface of the concave portion 24 are joined by brazing, and an intermediate body exists between the bottom surface of the concave portion 24 and the tip surface of the convex portion 22, and the bottom surface of the concave portion 24 and This shows a structure in which the tip surface of the convex portion 22 is not joined or in direct contact.

上述した第3図(b)、  (C)に示すように、凹部
24の底面と凸部22の先端表面とが空間26または黒
鉛フェルト27により直接接触しない構造あるいは接合
していない構造の実施例においては、凹部24の底面と
凸部22の先端表面とが接触している場合や接合されて
いる場合に生じる凸部22の先端や接合端28の近傍で
の応力集中を防止できるため好ましい。
As shown in FIGS. 3(b) and 3(C) above, there is an embodiment in which the bottom surface of the concave portion 24 and the tip surface of the convex portion 22 are not in direct contact with each other due to the space 26 or the graphite felt 27, or are not joined to each other. This is preferable because it can prevent stress concentration near the tip of the protrusion 22 or the joint end 28, which occurs when the bottom surface of the recess 24 and the tip surface of the protrusion 22 are in contact with or are joined.

以下、実際の例について説明する。An actual example will be explained below.

実施例1 (第1発明) 直径:18mmの溶体化処理済インコロイ903丸棒の
一端に内径:11.05a+m、深さ8mmの凹部4と
直径12酪の細軸部を設けた金属部材3と、常圧焼結法
による窒化珪素焼結体の一端に直径:11.Omm、長
さ:10mmの凸部2を設けたセラミック部材1を作製
した。
Example 1 (First invention) A metal member 3 is provided with a recess 4 having an inner diameter of 11.05 a + m and a depth of 8 mm and a thin shaft portion having a diameter of 12 mm at one end of a solution-treated Incoloy 903 round bar with a diameter of 18 mm. , diameter: 11. A ceramic member 1 having a convex portion 2 with a length of 10 mm and a length of 10 mm was produced.

なお、上記凹部4の底部隅部にはC0,2の面取りが、
また開放端隅部にはテーパー加工がそれぞれ施しである
。同じく、上記凸部2の先端エツジ部はC015のテー
パー加工が、根本部にはR2の曲面加工がそれぞれ施し
である。
Note that the bottom corner of the recess 4 has a C0,2 chamfer,
Additionally, the open end corners are each tapered. Similarly, the tip edge of the convex portion 2 has a C015 taper, and the base has an R2 curved surface.

これらの金属部材とセラミック部材について、上述した
第1図(a)〜(C)に示す方法で厚さ0.1mmの銀
ろう板の表面上に厚さ2μmのT1を蒸着した活性金属
ろうを使用して、接合端6と凹部底面との距離を5 m
mに固定した状態で化学的非接合距離lを種々変えて本
発明および比較例の金属・セラミックス接合体を得た。
For these metal members and ceramic members, an active metal solder in which T1 with a thickness of 2 μm was deposited on the surface of a silver solder plate with a thickness of 0.1 mm was applied using the method shown in FIGS. 1(a) to (C) described above. the distance between the joint end 6 and the bottom of the recess by 5 m.
Metal-ceramic bonded bodies of the present invention and comparative examples were obtained by varying the chemical non-bonding distance l while fixing it to m.

このとき、第1図におけるNiメツキの厚さは10μm
であり、第1図(C)に示す例では、厚さ:0.4mm
の黒鉛フェルトをろうと非接合性物質からなる低弾性中
間体として使用した。
At this time, the thickness of the Ni plating in Fig. 1 is 10 μm.
In the example shown in FIG. 1(C), the thickness is 0.4 mm.
graphite felt was used as a low modulus intermediate consisting of wax and non-bonding material.

準備した本発明および比較例の接合体に対し、第4図に
示す曲げ試験装置により金R部材3を固定してセラミッ
ク部材1に荷重を付加することにより、セラミック部材
1の凸部2が接合端部近傍より破壊するときの曲げ荷重
を測定して、破壊曲げ荷重とした。なお、第4図におい
て、β、−40mm、β2=5mmとした。結果を第1
表および第5図に示す。
The protrusions 2 of the ceramic member 1 were bonded by fixing the gold R member 3 and applying a load to the ceramic member 1 using the bending test apparatus shown in FIG. The bending load at the time of failure was measured from near the end and was defined as the failure bending load. In addition, in FIG. 4, β is -40 mm, and β2 = 5 mm. Results first
It is shown in the table and FIG.

第1表 第1表および第5図から、第1図(a)に示す全面ろう
付は構造の場合比較例の化学的非接合距離βが0すなわ
ち側面全面がろう付けされ、接合端部も含め凸部2の外
表面全面が化学的接合により強固に固着しているものと
比べて、少なくとも接合端部が化学的接合により強固に
固着していないすなわちβが0以外の本発明品の方が高
い破壊曲げ荷重を示すことがわかった。また、化学的非
接合距離βは凸部外周面と凹部内周面との間の接触面に
おける接合距離がほぼ5m+nの場合Q、5m+n以上
好ましくはl、9mm以上であるとより高い破壊曲げ荷
重を示し、側面全面が化学的接合により強固に固着して
いない側面全面化学的非接合のものが最高の破壊曲げ荷
重を示した。
From Table 1 and Figure 5, it can be seen that in the case of the structure shown in Figure 1 (a) where the entire surface is brazed, the chemical non-bonding distance β of the comparative example is 0, that is, the entire side surface is brazed, and the joint ends are also brazed. Compared to the product in which the entire outer surface of the convex portion 2 including the entire surface is firmly fixed by chemical bonding, the product of the present invention in which at least the bonded end is not firmly fixed by chemical bonding, that is, the product of the present invention has β other than 0. was found to exhibit a high fracture bending load. In addition, the chemical non-bonding distance β is Q when the bonding distance at the contact surface between the outer circumferential surface of the convex part and the inner circumferential surface of the concave part is approximately 5 m+n, preferably 1 when it is 5 m+n or more, and a higher fracture bending load when it is 9 mm or more. The specimen whose entire side surface was not chemically bonded showed the highest fracture bending load.

また、第1図(a)に示す全面ろう付は構造の接合体よ
りも、第1図(b)に示す凹部底面と凸部先端表面との
間に空間を設けた接合体の方が、さらには第1図(C)
に示す中間体としての黒鉛フェルトを設けた接合体の方
が、高い破壊曲げ荷重を示すことがわかった。
In addition, in full-surface brazing as shown in FIG. 1(a), the joined body with a space provided between the bottom surface of the concave part and the tip surface of the convex part shown in FIG. 1(b) is better than the joined body of the structure shown in FIG. 1(a). Furthermore, Figure 1 (C)
It was found that the bonded body with graphite felt as an intermediate shown in Figure 1 shows a higher fracture bending load.

実施例2(第2発明) 直径:18+no+の溶体化処理済インコロイ903丸
棒の一端に内径:11.05+++m、深さ8化の凹部
14と直径12加の細軸部を設けた金属部材13と、常
圧焼結法による窒化珪素焼結体の一端に直径:11.0
mm、長さ;10面の凸部12を設けたセラミック部材
11を作製した。
Example 2 (Second Invention) A metal member 13 having a recess 14 with an inner diameter of 11.05 +++ m, a depth of 8, and a thin shaft portion with a diameter of 12 at one end of a solution-treated Incoloy 903 round bar with a diameter of 18+no+. And, diameter: 11.0 at one end of the silicon nitride sintered body by pressureless sintering method.
mm, length: A ceramic member 11 having 10 convex portions 12 was produced.

なお、上記凹部14の底部隅部にはC092の面取りが
、また開放端隅部にはテーパー加工がそれぞれ施しであ
る。同じく、上記凸部12の先端エツジ部はC0,5の
テーパー加工が、根本部にはR2の曲面加工がそれぞれ
施しである。
The bottom corner of the recess 14 has a C092 chamfer, and the open end corner is tapered. Similarly, the tip edge portion of the convex portion 12 is tapered at C0, 5, and the base portion is curved at R2.

これらの金属部材とセラミック部材について、上述した
第2図(a)、 (b)に示す方法で厚さ0.1mmの
銀ろう板の表面上に厚さ2μmのTiを蒸着した活性金
属ろうを使用して、空間および黒鉛フェルト等の中間体
の厚さGを種々変えて本発明の金属・セラミックス接合
体を得た。このとき、第2図(a)。
For these metal members and ceramic members, an active metal solder with a 2 μm thick Ti deposited on the surface of a 0.1 mm thick silver solder plate was applied using the method shown in FIGS. 2(a) and 2(b). The metal-ceramic bonded bodies of the present invention were obtained by varying the space and the thickness G of the intermediate such as graphite felt. At this time, FIG. 2(a).

(b)におけるN17ンキの厚さは10/!Jm、第2
図(b)における黒鉛フェルト17の厚さは0.4mm
であった。
The thickness of N17 ink in (b) is 10/! Jm, 2nd
The thickness of graphite felt 17 in figure (b) is 0.4 mm
Met.

なお、金属部材の熱膨張率α: 13. OXl0−6
1/l、セラミック部材の熱膨張率α′ : 3.5X
10−1/l、ろうの凝固温度’r、 : 780℃、
室温Ti : 20℃であり、この場合の(α−α′ 
) X (TS −TR)の値は?、2X10−3であ
った。
In addition, the thermal expansion coefficient α of the metal member: 13. OXl0-6
1/l, coefficient of thermal expansion α' of ceramic member: 3.5X
10-1/l, wax solidification temperature 'r, : 780℃,
Room temperature Ti: 20℃, in this case (α−α′
) What is the value of X (TS - TR)? , 2X10-3.

一方、同様の形状で凹部14の底面と凸部12の先端表
面との間に空間および中間体を設けずに凹部14の内表
面と凸部12の外表面との接触面とを実質的に全面ろう
付けした第6図にその部分断面を示す比較例の接合体を
準備した。
On the other hand, with a similar shape, the contact surface between the inner surface of the recess 14 and the outer surface of the projection 12 is substantially A joined body of a comparative example, whose partial cross section is shown in FIG. 6, was prepared by brazing the entire surface.

準備した本発明および比較例の接合体に対し、室温中で
第4図に示す曲げ試験装置により金属部材13を固定し
てセラミック部材11に荷重を付加することより、セラ
ミック部材11の凸部12が接合端部より破壊するとき
の曲げ荷重を測定して、破壊曲げ荷重とした。なお、第
4図において、f!、、 =40mm、L−5+nn+
とし7た。結果を第2表および第7図に示す。なお、第
2図(a)に示す空間Gは試験後切り開いて実体顕微鏡
により観察して測定した値を、また第2図ら)に示す中
間体の厚さGは接合前の中間体の厚さより測定した。
By fixing the metal member 13 and applying a load to the ceramic member 11 using the bending test apparatus shown in FIG. The bending load at which the joint broke from the joint end was measured and defined as the breaking bending load. In addition, in FIG. 4, f! ,, =40mm, L-5+nn+
It was seven years ago. The results are shown in Table 2 and Figure 7. Note that the space G shown in Figure 2 (a) is the value measured by cutting it open after the test and observing it with a stereomicroscope, and the thickness G of the intermediate body shown in Figure 2 (a) is the value measured from the thickness of the intermediate body before bonding. It was measured.

第2表 第2表および第7図から、所定の空間又は中間体を設け
た本発明の接合体は、それらを設けない比較例の接合体
と比較して高い破壊曲げ荷重を示すことがわかった。ま
た、G/L、 は(α−α′)×(TS  TR)の値
である7、2X10−3を超えると破壊曲げ荷重が十分
に高くなることがわかり、G/Ll  >l0XIO−
3がより好ましく、G/Ll  >20XlO−3がさ
らに好ましいことがわかる。
From Table 2 and Figure 7, it is clear that the joined body of the present invention in which a predetermined space or intermediate body is provided exhibits a higher fracture bending load compared to the joined body of the comparative example in which such space or intermediate body is not provided. Ta. In addition, G/L is the value of (α-α') x (TS TR), which is 7. It is found that the fracture bending load becomes sufficiently high when it exceeds 2X10-3, and G/Ll > l0XIO-
3 is more preferred, and G/Ll>20XlO-3 is even more preferred.

実施例3(第2発明) 高温における接合強度を調べるため、実施例2と同様の
接合体に対して、試験温度450℃において通常の引張
試験を実施した。結果を第3表に示す。
Example 3 (Second Invention) In order to investigate the bonding strength at high temperatures, a normal tensile test was conducted on the same bonded body as in Example 2 at a test temperature of 450°C. The results are shown in Table 3.

第3表 第3表の結果から、G / L + の値が大きくなる
と高温における接合強度が低下することがわかり、G 
/ L l ≦0.4が好ましくさらにG / L +
 ≦0゜3が好ましい。これはろう付けによる接合面積
が小さくなるからである。
Table 3 From the results in Table 3, it can be seen that as the value of G/L + increases, the bonding strength at high temperatures decreases;
/ L l ≦0.4 is preferable, and furthermore, G / L +
≦0°3 is preferable. This is because the joint area by brazing becomes smaller.

実施例2および実施例3の結果より、空間または黒鉛フ
ェルト等の中間体の厚さGは凸部先端表面と凹部底面が
熱膨張差により相互干渉しない値であればよいことがわ
かる。
From the results of Examples 2 and 3, it can be seen that the thickness G of the space or the intermediate such as graphite felt is sufficient as long as the tip surface of the convex portion and the bottom surface of the concave portion do not interfere with each other due to the difference in thermal expansion.

実施例4 (第2発明) タービン翼車と軸部を常圧焼結法による窒化珪素で一体
的に形成したタービンロータの軸部先端に直径12.0
mm、長さ7.5mmの凸部を設けてセラミック部材と
した。また、直径21mmのインコロイ903の丸棒の
一端に、直径12mmの合金鋼(例えばJIS−3NC
M439 )の丸棒を摩擦圧接した棒材を準備した。
Embodiment 4 (Second invention) A turbine rotor with a diameter of 12.0 mm at the tip of the shaft of a turbine rotor in which the turbine wheel and shaft are integrally formed of silicon nitride by pressureless sintering.
A ceramic member was prepared by providing a convex portion with a length of 7.5 mm and a length of 7.5 mm. In addition, a 12 mm diameter alloy steel (e.g. JIS-3NC
A bar material was prepared by friction welding a round bar of M439).

次いで、該棒材をターボチャージャロータの構成に必要
な外径に機械加工するとともに、インコロイ903側の
端部に直径1.2.05 mm、深さ7.0mmの凹部
を設けて金属部材とした。該凹部の内周面にN1メツキ
を施したのち、実施例2に記載の方法と同一の方法で接
合し、接合部が第2図(a)に示すような空間を有する
ものと第2図(b)に示すような黒鉛フェルトを有する
本発明のターボチャージャロータ用接合体を作製した。
Next, the rod material is machined to the outer diameter necessary for the construction of the turbocharger rotor, and a recessed portion of 1.2.05 mm in diameter and 7.0 mm in depth is provided at the end on the Incoloy 903 side to form a metal member. did. After applying N1 plating to the inner circumferential surface of the recess, it was joined by the same method as described in Example 2, and the joined part had a space as shown in FIG. 2(a). A turbocharger rotor assembly of the present invention having graphite felt as shown in (b) was produced.

なお、空間および黒鉛フェルトの厚さGはG/L+−2
0X10−3とした。
In addition, the thickness G of the space and graphite felt is G/L+-2
It was set to 0X10-3.

また、これらの接合体に対し所定の工程に従って仕上げ
加工を行い、ターボチャージャ用タービンロータを作製
した。
Further, these joined bodies were subjected to finishing processing according to a predetermined process to produce a turbine rotor for a turbocharger.

一方、同様の形状で凹部底面と凸部先端表面との間に空
間および中間体を設けずに凹部の内表面と凸部の外表面
との接触面とを全面ろう付けしたターボチャージャ用タ
ービンロータを作製し比較例とした。
On the other hand, a turbine rotor for a turbocharger with a similar shape has the contact surface between the inner surface of the recess and the outer surface of the projection completely brazed without providing a space or an intermediate body between the bottom surface of the recess and the tip surface of the projection. was prepared and used as a comparative example.

本発明および比較例のターボチャージャ用タービンロー
タを高温回転試験装置に組み込み回転試験を実施した。
The turbine rotors for turbochargers of the present invention and the comparative example were installed in a high-temperature rotation test device, and a rotation test was conducted.

その結果、本発明のタービンロータは両者とも200.
000 rpm 、 800℃において異常なく回転し
て破壊しなかったが、比較例のタービンロータは回転を
200,000 rpmに上げる途中で破壊した。
As a result, both turbine rotors of the present invention have a diameter of 200.
Although the turbine rotor of the comparative example rotated without any abnormality at 800° C. and 000 rpm and did not break, the turbine rotor of the comparative example broke while increasing the rotation to 200,000 rpm.

実施例5 (第3発明) 直径:18mmの溶体化処理済インコロイ903丸棒の
一端に内径:11.05 mm、深さ3mmの凹部24
と直径12市の細軸部を設けた金属部材23と、常圧焼
結法による窒化珪素焼結体の一端に直径:11.0mm
、長さ:10市の凸部22を設けたセラミック部材21
を作製した。
Example 5 (Third invention) A recess 24 with an inner diameter of 11.05 mm and a depth of 3 mm is formed at one end of a solution-treated Incoloy 903 round bar with a diameter of 18 mm.
and a metal member 23 having a thin shaft portion with a diameter of 12 mm, and a silicon nitride sintered body with a diameter of 11.0 mm at one end by the pressureless sintering method.
, Length: Ceramic member 21 provided with convex portions 22 of 10 cities.
was created.

なお、上記凹部24の底部隅部にはC092の面取りが
、また開放端隅部にはテーパー加工がそれぞれ施しであ
る。同じく、上記凸部22の先端エツジ部はCD、5の
テーパー加工が、根本部にはR2の曲面加工がそれぞれ
施しである。
The bottom corner of the recess 24 has a C092 chamfer, and the open end corner is tapered. Similarly, the tip end edge of the convex portion 22 is tapered with CD and 5, and the base is curved with R2.

これらの金属部材とセラミック部材について、上述した
第3図(a)〜(C)に示す方法で厚さ0.1mmの銀
ろう板の表面上に厚さ2μmのTiを蒸着した活性金属
ろうを使用して、それぞれに対してL2/Dを種々変え
て本発明および比較例の金1嘱・セラミックス接合体を
得た。このとき、第3図におけるN1メツキの厚さは1
0μmであり、第3図(C)に示す例では、厚さ:0.
4mmの黒鉛フェルト27をろうと非接合性物質からな
る低弾性中間体として使用した。
For these metal members and ceramic members, an active metal solder in which a 2 μm thick Ti layer was deposited on the surface of a 0.1 mm thick silver solder plate was applied using the method shown in FIGS. 3(a) to (C) described above. Using these materials, L2/D was varied to obtain gold-ceramic bonded bodies of the present invention and comparative examples. At this time, the thickness of N1 plating in Fig. 3 is 1
In the example shown in FIG. 3(C), the thickness is 0 μm.
A 4 mm graphite felt 27 was used as a low modulus intermediate consisting of wax and non-bonding material.

準備した本発明および比較例の接合体に対し、第4図に
示す曲げ試験装置により金属部材23を固定してセラミ
ック部材21に荷重を付加することにより、セラミック
部材21の凸部22が接合端部より破壊するときの曲げ
荷重を測定して、破壊曲げ荷重とした。なお、第4図に
おいて、βl −=4ommsβ2=5mmとした。結
果を第4表および第8図に示す。
By fixing the metal member 23 and applying a load to the ceramic member 21 using the bending test apparatus shown in FIG. The bending load at the time of failure was measured and defined as the failure bending load. In addition, in FIG. 4, βl −=4 omms β2=5 mm. The results are shown in Table 4 and Figure 8.

第4表 第4表および第8図から、L2/Dの値が0.2以上で
0.39以下であれば70kg以上の破壊曲げ荷重を得
られることがわかった。なお、L2/Dの値が0.25
以上で0.35以下であるとさらに好ましい。
From Table 4 and FIG. 8, it was found that if the value of L2/D was 0.2 or more and 0.39 or less, a breaking bending load of 70 kg or more could be obtained. In addition, the value of L2/D is 0.25
More preferably, it is 0.35 or less.

また、第3図(a)に示す全面ろう付は構造の接合体よ
りも、第3図ら〕に示す凹部底面と凸部先端表面との間
に空間を設けた接合体の方が、さらには第3図(C)に
示するうと非接合性物質からなる低弾性中間体としての
黒鉛フェルトを設けた接合体の方が、高い破壊曲げ荷重
を示すことがわかった。
In addition, the full-surface brazing shown in Fig. 3(a) is better for a joined body with a space provided between the bottom surface of the concave part and the tip surface of the convex part, as shown in Figure 3, etc., than for the joined body of the structure. It was found that the bonded body shown in FIG. 3(C) in which graphite felt was provided as a low-elasticity intermediate made of a non-bondable material exhibited a higher fracture bending load.

本発明は上述した実施例にのみ限定されるのではなく、
幾多の変形、変更が可能である。例えば、上述した実施
例のうち、凹部底部と凸部先端表面との間に空間または
中間体を設けた場合は空間のみまたは中間体のみで構成
したが、ろうと非接合性物質からなる薄い膜をセラミッ
ク部材の凸部先端に形成しても同様の効果が得られ、さ
らに薄い膜、空間、中間体のうちのいくつかを混在させ
ても同様な効果が得られることは明らかである。
The present invention is not limited only to the embodiments described above;
Many variations and changes are possible. For example, in the above-mentioned embodiments, when a space or an intermediate body is provided between the bottom of the recess and the tip surface of the convex part, the space or the intermediate body is used. It is clear that the same effect can be obtained by forming it at the tip of the convex part of the ceramic member, and that the same effect can also be obtained by mixing some of thin films, spaces, and intermediates.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
の第1発明〜第3発明の金属・セラミックス接合体によ
れば、接合部の接合状態、セラミック部材の凸部先端表
面と金属部材の凹部底面との間の空間または中間体の状
態、凸部直径と接合長さとの状態を限定することにより
、セラック部材と金属部材あるいはセラミック部材とろ
う材との間の熱膨張差に起因する接合端部に働く残留応
力による応力集中が低減できることなどにより曲げやね
じりに対し破壊しにくく信頼性が高い金属・セラミック
ス接合体を得ることができる。
(Effects of the Invention) As is clear from the detailed explanation above, according to the metal-ceramic bonded bodies of the first to third aspects of the present invention, the bonding state of the bonded portion, the tip surface of the convex portion of the ceramic member, The difference in thermal expansion between the shellac member and the metal member or the ceramic member and the brazing filler metal can be reduced by limiting the space between the bottom surface of the concave part of the metal member or the state of the intermediate body, the diameter of the convex part, and the joint length. By reducing the stress concentration caused by residual stress acting on the joint ends due to the above, it is possible to obtain a metal-ceramic joint that is resistant to bending or torsion and has high reliability.

また、本発明の金属・セラミックス接合体で、タービン
翼車およびタービン軸の一部が窒化珪素セラミックス、
その他の部分が高強度を有する金属からなるターボチャ
ージャロータを構成すれば、残留応力の低減、ろう材の
緩衝作用、接合界面への高温の排気ガス等の腐食性ガス
の侵入が防止でき、耐久性にすぐれ、さらに応答性にす
ぐれた高効率のターボチャージャロータを得ることがで
きる。
Further, in the metal-ceramic bonded body of the present invention, a part of the turbine impeller and the turbine shaft are made of silicon nitride ceramics,
If the other parts of the turbocharger rotor are made of high-strength metal, it can reduce residual stress, provide a buffering effect for the brazing filler metal, prevent corrosive gases such as high-temperature exhaust gas from entering the joint interface, and increase durability. A highly efficient turbocharger rotor with excellent performance and responsiveness can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 〜(C)、第2図(a)、 (b)およ
び第3図(a)〜(C)はそれぞれ本発明の金属・セラ
ミックス接合体の一例を示す部分断面図、 第4図は試験に使用した曲げ試験装置を示す図、第5図
は本発明の第1発明における曲げ荷重試験の結果を示す
グラフ、 第6図は比較例の金属・セラミックス接合体を示す部分
断面図、 第7図および第8図はそれぞれ本発明の第2発明および
第3発明における曲げ荷重試験の結果を示すグラフであ
る。 1、 11.21・・・セラミック部材2、12.22
・・・凸部 3、13.23・・・金属部材 4、14.24・・・凹部 5、15.25・・・ろうあるいは活性金属ろう6、1
8.28・・・接合端 ?、 16.26・・・空間 8、17.27・・・黒鉛フェルト 第1図 H−−→ L2 第4図 第7図 G/L1
FIGS. 1(a) to (C), FIGS. 2(a) and (b), and FIGS. 3(a) to (C) are partial cross-sectional views showing an example of the metal-ceramic joined body of the present invention, respectively, Fig. 4 is a diagram showing the bending test device used in the test, Fig. 5 is a graph showing the results of the bending load test in the first invention of the present invention, and Fig. 6 is a section showing a metal-ceramic bonded body of a comparative example. The cross-sectional view, FIG. 7, and FIG. 8 are graphs showing the results of bending load tests in the second and third aspects of the present invention, respectively. 1, 11.21...Ceramic member 2, 12.22
... Convex portions 3, 13.23... Metal members 4, 14.24... Concave portions 5, 15.25... Braze or active metal solder 6, 1
8.28...joint end? , 16.26... Space 8, 17.27... Graphite felt Figure 1 H--→ L2 Figure 4 Figure 7 G/L1

Claims (1)

【特許請求の範囲】 1、セラミック部材に設けた凸部が金属部材に設けた凹
部に挿入されて、しかもろう付けにより一体的に接合さ
れている構造の金属・セラミックス接合体において、 前記セラミック部材の凸部外表面と金属部 材の凹部内表面との接合部のうちの少なくとも接合端部
では、前記凸部と前記ろう材とが化学的接合により強固
に固着していないことを特徴とする金属・セラミックス
接合体。 2、セラミック部材に設けた凸部が金属部材に設けた凹
部に挿入されて、しかも前記凸部の外周面と前記凹部の
内周面とがろう付けにより一体的に接合されている構造
の金属・セラミックス接合体において、 前記セラミック部材の凸部先端表面と前記 金属部材の凹部底面との間に空間またはろうと非接合性
物質からなる低弾性中間体を介在させるとともに、この
空間または中間体の厚さGが以下の式を満たすよう構成
したことを特徴とする金属・セラミックス接合体; G/L_1>(α−α′)×(T_S−T_R)ここで
、L_1:金属部材の凹部底面から接合端までの距離 α:金属部材の熱膨張率 α′:セラミック部材の熱膨張率 T_S:ろうの凝固温度 T_R:室温。 3、セラミック部材に設けた凸部が金属部材に設けた凹
部に挿入されて、しかもろう付けにより一体的に接合さ
れている構造の金属・セラミックス接合体において、 前記金属部材の凹部とセラミック部材の凸 部との間の軸方向の接合長さをL_2、該凸部の直径を
Dとしたときに、 0.2≦L_2/D≦0.39 の関係を満たすように接合することを特徴とする金属・
セラミックス接合体。
[Scope of Claims] 1. A metal-ceramic bonded body having a structure in which a protrusion provided on a ceramic member is inserted into a recess provided in a metal member and is integrally joined by brazing, comprising: A metal characterized in that, at least at the joint end of the joint between the outer surface of the projection and the inner surface of the recess of the metal member, the projection and the brazing material are not firmly fixed by chemical bonding.・Ceramic bonded body. 2. A metal having a structure in which a protrusion provided on a ceramic member is inserted into a recess provided in a metal member, and the outer circumferential surface of the protrusion and the inner circumferential surface of the recess are integrally joined by brazing. - In the ceramic bonded body, a space or a low-elasticity intermediate made of a substance that does not bond to wax is interposed between the tip surface of the convex portion of the ceramic member and the bottom surface of the concave portion of the metal member, and the thickness of this space or the intermediate body is A metal-ceramic bonded body characterized in that G satisfies the following formula: G/L_1>(α-α')×(T_S-T_R), where L_1: Joining from the bottom of the recess of the metal member Distance to end α: Coefficient of thermal expansion α′ of metal member: Coefficient of thermal expansion T_S of ceramic member: Solidification temperature of solder T_R: Room temperature. 3. In a metal-ceramic bonded body having a structure in which a protrusion provided on a ceramic member is inserted into a recess provided in a metal member and is integrally joined by brazing, the recess of the metal member and the ceramic member It is characterized by joining so that the relationship 0.2≦L_2/D≦0.39 is satisfied, where L_2 is the axial joining length with the convex part and D is the diameter of the convex part. metal
Ceramic bonded body.
JP63065864A 1987-08-31 1988-03-22 Metal / ceramic joints Expired - Fee Related JP2572803B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP63065864A JP2572803B2 (en) 1988-03-22 1988-03-22 Metal / ceramic joints
US07/236,145 US4942999A (en) 1987-08-31 1988-08-25 Metal-ceramic joined composite bodies and joining process therefor
CA000576044A CA1319249C (en) 1987-08-31 1988-08-30 Metal-ceramic joined composite bodies and joining process therefor
DE3889044T DE3889044T2 (en) 1987-08-31 1988-08-31 Metal-ceramic composite body and connection method for their production.
EP88308054A EP0307131B1 (en) 1987-08-31 1988-08-31 Metal-ceramic joined composite bodies and joining process therefore
US07/312,667 US5028162A (en) 1988-02-29 1989-02-21 Metal-ceramic joined composite bodies
EP89301814A EP0333339B1 (en) 1988-02-29 1989-02-24 Metal-ceramic composite bodies
DE68925128T DE68925128T2 (en) 1988-02-29 1989-02-24 Connection of metal and ceramic bodies
EP92118285A EP0530854B1 (en) 1988-02-29 1989-02-24 Metal-ceramic composite bodies
DE89301814T DE68906692T2 (en) 1988-02-29 1989-02-24 Connection of metal and ceramic bodies.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065864A JP2572803B2 (en) 1988-03-22 1988-03-22 Metal / ceramic joints

Publications (2)

Publication Number Publication Date
JPH01239070A true JPH01239070A (en) 1989-09-25
JP2572803B2 JP2572803B2 (en) 1997-01-16

Family

ID=13299294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065864A Expired - Fee Related JP2572803B2 (en) 1987-08-31 1988-03-22 Metal / ceramic joints

Country Status (1)

Country Link
JP (1) JP2572803B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108329U (en) * 1984-12-19 1986-07-09
JPS61169164A (en) * 1985-01-22 1986-07-30 Asahi Glass Co Ltd Joint structure of rotary shaft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108329U (en) * 1984-12-19 1986-07-09
JPS61169164A (en) * 1985-01-22 1986-07-30 Asahi Glass Co Ltd Joint structure of rotary shaft

Also Published As

Publication number Publication date
JP2572803B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US4740429A (en) Metal-ceramic joined articles
US4942999A (en) Metal-ceramic joined composite bodies and joining process therefor
Suganuma Recent advances in joining technology of ceramics to metals
US5028162A (en) Metal-ceramic joined composite bodies
JPS60226464A (en) Joint structure of ceramic and metal
JPH0454825B2 (en)
US5525432A (en) Internal soldering in metal/ceramic composites
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
US6131797A (en) Method for joining ceramic to metal
US4959258A (en) Joined metal-ceramic assembly method of preparing the same
JPH01239070A (en) Metal ceramic bonded material
JP2572800B2 (en) Metal / ceramic joints
JP2542044B2 (en) Metal / ceramic joints
JPH01305871A (en) Metal/ceramic jointed body
JPS6065776A (en) Ceramic-metal composite mechanical part
JPH0492871A (en) Ceramic-metal binding body and production thereof
JPH0440316B2 (en)
JPH01153577A (en) Joined material of metal and ceramic and production thereof
JP2822405B2 (en) Method of joining ceramic rotor and metal shaft
JP3316578B2 (en) Method for producing joined body of ceramic member and aluminum member
JPH0328391B2 (en)
JP2747865B2 (en) Joint structure between ceramics and metal
JPS63288976A (en) Joined body of sintered metal and ceramics
JPS62297275A (en) Joined body of non-oxide ceramic and metal
JPS63239170A (en) Ceramic-metal joined body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees