JPH0440316B2 - - Google Patents

Info

Publication number
JPH0440316B2
JPH0440316B2 JP21518787A JP21518787A JPH0440316B2 JP H0440316 B2 JPH0440316 B2 JP H0440316B2 JP 21518787 A JP21518787 A JP 21518787A JP 21518787 A JP21518787 A JP 21518787A JP H0440316 B2 JPH0440316 B2 JP H0440316B2
Authority
JP
Japan
Prior art keywords
metal
ceramic
recess
solder
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21518787A
Other languages
Japanese (ja)
Other versions
JPS6461367A (en
Inventor
Nobuo Tsuno
Takashi Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP21518787A priority Critical patent/JPS6461367A/en
Priority to US07/236,145 priority patent/US4942999A/en
Priority to CA000576044A priority patent/CA1319249C/en
Priority to DE3889044T priority patent/DE3889044T2/en
Priority to EP88308054A priority patent/EP0307131B1/en
Publication of JPS6461367A publication Critical patent/JPS6461367A/en
Publication of JPH0440316B2 publication Critical patent/JPH0440316B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、金属・セラミツクス接合体およびそ
の接合法に関するもので、さらに詳しくは、金属
部材とセラミツク部材をろう付けで一体的に結合
してなる金属・セラミツクス接合体およびその接
合法に関するものである。 (従来の技術および解決しようとする問題点) ジルコニア、窒化珪素、炭化珪素等のセラミツ
クスは、機械的強度、耐熱性、耐摩耗性にすぐれ
ているため、ガスタービンエンジン部品、エンジ
ン部品等の高温構造材料あるいは耐摩耗材料とし
て実用化が図られている。しかし、セラミツクス
は一般に硬くて、脆いため金属材料に比較して成
形加工性が劣る。また、靭性が乏しいため、衝撃
力に対する抵抗が弱い。このため、セラミツク材
料のみでエンジン部品のような機械部品を形成す
ることは難しく、一般には金属部材とセラミツク
部材を結合した複合構造体としての形で使用され
ることが多い。 例えば、実開昭61−108329号公報には、金属部
材の円筒状かん合孔内に、セラミツク部材の円柱
状かん入部をかん挿し、ろう付けにより両部材を
一体的にかん着した構造が示されている。しか
し、この構造の如く、前記円柱状かん入部の全外
表面と前記円筒状かん合孔の全内表面で、熱膨張
係数が異なる2種類の材料を結合した場合には、
過大な残留応力が発生してセラミツク部材の破壊
を生じ易く、実用上問題がある。 この問題の解決のため、セラミツク部材と金属
部材の接合部位を特定の位置に限定することがな
されている。例えば、特開昭61−219766号公報に
は、セラミツク軸の端部を金属軸に形成した閉塞
孔に挿入して、前記セラミツク軸の突き合わせ端
面と前記閉塞孔底端面の間はセラミツクスと金属
の両方に結合可能な中間材を介して接合するとと
もに、前記セラミツク軸の外周面と前記金属軸の
閉塞孔内周面との間はセラミツクスおよび金属の
いずれかと結合しない中間材を介して結合する構
造が示されている。 また、ヨーロツパ特許EP−A−0195640号公報
には、セラミツク部材に設けた凸部を金属部材に
設けた凹部に挿入し、前記凸部の外周面と前記凹
部の内周面の間を活性金属ろうで一体的に接合す
るとともに、前記凸部端面と前記凹部底面の間に
は隙間を設けた構造の接合方法が示されている。 さらにまた、特開昭61−169164号公報には、セ
ラミツク部材に設けた凸部を金属部材に設けたス
リーブ部にかん合し、前記凸部の外周面と前記ス
リーブ部の内周面の間の一部分のみをろう材で接
合した接合構造が示されている。 ところが、前記特開昭61−219766号公報に記載
の構造は、使用温度が上昇して、セラミツク軸の
外周面と前記金属軸の閉塞孔内周面との間の焼ば
め効果がなくなると、必要な強度をセラミツク軸
の突き合わせ端面と金属軸の閉塞孔底面の接合部
だけで確保しなければならなくなるので、セラミ
ツク軸が細く、しかも使用温度が高温となる場合
には、必要な強度の確保が困難となる欠点があつ
た。 一方、前記ヨーロツパ特許EP−A−0195640号
公報に示されている構造の接合法では、セラミツ
ク部材と金属部材の接合予定表面の間に活性金属
ろうを配置し、該ろうをその位置で溶融させて、
両部材の接合を行つている。かかる方法でろう付
けを行うと、ろうの中に気泡やひけ等の欠陥が発
生し易く、十分な接合強度が得られない欠点があ
る。 また、前記特開昭61−169164号公報に記載の構
造は、セラミツク部材に設けた凸部の接合予定表
面にメタライズ層を形成し、該メタライズ層と、
金属部材に設けたスリーブ部の内表面とをろう付
けして得られる。この方法は、セラミツク部材の
ろう付け部の限定法としてはすぐれているが、セ
ラミツク部材のメタライズ処理のための余分な工
程が必要となるばかりか、適用がメタライズ層の
形成が可能なセラミツク材料に限られる欠点があ
る。 本発明の目的は上述した不具合を解消して、製
造が容易でしかも室温ならびに高温のいずれにお
いても接合強度が極めて強い金属・セラミツクス
接合体とその接合法を提供しようとするものであ
る。 (問題点を解決するための手段) 本発明の金属・セラミツクス接合体は、セラミ
ツク部材に設けた凸部が金属部材に設けた凹部に
挿入されて、しかも前記凸部の外周面と前記凹部
の内表面がろう付けにより一体的に接合されてい
る構造の金属・セラミツクス接合体において、上
記凸部先端表面にはろうと非接合性の物質からな
る薄い層、該凸部先端表面の上記凹部底面の間に
はろうと非接合物質からなる低弾性中間体を介在
させて、金属部材とセラミツク部材の実質的接合
を上記凸部外周面と上記凹部内表面の間に限定し
ていることを特徴とするものである。 さらにまた、本発明の金属・セラミツクス接合
体の接合法は、セラミツク部材に設けた凸部が金
属部材に設けた凹部に挿入されて、しかも前記凸
部の外周面と前記凹部の内表面がろう付けにより
一体的に結合されている構造の金属・セラミツク
ス接合体の接合法において、接合工程が、 a 金属部材の一端に凹部、セラミツク部材に凸
部を設ける工程、 b 上記金属部材の凹部内の接合予定表面にNi
メツキを施したのち、凹部底面上に低弾性体を
配置し、さらに該弾性体の上に活性金属を含有
するろうを配設する工程、 c 前記凸部先端に黒鉛を塗布する工程 d 前記凹部内に上記凸部を挿入して、セラミツ
ク部材と金属部材の接合用組立体を形成する工
程、 e 上記組立体を真空あるいは不活性雰囲気中で
ろうの融点以上の温度に加熱して、ろうを融解
させ、該溶融ろうで前記凸部外周面と凹部内表
面の間に存在する隙間を充填する工程、 f 上記組立体を冷却し、ろうを凝固させてセラ
ミツク部材の凸部外周面と金属部材の凹部内表
面の間の接合を完了させる工程 からなることを特徴とするものである。 本発明は、金属・セラミツクス接合体につい
て、セラミツク部材内に発生する残留応力に及ぼ
す前記接合体の接合部の構造の影響を有限要素法
により解析して最適形状を決定したのち、該形状
を具体化するための方法について広範かつ詳細な
検討を行い完成したものである。 (作用) 本発明の金属・セラミツクス接合体は、金属部
材とセラミツク部材の実質的接合位置を、セラミ
ツク部材に設けた凸部の外周面と金属部材に設け
た凹部の内表面の間に限定するとともに、低弾性
材料からなる中間体を介在させて、該凸部先端表
面と前記凹部底面との直接的接触を妨げれば、接
合強度と信頼性が高い接合体となることを見いだ
したことによる。 接合位置が、上記以外の位置の場合には、両部
材の接合端部に発生する残留応力が過大となつた
り、十分な接合強度が得られないので好ましくな
い。例えば、接合が、前記凸部の表面と前記凹部
の内表面の接触部全域でなされる場合には、接合
温度からの冷却途中で接合端において、上記残留
応力のためセラミツク部材が破損することがある
ので好ましくない。 また、接合位置が上記凸部先端表面と上記凹部
底面の場合には、該凸部の直径が小さくなると接
合面積が減少し、接合部の強度が低下するので好
ましくない。これに対して、接合が本発明の如く
上記凸部外周面と上記凹部内表面の接触部のみで
行われる場合には、ろうとセラミツク部材ならび
に金属部材が反応し、両部材の間に強固な接合部
が構成されるばかりでなく、接合温度からの冷却
にさいして焼ばめ効果が付加されるので、安定し
て高強度が得られるので好ましいものである。 接合部の上記位置への限定は、ろうと接合性を
持たない物質からなる薄い膜をセラミツク部材に
設けた凸部先端表面へ形成させることと、該物質
からなる中間体を金属部材に設けた凹部底面の上
に配置することで行う。ろうと接合性を持たない
物質の一例としては黒鉛がある。前記凸部先端表
面への黒鉛膜の形成は、黒鉛粒子の懸濁液を使用
し、刷毛またはスプレーによる塗布、あるいは浸
漬で簡単に行うことが出来る。また、前記中間体
としては、たとえば黒鉛繊維からなるスライバ
ー、フエルト、ウエブ、ウエブ焼結体、織布のよ
うな低弾性体を単独でまたは組合せで使用する。 該低弾性体からなる中間体の介在は、ろうと前
記凹部底面の接合を阻止する効果だけでなく、接
合温度からの冷却に際しセラミツク部材と金属部
材の収縮量の差により生ずる前記凸部先端と前記
凹部底面の間の相互干渉を防止し、接合部に過大
な残留応力が発生することを阻止する効果と、溶
融したろうを凸部外周面と凹部内表面の間の隙間
に効率良く浸透させる効果も有している。 本発明では、セラミツク部材と金属部材の接合
を、セラミツク部材と化学的結合が可能な活性金
属元素を含有する活性金属ろうで行う。該ろうと
しては、前記活性金属元素を含む合金ろうであつ
てもよいし、金属基材の上に活性金属元素を被覆
した構造のろう材でもよい。さらにまた、活性金
属箔と活性金属の箔と活性金属を含まないろうを
重ねて使用してもよい。ろう材に対する活性金属
の添加量の調整、取り扱いの容量さあるいは製造
の容易さを考慮すると、金属基材の上に活性金属
元素を被覆した構造のろうの使用が好ましく、金
属基材の上に活性金属元素を蒸着した構造のろう
の使用がより好ましい。該活性金属元素として
は、被接合セラミツク部材が窒化物、炭化物を少
なくとも含むセラミツクスの場合にはZr,Ti,
Ta,Hf,V,Cr,La,Sc,YおよびMoからな
る群から選ばれた少なくとも一種の金属元素が好
ましく、被接合セラミツク部材が酸化物セラミツ
クスの場合には、Be,ZrおよびTiよりなる群か
ら選ばれた少なくとも一種の金属元素が好まし
い。 本発明の金属・セラミツクス接合体を形成する
セラミツク材料としては、上記活性金属ろうと高
強度の接合部が得られるセラミツク材料であれば
いずれの材料でもよいが、実用性を考慮すると、
窒化珪素、炭化珪素、サイアロン、ジルコニア、
アルミナ、ムライト、チタン酸アルミニウムおよ
びコージエライトよりなる群から選ばれた少なく
とも一種のセラミツク材料とするのが好ましい。
これらのセラミツク材料のいずれを使用するか
は、本発明の金属・セラミツクス接合体の使用目
的と接合すべき金属材料の種類に応じて決定すれ
ばよい。 上記活性金属ろうはセラミツク部材との濡れ性
が良いので、セラミツク部材に対してメタライズ
処理のような特別な前処理をする必要はない。ま
た、金属部材に対しては、Niメツキをすれば濡
れが良くなる。従つて、該ろうを使用すれば所定
の接合位置へ毛細管現象を利用して溶融ろうを浸
透させる事が出来るので、被接合部に形成する隙
間の管理を行うだけで、欠陥の少ないろう付けを
行うことが出来る。ろう付け温度における該隙間
の上限値としては、300μm以下とするのが好まし
く、150μm以下とするのがより好ましい。該隙間
が300μm以上では、ろうの上昇高さが減少し、所
定の接合距離が得られなくなるので好ましくな
い。 また、本発明の金属・セラミツクス接合体で
は、接合端部における残留応力値が接合距離に比
例して変化する。しかし、該残留応力値をセラミ
ツクスの破壊応力以下の応力値以下に押さえるの
に必要な接合距離Lは、セラミツク部材の性質あ
るいは凸部の直径Dに依存する。例えば、セラミ
ツク部材が窒化珪素からなる場合には、前記接合
距離Lと前記凸部直径Dの比(L/D)を0.2〜
0.8とするのが好ましく、0.2〜0.6とするのがより
好ましく、0.2〜0.4とするのがもつとも好まし
い。上記L/Dの0.2以下では、接合距離が短か
すぎて、接合強度が不足する心配があるので好ま
しくない。また、L/Dが0.8以上では、接合端
部に発生する残留応力が大きくなりすぎて、セラ
ミツク部材が破損し易くなるので好ましくない。 (実施例) 次に、図面により本発明をさらに詳しく説明す
る。第1図は、接合部に発生する残留応力を有限
要素法で求めるのに使用した接合体の概略図であ
る。この図では、セラミツク部材1に設けた凸部
2の外表面の一部と金属部材4に設けた凹部5の
内表面の一部とが接合距離Lで接合されている。
第1表は、第1図の如き接合体をろうの凝固温度
から室温まで冷却した場合に、凸部先端表面3と
凹部底面6の関係により、接合端7に発生する残
留応力がどう変化するかを計算した結果を示した
ものである。番号1は、凹部底面6と凸部先端表
面3の間が非接合で、しかも両表面の間に所定長
の隙間を設けて、両表面の相互干渉が起こらない
とした場合の計算結果である。さらに、番号2は
凹部底面6と凸部先端表面3が非接合状態で密着
している場合、番号3は凹部底面6と凸部先端表
面3の間が接合されている場合に相当する。第1
表から明らかな如く、残留応力が最小なのは番号
1の場合である。
(Industrial Application Field) The present invention relates to a metal/ceramic bonded body and a method for joining the same, and more specifically, to a metal/ceramic bonded body formed by integrally bonding a metal member and a ceramic member by brazing, and The present invention relates to the joining method. (Prior art and problems to be solved) Ceramics such as zirconia, silicon nitride, and silicon carbide have excellent mechanical strength, heat resistance, and wear resistance, so they are used in high-temperature applications such as gas turbine engine parts and engine parts. It is being put to practical use as a structural material or wear-resistant material. However, since ceramics are generally hard and brittle, their moldability is inferior to that of metal materials. In addition, since it has poor toughness, it has low resistance to impact forces. For this reason, it is difficult to form mechanical parts such as engine parts using only ceramic materials, and ceramic materials are generally used in the form of composite structures in which metal members and ceramic members are combined. For example, Japanese Utility Model Application No. 61-108329 discloses a structure in which a cylindrical insertion part of a ceramic member is inserted into a cylindrical fitting hole of a metal member, and both members are integrally connected by brazing. has been done. However, when two types of materials having different coefficients of thermal expansion are combined on the entire outer surface of the cylindrical insertion part and the entire inner surface of the cylindrical fitting hole as in this structure,
Excessive residual stress is generated, which tends to cause destruction of the ceramic member, which poses a practical problem. In order to solve this problem, the joint portion between the ceramic member and the metal member is limited to a specific position. For example, in Japanese Patent Application Laid-Open No. 61-219766, the end of a ceramic shaft is inserted into a blocking hole formed in a metal shaft, and a gap between the ceramic shaft and the metal is inserted between the abutting end surface of the ceramic shaft and the bottom end surface of the blocking hole. A structure in which the ceramic shaft is joined through an intermediate material that can be joined to both, and the outer peripheral surface of the ceramic shaft and the inner peripheral surface of the blocked hole of the metal shaft are joined through an intermediate material that is not joined to either the ceramic or the metal. It is shown. Furthermore, European Patent EP-A-0195640 discloses that a protrusion provided on a ceramic member is inserted into a recess provided in a metal member, and active metal is inserted between the outer circumferential surface of the protrusion and the inner circumferential surface of the recess. A joining method is shown in which the parts are integrally joined with a solder and a gap is provided between the end face of the convex part and the bottom face of the recessed part. Furthermore, Japanese Patent Application Laid-Open No. 61-169164 discloses that a protrusion provided on a ceramic member is engaged with a sleeve provided on a metal member, and a gap between the outer circumferential surface of the protrusion and the inner circumferential surface of the sleeve portion is disclosed. A joint structure in which only a portion of the joint is joined with a brazing material is shown. However, in the structure described in JP-A-61-219766, when the operating temperature rises and the shrink fit effect between the outer circumferential surface of the ceramic shaft and the inner circumferential surface of the closed hole of the metal shaft disappears. Since the necessary strength must be secured only at the joint between the butt end face of the ceramic shaft and the bottom of the closed hole of the metal shaft, when the ceramic shaft is thin and the operating temperature is high, it is difficult to obtain the necessary strength. There were drawbacks that made it difficult to secure. On the other hand, in the joining method of the structure shown in the European patent EP-A-0195640, an active metal solder is placed between the surfaces to be joined between the ceramic member and the metal member, and the solder is melted at that position. hand,
Both parts are being joined. When brazing is performed using such a method, defects such as bubbles and sink marks are likely to occur in the solder, and sufficient bonding strength cannot be obtained. Further, the structure described in the above-mentioned Japanese Patent Application Laid-Open No. 169164/1983 forms a metallized layer on the surface to be bonded of a convex portion provided on a ceramic member, and the metallized layer and
It is obtained by brazing the inner surface of a sleeve portion provided on a metal member. This method is excellent for limiting the brazed portion of ceramic parts, but not only does it require an extra step for metallizing the ceramic parts, but it can also be applied to ceramic materials that can form a metallized layer. There are limited drawbacks. An object of the present invention is to eliminate the above-mentioned problems and provide a metal-ceramic bonded body that is easy to manufacture and has extremely high bonding strength both at room temperature and high temperature, and a method for bonding the same. (Means for Solving the Problems) In the metal-ceramic bonded body of the present invention, a convex portion provided on a ceramic member is inserted into a concave portion provided on a metal member, and the outer peripheral surface of the convex portion and the concave portion In a metal-ceramic bonded body having a structure in which the inner surfaces are integrally joined by brazing, a thin layer made of a substance that does not bond to solder is formed on the tip surface of the convex portion, and a thin layer of a substance that does not bond to solder is formed on the bottom surface of the concave portion on the tip surface of the convex portion. A low-elasticity intermediate made of wax and a non-bonding substance is interposed therebetween, so that the substantial bonding between the metal member and the ceramic member is limited between the outer circumferential surface of the convex portion and the inner surface of the recessed portion. It is something. Furthermore, in the method for joining metal-ceramic joined bodies of the present invention, a protrusion provided on a ceramic member is inserted into a recess provided in a metal member, and the outer circumferential surface of the protrusion and the inner surface of the recess are bonded by soldering. In a method for joining metal-ceramic joined bodies having a structure in which they are integrally joined by bonding, the joining step includes: a) providing a concave portion at one end of the metal member and a convex portion on the ceramic member; b) forming a concave portion in the concave portion of the metal member. Ni on the surface to be joined
After plating, a step of arranging a low-elastic body on the bottom surface of the recess, and further arranging a wax containing an active metal on the elastic body, c. A step of applying graphite to the tip of the convex part. d. A step of applying graphite to the tip of the recess. a step of inserting the convex portion into a ceramic member and a metal member to form an assembly for joining the ceramic member and the metal member, e. heating the assembly to a temperature higher than the melting point of the wax in a vacuum or an inert atmosphere to melt the wax; melting and filling the gap existing between the outer circumferential surface of the convex part and the inner surface of the concave part with the molten solder; (f) cooling the assembly and solidifying the solder to separate the outer circumferential surface of the convex part of the ceramic member and the metal member; The method is characterized by comprising a step of completing the bonding between the inner surfaces of the recesses. The present invention involves determining the optimum shape of a metal-ceramic bonded body by analyzing the influence of the structure of the joint of the bonded body on the residual stress generated in the ceramic member using the finite element method, and then specifying the shape. This was completed after extensive and detailed consideration of methods for achieving this goal. (Function) The metal-ceramic bonded body of the present invention limits the substantial bonding position between the metal member and the ceramic member between the outer circumferential surface of the protrusion provided in the ceramic member and the inner surface of the recess provided in the metal member. In addition, it has been discovered that if an intermediate body made of a low-elastic material is interposed to prevent direct contact between the tip surface of the convex portion and the bottom surface of the concave portion, a bonded body with high bonding strength and reliability can be obtained. . If the joining position is other than the above, it is not preferable because the residual stress generated at the joining ends of both members becomes excessive or sufficient joining strength cannot be obtained. For example, when bonding is performed over the entire contact area between the surface of the convex portion and the inner surface of the concave portion, the ceramic member may be damaged due to the residual stress at the bonded end during cooling from the bonding temperature. I don't like it because it is. Further, in the case where the bonding position is between the tip surface of the convex portion and the bottom surface of the concave portion, it is not preferable because as the diameter of the convex portion becomes smaller, the bonding area decreases and the strength of the bonded portion decreases. On the other hand, when bonding is performed only at the contact portion between the outer circumferential surface of the convex portion and the inner surface of the concave portion as in the present invention, the wax reacts with the ceramic member and the metal member, resulting in a strong bond between the two members. This is preferable because not only the parts are formed, but also a shrink fit effect is added during cooling from the bonding temperature, and high strength can be stably obtained. The bonding portion is limited to the above position by forming a thin film made of a substance that does not have solder bonding properties on the tip surface of the convex part provided on the ceramic member, and by forming an intermediate body made of the substance on the concave part provided in the metal member. This is done by placing it on top of the bottom. Graphite is an example of a material that does not bond with solders. Formation of a graphite film on the tip surface of the convex portion can be easily performed by using a suspension of graphite particles and applying with a brush or spray, or by dipping. Further, as the intermediate body, a low elastic body such as a sliver made of graphite fiber, felt, web, web sintered body, or woven fabric may be used alone or in combination. The interposition of the intermediate body made of the low elastic material not only has the effect of preventing the joining of the solder and the bottom of the concave portion, but also prevents the tip of the convex portion and the aforementioned convex portion from forming due to the difference in the amount of shrinkage between the ceramic member and the metal member upon cooling from the bonding temperature. The effect of preventing mutual interference between the bottom surfaces of the recess and the generation of excessive residual stress in the joint, and the effect of efficiently penetrating the molten solder into the gap between the outer peripheral surface of the convex part and the inner surface of the recess. It also has In the present invention, the ceramic member and the metal member are bonded using an active metal solder containing an active metal element capable of chemically bonding with the ceramic member. The solder may be an alloy solder containing the active metal element, or a brazing material having a structure in which a metal base material is coated with an active metal element. Furthermore, active metal foils, active metal foils, and active metal-free wax may be used in layers. Considering the adjustment of the amount of active metal added to the brazing filler metal, handling capacity, and ease of manufacturing, it is preferable to use a brazing structure in which the active metal element is coated on the metal base material. It is more preferable to use a wax having a structure in which an active metal element is deposited. When the ceramic member to be joined is a ceramic containing at least a nitride or a carbide, examples of the active metal element include Zr, Ti, and
At least one metal element selected from the group consisting of Ta, Hf, V, Cr, La, Sc, Y and Mo is preferable, and when the ceramic member to be joined is an oxide ceramic, it is made of Be, Zr and Ti. At least one metal element selected from the group is preferred. The ceramic material forming the metal-ceramic bonded body of the present invention may be any ceramic material that can form a high-strength joint with the active metal solder, but in consideration of practicality,
silicon nitride, silicon carbide, sialon, zirconia,
Preferably, at least one ceramic material selected from the group consisting of alumina, mullite, aluminum titanate, and cordierite is used.
Which of these ceramic materials to use may be determined depending on the purpose of use of the metal-ceramic bonded body of the present invention and the type of metal material to be bonded. Since the active metal solder has good wettability with ceramic members, there is no need to perform any special pretreatment such as metallization treatment on the ceramic members. In addition, if metal parts are plated with Ni, wetting becomes better. Therefore, by using this solder, it is possible to infiltrate molten solder into a predetermined joining position using capillary action, so simply by controlling the gap formed in the parts to be joined, it is possible to achieve brazing with fewer defects. It can be done. The upper limit of the gap at the brazing temperature is preferably 300 μm or less, more preferably 150 μm or less. If the gap is 300 μm or more, the rising height of the solder decreases, making it impossible to obtain a predetermined bonding distance, which is not preferable. Furthermore, in the metal-ceramic bonded body of the present invention, the residual stress value at the bonded end changes in proportion to the bonding distance. However, the bonding distance L required to suppress the residual stress value to a stress value below the fracture stress of the ceramic depends on the properties of the ceramic member or the diameter D of the convex portion. For example, when the ceramic member is made of silicon nitride, the ratio (L/D) of the bonding distance L to the convex diameter D is 0.2 to
It is preferably 0.8, more preferably 0.2 to 0.6, and most preferably 0.2 to 0.4. If the above L/D is 0.2 or less, the bonding distance is too short and there is a risk that the bonding strength will be insufficient, which is not preferable. Further, if L/D is 0.8 or more, the residual stress generated at the joint end becomes too large and the ceramic member is likely to be damaged, which is not preferable. (Example) Next, the present invention will be explained in more detail with reference to the drawings. FIG. 1 is a schematic diagram of a joined body used to determine the residual stress generated in the joint by the finite element method. In this figure, a part of the outer surface of a convex part 2 provided on a ceramic member 1 and a part of the inner surface of a recessed part 5 provided in a metal member 4 are joined at a joining distance L.
Table 1 shows how the residual stress generated at the joint end 7 changes depending on the relationship between the tip surface 3 of the convex part and the bottom surface 6 of the concave part when the joined body as shown in Fig. 1 is cooled from the solidification temperature of the solder to room temperature. This figure shows the results of the calculation. Number 1 is the calculation result when it is assumed that there is no bond between the bottom surface 6 of the concave portion and the tip surface 3 of the convex portion, and a gap of a predetermined length is provided between both surfaces, so that mutual interference between the two surfaces does not occur. . Furthermore, number 2 corresponds to the case where the recess bottom surface 6 and the protrusion tip surface 3 are in close contact with each other in a non-bonded state, and number 3 corresponds to the case where the recess bottom surface 6 and the protrusion tip surface 3 are joined. 1st
As is clear from the table, the residual stress is the lowest in case No. 1.

【表】 第2図は、第1図の接合体の凸部先端表面3と
凹部底面6の間に所定の隙間を設け、凸部外表面
と凹部内表面の間の接合距離Lを変化させた場合
に、該接合距離Lと接合端7に発生する残留応力
の計算値の関係を示す図である。第2図から明ら
かな如く、上記接合距離Lの増加とともに残留応
力も上昇する。 上記残留応力の許容値は、使用するセラミツク
材料の強度に応じて設定すればよいが、現在利用
可能なセラミツク材料の強度と安全率を考慮する
と、50Kg/mm2以下とするのが好ましく、40Kg/mm2
以下とするのがより好ましい。 なお、第1図に示した接合体の凸部先端表面3
と凹部底面6の間に設ける隙間の大きさGは、ろ
うの凝固温度から室温までの冷却中に、凹部底面
6と凸部先端表面3の間に相互干渉が起こらない
大きさとする。 従つて、以下の関係を満足する大きさとすれば
良い。 G>(接合端7から金属部材の凹部底面6まで
の距離)×(金属部材の熱膨張係数−セラミツク部
材の熱膨張係数)×(ろうの凝固温度−室温) 該隙間の設置は、上述の如く凹部底面Cと凸部先
端表面3の間の相互干渉防止が目的であるから、
該隙間は空間であつても良いし、両表面の間に中
間材として低弾性体を配置し緩衝材として機能さ
せても良い。かかる低弾性体として、たとえば黒
鉛遷移からなるスライバー、フエルト、ウエブ、
ウエブ焼結体、織布のようなものが利用できる。 実施例 1 直径:18mmの溶体化処理済インコロイ903丸棒
の一端に内径:11.05mm、深さ8mmの凹部と直
径:12mmの細軸部を受けた金属部材と、常圧焼結
法による窒化珪素焼結体の一端に直径:11.0mm、
長さ:10mmの凸部を設けたセラミツク部材を作製
した。上記凹部の底部隅部には、0.2Cの面取り
が、また開放端隅部にはテーパー加工がしてあ
る。同じく、上記凸部の先端のエツヂ部は0.5Cの
丸め加工が、根元部にはR2で局面加工がしてあ
る。該凹部の内表面に厚さ:10μmのNiメツキを
施したのち、該凹部底面上に厚さ:0.4mmの黒鉛
フエルトを配置し、さらに該黒鉛フエルトの上に
厚さ:0.1mmの銀ろう板の表面上に厚さ2μmのTi
を蒸着した活性金属ろうを配置した。一方、凸部
先端表面に黒鉛を塗布したのち、該凸部を前記金
属部材の凹部内に挿入して接合用組立体を形成し
た。次に、該接合用組立体を真空中で850℃まで
昇温してろう付けを行つたのち、インコロイ903
所定の時効硬化処理を行つて第3図に示す如き接
合部形状の接合体を作製した(本発明例と称す)。
また、比較例として、上記金属部材とセラミツク
部材を使用して、金属部材の凹部底面にのみNi
メツキを施したのち、凹部底面上への黒鉛フエル
トの配置と凸部先端表面への黒鉛の塗布をせず
に、上記接合体のろう付けと同じ活性金属ろうを
使用してろう付けし、上記接合体と同じ熱処理を
行つて、第1図に示す如き接合部形状の接合体を
作製した(比較例と称す)。これら2種類の接合
体について、接合部断面を切断してろう付けの状
態を比較したところ、本発明例では接合がセラミ
ツク部材の凸部外周面18と凹部内表面19の間
で接合距離4.5mmにわたつてなされており、比較
例では接合が凸部先端表面3と凹部底面6の間で
行われていた。次に、これらの2種類の接合体に
ついて、ねじり強度試験と引き抜き試験を450℃
で行い、第2表に示す結果を得た。この結果から
明らかな如く、セラミツク軸の外周面で金属部材
の凹部内表面と接合した本発明の接合体は、セラ
ミツク軸の先端部と金属部材の凹部底面で接合し
た比較例の接合体よりすぐれた接合強度を有して
いる。
[Table] Fig. 2 shows a method in which a predetermined gap is provided between the tip surface 3 of the protrusion and the bottom surface 6 of the recess of the joined body shown in Fig. 1, and the joining distance L between the outer surface of the protrusion and the inner surface of the recess is changed. FIG. 7 is a diagram showing the relationship between the welding distance L and the calculated value of the residual stress generated at the welded end 7 when As is clear from FIG. 2, as the bonding distance L increases, the residual stress also increases. The allowable value of the residual stress above may be set according to the strength of the ceramic material used, but considering the strength and safety factor of currently available ceramic materials, it is preferably 50Kg/mm 2 or less, and 40Kg / mm2
The following is more preferable. Note that the tip surface 3 of the convex portion of the joined body shown in FIG.
The size G of the gap provided between the bottom surface 6 of the concave portion and the bottom surface 6 of the concave portion is set to such a size that mutual interference does not occur between the bottom surface 6 of the concave portion and the tip surface 3 of the convex portion during cooling from the solidification temperature of the solder to room temperature. Therefore, it is sufficient to select a size that satisfies the following relationship. G> (distance from the joint end 7 to the bottom surface 6 of the recess of the metal member) x (coefficient of thermal expansion of the metal member - coefficient of thermal expansion of the ceramic member) x (solidification temperature of the solder - room temperature) The installation of the gap is performed as described above. Since the purpose is to prevent mutual interference between the bottom surface C of the concave portion and the tip surface 3 of the convex portion,
The gap may be a space, or a low elastic material may be placed between both surfaces as an intermediate material to function as a buffer material. Examples of such low elasticity materials include slivers, felts, webs, etc. made of graphite transition.
Materials such as web sintered bodies and woven fabrics can be used. Example 1 A metal member with a concave part with an inner diameter of 11.05 mm and a depth of 8 mm and a thin shaft part with a diameter of 12 mm at one end of a solution-treated Incoloy 903 round bar with a diameter of 18 mm, and nitrided using an atmospheric pressure sintering method. Diameter: 11.0mm at one end of silicon sintered body,
A ceramic member with a convex portion having a length of 10 mm was produced. The bottom corner of the recess has a 0.2C chamfer, and the open end corner is tapered. Similarly, the edge at the tip of the convex part is rounded to 0.5C, and the base is rounded to R2. After applying Ni plating with a thickness of 10 μm to the inner surface of the recess, a graphite felt with a thickness of 0.4 mm is placed on the bottom of the recess, and a silver solder with a thickness of 0.1 mm is placed on top of the graphite felt. 2 μm thick Ti on the surface of the plate
An active metal solder was deposited on the surface. On the other hand, after applying graphite to the tip surface of the protrusion, the protrusion was inserted into the recess of the metal member to form a joining assembly. Next, the temperature of the joining assembly was raised to 850°C in a vacuum and brazing was performed, followed by Incoloy 903
A predetermined age hardening treatment was performed to produce a joined body having a joint shape as shown in FIG. 3 (referred to as an example of the present invention).
In addition, as a comparative example, using the above metal member and ceramic member, Ni was applied only to the bottom of the recess of the metal member.
After plating, without placing graphite felt on the bottom of the recess and applying graphite to the tip surface of the convex part, brazing is performed using the same active metal solder as used for brazing the above-mentioned joined body. The same heat treatment as the joined body was performed to produce a joined body having a joint shape as shown in FIG. 1 (referred to as a comparative example). When the cross-sections of the joints of these two types of joints were cut and the brazing conditions were compared, it was found that in the example of the present invention, the joint distance was 4.5 mm between the outer peripheral surface 18 of the convex part and the inner surface 19 of the recessed part of the ceramic member. In the comparative example, the bonding was performed between the tip surface 3 of the convex portion and the bottom surface 6 of the concave portion. Next, these two types of joined bodies were subjected to torsional strength tests and pull-out tests at 450℃.
The results shown in Table 2 were obtained. As is clear from these results, the joined body of the present invention in which the outer peripheral surface of the ceramic shaft is joined to the inner surface of the recess of the metal member is superior to the joined body of the comparative example in which the tip of the ceramic shaft is joined to the bottom surface of the recess of the metal member. It has a high bonding strength.

【表】 実施例 2 通常の銀ろうを使用して、実施例1に記載の本
発明例と同じ形状の接合体(比較例)を作製し
た。該比較例の接合体についても、接合部断面を
切断してろう付けの状態を確認した。該比較例で
は、銀ろうがセラミツク部材の凸部外周面18と
金属部材の凹部内表面19の間に浸透し、該ろう
と金属部材が接合状態にあつた。一方、窒化珪素
からなるセラミツク部材と銀ろうは接合がなされ
ていなかつた。このことから明らかな如く、該比
較例のセラミツク部材と金属部材の結合は、金属
部材の凹部内表面とセラミツク部材と凸部外周面
の間に銀ろうを介して焼ばめでなされいる状態に
相当する。次に、該比較例と実施例1に記載の本
発明例について、450℃〜750℃の温度範囲におけ
る接合部のねじり強度と引抜き強度を比較し、第
3表に示す結果を得た。第3表の結果から明らか
な如く、本発明の接合体は600℃以上の高温では、
比較例よりすぐれた接合強度を有している。これ
は、本発明の接合体は、金属部材とセラミツク部
材がろう付けにより一体的に接合されているため
である。比較例では、結合が焼ばめでなされてい
るため、温度が上昇すると締め代が低下し、接合
強度が急激に低下するものである。
[Table] Example 2 A joined body (comparative example) having the same shape as the inventive example described in Example 1 was produced using ordinary silver solder. Regarding the joined body of the comparative example, a cross section of the joined part was cut to check the brazing state. In the comparative example, the silver solder penetrated between the outer peripheral surface 18 of the convex portion of the ceramic member and the inner surface 19 of the recessed portion of the metal member, and the solder and the metal member were in a bonded state. On the other hand, the ceramic member made of silicon nitride and the silver solder were not bonded. As is clear from this, the connection between the ceramic member and the metal member in the comparative example corresponds to a state in which the connection between the inner surface of the recess of the metal member, the ceramic member and the outer peripheral surface of the protrusion is achieved by shrink fitting via silver solder. do. Next, the torsional strength and pull-out strength of the joint in the temperature range of 450° C. to 750° C. were compared for the comparative example and the inventive example described in Example 1, and the results shown in Table 3 were obtained. As is clear from the results in Table 3, the bonded body of the present invention has a high temperature of 600°C or higher.
It has better bonding strength than the comparative example. This is because, in the joined body of the present invention, the metal member and the ceramic member are integrally joined by brazing. In the comparative example, since the bonding is done by shrink fitting, as the temperature rises, the interference decreases and the bonding strength sharply decreases.

【表】 実施例 3 翼車21と軸部が常圧焼結法による窒化珪素で
一体的に形成されているタービンロータの軸部先
端に直径12.0mm、長さ7.5mmの凸部22を設けて
セラミツク部材とした。また、直径:20mmのイン
コロイ903の丸棒の一端に、直径:12mmの合金鋼
(例えばJIS−SNCM439)の丸棒を摩擦圧接した
棒材を準備した。次に、該棒材をターボチヤージ
ヤロータの構成に必要な外径に機械加工するとと
もに、インコロイ903側の端部に直径:12.05
mm、深さ:7.0mmの凹部25を設けて金属部材と
した。該凹部の内表面にNiメツキを施したのち、
実施例1記載の方法と同じ方法で接合し、接合部
が第4図の如き概略構造を有するターボチヤージ
ヤロータ用接合体を作製した。該接合体に対し
て、所定の工程に従つて仕上げ加工を行いターボ
チヤージヤ用タービンロータを作製した。該ター
ボチヤージヤ用タービンロータを排気量2000c.c.の
ガソリンエンジンに組付け、タービン回転数12万
rpmで連続200hrの回転試験を行つたのち、接合
部のねじり強度試験を行いエンジン試験前の強度
と比較したが、接合強度の低下は認められなかつ
た。 (発明の効果) 以上説明したように、セラミツク部材に設けら
れた凸部が金属部材に設けられた凹部に挿入され
て、金属部材とセラミツク部材の実質的接合が上
記凸部外周面と上記凹部内表面の間で、活性金属
ろうによりなされている構造を有する本発明の金
属・セラミツクス接合体は、上記凸部先端表面に
はろう非接合性の物質からなる薄い層、前記凸部
先端表面と上記凹部底面の間には、ろうと非接合
性物質からなる低弾性中間体が介在しているの
で、接合部位の限定を容易にしかも確実に行える
ので、接合後にセラミツク部材の接合端に生ずる
残留応力の低減と管理が可能となり、接合強度の
向上とばらつきの減少が達成される。さらにま
た、本発明の接合法では、前記凹部底面の上にろ
うと非接合性の物質からなる中間体を設置したの
ち、該中間体の上に活性金属ろうを配置して、上
記凸部先端表面と該中間体の間で該ろうを融解さ
せてろう付けを行うので、前記凸部外周面と前記
凹部内表面の間に形成させる隙間の大きさを管理
するだけで、溶融したろうを該隙間の間に毛細管
現象を利用して浸透させることが可能となるの
で、欠陥の少ないろう付け部が得られるだけでは
なく、ろう付けの信頼性も向上する。従つて、本
発明の金属・セラミツクス接合体は、高強度、高
信頼性を必要とするエンジン部品やその他の産業
用機械部品へ適用すれば、セラミツクス材料のす
ぐれた性能を生かした機械部品等とすることが出
来る。 例えば、本発明の金属・セラミツクス接合体
で、タービンホイールおよびタービンシヤフトの
一部が窒化珪素セラミツクス、その他の部分が高
強度を有する金属からなるターボチヤージヤロー
タを構成すれば、応答性と耐久性にすぐれた高効
率のタービチヤージヤとすることが出来る。 このように、本発明の金属・セラミツクス接合
体は、セラミツクスの耐熱性、耐摩耗性、高強度
などの特性を生かして、ターボチヤージヤロータ
やガスタービンロータなどのエンジン部品や高温
にさらされたり繰り返し荷重を受ける構造体部品
として使用することができ、かつこれらを耐久性
にすぐれたものとして提供することができる利点
を有する。
[Table] Example 3 A convex portion 22 with a diameter of 12.0 mm and a length of 7.5 mm is provided at the tip of the shaft of a turbine rotor in which the impeller 21 and the shaft are integrally formed of silicon nitride by pressureless sintering. It was made into a ceramic member. In addition, a bar material was prepared by friction welding a round bar of alloy steel (for example, JIS-SNCM439) with a diameter of 12 mm to one end of a round bar of Incoloy 903 with a diameter of 20 mm. Next, the rod material is machined to the outer diameter necessary for the configuration of the turbocharged rotor, and the end on the Incoloy 903 side has a diameter of 12.05 mm.
A recess 25 with a depth of 7.0 mm was provided to form a metal member. After applying Ni plating to the inner surface of the recess,
Joining was carried out in the same manner as described in Example 1 to produce a joined body for a turbocharger rotor having a joined portion having a schematic structure as shown in FIG. The joined body was finished according to a predetermined process to produce a turbine rotor for a turbocharger. The turbocharger turbine rotor is installed in a gasoline engine with a displacement of 2000 c.c., and the turbine rotation speed is 120,000.
After a continuous rotation test of 200 hours at rpm, a torsional strength test of the joint was performed and compared with the strength before the engine test, but no decrease in joint strength was observed. (Effects of the Invention) As explained above, the protrusion provided on the ceramic member is inserted into the recess provided in the metal member, and the metal member and the ceramic member are substantially joined to the outer peripheral surface of the protrusion and the recess. The metal-ceramic bonded body of the present invention having a structure formed by active metal solder between the inner surfaces has a thin layer made of a non-brazing substance on the tip surface of the protrusion, and Since a low-elasticity intermediate made of wax and a non-bonding substance is interposed between the bottom surfaces of the recesses, the joining area can be easily and reliably limited, so that the residual stress generated at the joining end of the ceramic members after joining can be reduced. This makes it possible to reduce and manage bonding strength, thereby achieving improved bonding strength and reduced variation. Furthermore, in the bonding method of the present invention, after placing an intermediate body made of a wax and a non-bonding substance on the bottom surface of the recess, an active metal solder is placed on the intermediate body, and the tip surface of the convex portion is Since brazing is performed by melting the solder between the intermediate body and the intermediate body, it is only necessary to control the size of the gap formed between the outer circumferential surface of the protrusion and the inner surface of the recess. Since it becomes possible to penetrate the solder by using capillary phenomenon during the soldering process, not only a brazed part with fewer defects can be obtained, but also the reliability of the brazing is improved. Therefore, if the metal-ceramic bonded body of the present invention is applied to engine parts and other industrial machine parts that require high strength and high reliability, it can be used as a mechanical part that takes advantage of the excellent performance of ceramic materials. You can. For example, if the metal-ceramic bonded body of the present invention is used to configure a turbocharger rotor in which the turbine wheel and turbine shaft are partially made of silicon nitride ceramics and the other parts are made of high-strength metals, responsiveness and durability can be improved. It can be made into a highly efficient turbine charger with excellent performance. In this way, the metal-ceramic bonded body of the present invention takes advantage of the heat resistance, wear resistance, high strength, and other properties of ceramics, and is suitable for use in engine parts such as turbocharger rotors and gas turbine rotors, and in applications that are exposed to high temperatures. It has the advantage that it can be used as a structural component that is subjected to repeated loads and can be provided with excellent durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、金属部材に設けた凹部にセラミツク
部材に設けた凸部を接合した場合に接合部に発生
する残留応力を計算するのに使用した接合体の概
略構造図、第2図は、金属部材とセラミツク部材
の接合を上記凸部外周面と上記凹部内表面で行つ
た場合の、接合距離と接合端に発生する残留応力
との関係を示す説明図、第3図は、本発明の金
属・セラミツクス接合体の一具体例の接合部の構
造を示す部分断面図、第4図は、本発明の金属・
セラミツクス接合体の他の具体例の接合部の構造
を示す部分断面図である。 1,11……セラミツク部材、2,12……凸
部、3,13……凸部先端表面、4,14……金
属部材、5,25……凹部、6,16……凹部底
面、7……接合端、10,20……黒鉛フエル
ト、18……凸部外周面、19……凹部内表面、
20……低弾性中間体、21……タービン翼車、
22……セラミツク軸、24……金属軸、30…
…ろう。
Figure 1 is a schematic structural diagram of the joined body used to calculate the residual stress generated at the joint when a convex part provided on a ceramic member is joined to a recessed part provided on a metal member, and Figure 2 is a schematic structural diagram of the joined body. FIG. 3 is an explanatory diagram showing the relationship between the bonding distance and the residual stress generated at the bonding end when the metal member and the ceramic member are bonded between the outer circumferential surface of the convex portion and the inner surface of the concave portion. FIG. 4 is a partial cross-sectional view showing the structure of a joint part of a specific example of a metal-ceramic joined body.
FIG. 7 is a partial cross-sectional view showing the structure of a joint part of another specific example of a ceramic joined body. DESCRIPTION OF SYMBOLS 1, 11... Ceramic member, 2, 12... Protrusion, 3, 13... Tip surface of the protrusion, 4, 14... Metal member, 5, 25... Recess, 6, 16... Bottom surface of the recess, 7 ... joint end, 10, 20 ... graphite felt, 18 ... convex outer peripheral surface, 19 ... concave inner surface,
20...Low elastic intermediate body, 21...Turbine impeller,
22...ceramic shaft, 24...metal shaft, 30...
...Deaf.

Claims (1)

【特許請求の範囲】 1 セラミツク部材に設けた凸部が金属部材に設
けた凹部に挿入されて、しかも前記凸部の外周面
と前記凹部の内表面がろう付けにより一体的に接
合されている構造の金属・セラミツクス接合体に
おいて、 上記凸部先端表面にはろうと非接合性の物質か
らなる薄い層、該凸部先端表面と上記凹部底面の
間にはろうと非接合性物質からなる低弾性中間体
を介在させて、金属部材とセラミツク部材の実質
的接合を上記凸部外周面と上記凹部内表面の間に
限定していることを特徴とする金属・セラミツク
ス接合体。 2 上記非接合性物質がカーボンである特許請求
の範囲第1項記載の金属・セラミツクス接合体。 3 前記中間体がスライバー、フエルト、ウエ
ブ、ウエブ焼結体、織布よりなる群から選ばれた
少なくとも一種の低弾性体からなるものである特
許請求の範囲第1項ないし第2項のいずれかに記
載の金属・セラミツクス接合体。 4 前記ろうが活性金属を含有するろうである特
許請求の範囲第1項ないし第3項のいずれかに記
載の金属・セラミツクス接合体。 5 前記凸部外周面と凹部内表面の接合距離Lと
該凸部直径Dとの比L/Dが0.2〜0.8である特許
請求の範囲第1項ないし第4項のいずれかに記載
の金属・セラミツクス接合体。 6 セラミツク部材がターボチヤジヤロータのタ
ービンロータ側回転軸、金属部材がコンプレツサ
ホイール側回転軸である特許請求の範囲第1項な
いし第5項のいずれかに記載の金属・セラミツク
ス接合体。 7 セラミツク部材に設けた凸部が金属部材に設
けた凹部に挿入されて、しかも前記凸部の外周面
と前記凹部の内表面がろう付けにより一体的に結
合されている構造の金属・セラミツクス接合体の
製造方法において、 a 金属部材の一端に凹部、セラミツク部材に凸
部を設ける工程、 b 上記金属部材の凹部内の接合予定表面にNi
メツキを施したのち、凹部底面上に低弾性体を
配置し、さらに該弾性体の上に活性金属を含有
するろうを配設する工程、 c 前記凸部先端に黒鉛を塗布する工程、 d 前記凹部内に上記凸部を挿入して、セラミツ
ク部材と金属部材の接合用組立体を形成する工
程、 e 上記組立体を真空あるいは不活性雰囲気中で
ろうの融点以上の温度に加熱して、ろうを融解
させ、該溶融ろうで前記凸部外周面と凹部内表
面の間に存在する隙間を充填する工程、 f 上記組立体を冷却し、ろうを凝固させてセラ
ミツク部材の凸部外周面と金属部材の凹部内表
面の間の接合を完了させる工程からなることを
特徴とする金属・セラミツクス接合体の接合
法。 8 セラミツク部材の凸部外周面と金属部材の凹
部内表面の間に存在する隙間への溶融ろうの充填
が毛細管現象が利用したものであると特許請求の
範囲第7項に記載の金属・セラミツクス接合体の
接合法。
[Scope of Claims] 1. A protrusion provided on a ceramic member is inserted into a recess provided in a metal member, and the outer peripheral surface of the protrusion and the inner surface of the recess are integrally joined by brazing. In the metal/ceramics bonded structure, a thin layer made of a material that does not bond to the solder on the tip surface of the protrusion, and a low-elastic intermediate layer made of the material that does not bond to the solder between the tip surface of the protrusion and the bottom surface of the recess. 1. A metal-ceramic bonded body, characterized in that substantial bonding between the metal member and the ceramic member is limited between the outer peripheral surface of the convex portion and the inner surface of the recessed portion by interposing a body therebetween. 2. The metal-ceramic bonded body according to claim 1, wherein the non-bonding substance is carbon. 3. Any one of claims 1 to 2, wherein the intermediate body is made of at least one low elastic body selected from the group consisting of sliver, felt, web, web sintered body, and woven fabric. The metal/ceramics bonded body described in . 4. The metal-ceramic joined body according to any one of claims 1 to 3, wherein the solder is a solder containing an active metal. 5. The metal according to any one of claims 1 to 4, wherein the ratio L/D of the bonding distance L between the outer peripheral surface of the convex portion and the inner surface of the concave portion and the diameter D of the convex portion is 0.2 to 0.8.・Ceramics bonded body. 6. The metal-ceramic joined body according to any one of claims 1 to 5, wherein the ceramic member is a rotation shaft on the turbine rotor side of a turbocharger rotor, and the metal member is a rotation shaft on the compressor wheel side. 7 Metal-ceramic bonding having a structure in which a protrusion provided on a ceramic member is inserted into a recess provided in a metal member, and the outer circumferential surface of the protrusion and the inner surface of the recess are integrally joined by brazing. In the method for manufacturing a body, a step of providing a concave portion at one end of the metal member and a convex portion on the ceramic member, b. Ni on the surface to be joined in the concave portion of the metal member.
After plating, a step of arranging a low elastic body on the bottom surface of the recess and further arranging a wax containing an active metal on the elastic body, c) a step of applying graphite to the tip of the convex portion, d) the above-mentioned step. a step of inserting the protrusion into the recess to form an assembly for joining a ceramic member and a metal member; e heating the assembly to a temperature higher than the melting point of the wax in a vacuum or an inert atmosphere; melting the solder and filling the gap existing between the outer circumferential surface of the convex part and the inner surface of the concave part with the molten solder; A method for joining metal/ceramics joined bodies, comprising a step of completing the joining between inner surfaces of recessed parts of the members. 8. The metal/ceramics according to claim 7, wherein capillary phenomenon is used to fill the gap between the outer peripheral surface of the convex part of the ceramic member and the inner surface of the recessed part of the metal member with molten solder. Method of joining zygotes.
JP21518787A 1987-08-31 1987-08-31 Metal and ceramic joint and joining method Granted JPS6461367A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21518787A JPS6461367A (en) 1987-08-31 1987-08-31 Metal and ceramic joint and joining method
US07/236,145 US4942999A (en) 1987-08-31 1988-08-25 Metal-ceramic joined composite bodies and joining process therefor
CA000576044A CA1319249C (en) 1987-08-31 1988-08-30 Metal-ceramic joined composite bodies and joining process therefor
DE3889044T DE3889044T2 (en) 1987-08-31 1988-08-31 Metal-ceramic composite body and connection method for their production.
EP88308054A EP0307131B1 (en) 1987-08-31 1988-08-31 Metal-ceramic joined composite bodies and joining process therefore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21518787A JPS6461367A (en) 1987-08-31 1987-08-31 Metal and ceramic joint and joining method

Publications (2)

Publication Number Publication Date
JPS6461367A JPS6461367A (en) 1989-03-08
JPH0440316B2 true JPH0440316B2 (en) 1992-07-02

Family

ID=16668117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21518787A Granted JPS6461367A (en) 1987-08-31 1987-08-31 Metal and ceramic joint and joining method

Country Status (1)

Country Link
JP (1) JPS6461367A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510041B2 (en) * 1990-08-23 1996-06-26 日本特殊陶業株式会社 Rotating joint

Also Published As

Publication number Publication date
JPS6461367A (en) 1989-03-08

Similar Documents

Publication Publication Date Title
US4942999A (en) Metal-ceramic joined composite bodies and joining process therefor
EP0211557B1 (en) Metal-ceramics jointed articles
US5028162A (en) Metal-ceramic joined composite bodies
JPH0516382B2 (en)
JPS60226464A (en) Joint structure of ceramic and metal
JPH0454825B2 (en)
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
US5076484A (en) Joining structure of a turbine rotor
EP0323207B1 (en) Joined metal-ceramic assembly method of preparing the same
JPH0440316B2 (en)
JP2572800B2 (en) Metal / ceramic joints
JP4646202B2 (en) Composite comprising ceramic layers and method for producing the composite
JP2542044B2 (en) Metal / ceramic joints
JP2572803B2 (en) Metal / ceramic joints
JPS6077180A (en) Bonded body
JPH0582351B2 (en)
JP2822405B2 (en) Method of joining ceramic rotor and metal shaft
JP2538989B2 (en) Metal / ceramic joints
JPH024553B2 (en)
JPS61215278A (en) Manufacture of ceramics with porous surface layer
JPS63288976A (en) Joined body of sintered metal and ceramics
JP2747865B2 (en) Joint structure between ceramics and metal
JPH02124780A (en) Coupling structure of ceramic rotor and metallic shaft
JPS638273A (en) Method of joining ceramic member to metal member
JPS63210076A (en) Method of joining ceramic to metal and solder therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 16