JPH01237130A - Continuous, length light-weight fiber reinforced composite resin pultrusion product and its manufacture - Google Patents

Continuous, length light-weight fiber reinforced composite resin pultrusion product and its manufacture

Info

Publication number
JPH01237130A
JPH01237130A JP63296761A JP29676188A JPH01237130A JP H01237130 A JPH01237130 A JP H01237130A JP 63296761 A JP63296761 A JP 63296761A JP 29676188 A JP29676188 A JP 29676188A JP H01237130 A JPH01237130 A JP H01237130A
Authority
JP
Japan
Prior art keywords
fiber
honeycomb structure
resin
fiber reinforced
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63296761A
Other languages
Japanese (ja)
Inventor
Shinkichi Murakami
信吉 村上
Keijiro Manabe
真鍋 敬次郎
Kanji Miyao
巻治 宮尾
Yasutaka Ishida
石田 安隆
Akihiro Atsumi
渥美 昭洋
Hiroshi Inoue
寛 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP63296761A priority Critical patent/JPH01237130A/en
Publication of JPH01237130A publication Critical patent/JPH01237130A/en
Priority to US07/439,997 priority patent/US5139843A/en
Priority to CA002003746A priority patent/CA2003746A1/en
Pending legal-status Critical Current

Links

Classifications

    • Y02T50/433

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To manufacture fiber reinforced composite resin pultrusion product of not only superior tensile strength and compression strength in the axial direction but also compression strength in the square direction to the bending strength and axial direction by providing a long and narrow shaped light-weight honeycomb structure and a fiber reinforced resin layer formed by encircling the whole or part of the outer periphery. CONSTITUTION:A continuous, light-weight fiber reinforced composite resin pultrusion product 1 consists of a long and narrow, continous, light-weight reinforcing material having an oblong section, that is, a honeycomb structure 2, a fiber reinforced resin layer 4 formed by encircling the whole of outer periphery of the honeycomb structure. The honeycomb structure 2 is constituted of light metal such as aluminum and duralumin, or paper or a light material of plastic or the like such as Aramid resin or the like. The reinforcing fibers of the fiber reinforced resin layer 4 are carbon fibers, glass fibers or Aramid fibers, and the matrix resin applied to fibers is thermosetting resin such as epoxy, unsaturated polyester, vinyl ester or the like, and thermoplastic resin such as nylon 6, nylon 66, polycarbonate, polyacetal, polyphenylene sulfide, polypropylene or the like is used.

Description

【発明の詳細な説明】 の1 本発明は、細長形状のハニカム構造体の表面に繊維強化
樹脂層が形成された長尺軽量の繊維強化複合樹脂引抜成
形品及びその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) The present invention relates to a long and lightweight fiber-reinforced composite resin pultrusion molded product in which a fiber-reinforced resin layer is formed on the surface of an elongated honeycomb structure, and a method for manufacturing the same.

本発明に係る長尺軽量繊維強化複合樹脂引抜成形品は矩
形断面形状を有した細長の形材として具体化され、軸方
向の引張力、圧縮力のみならず曲げ力にも十分に耐える
ことができ、例えば航空、宇宙、自動車、船舶、鉄道の
分野におけるフレ−ム、機械部品として、又土木、建築
分野における柱等の骨組構造材等、その他種々の分野に
おいて軽量構造材として使用することができる。
The elongated lightweight fiber-reinforced composite resin pultruded product according to the present invention is embodied as an elongated shape with a rectangular cross-section, and can sufficiently withstand not only axial tensile force and compressive force but also bending force. For example, it can be used as frames and mechanical parts in the fields of aviation, space, automobiles, ships, and railways, as frame structural materials such as columns in the civil engineering and architectural fields, and as lightweight structural materials in various other fields. can.

′   の      び      べ櫃従来、上記
種々の分野で長尺で且つ軽量の構造材が要求されており
、斯る構造材として従来炭素繊維、ガラス繊維等を強化
繊維とした繊維強化複合材料が提案されている。更に軽
量化を図るべく複合材料は中空パイプ状・に成形され、
更に軽量化を図るために中空パイプの肉厚は薄くされる
傾向にあるが、肉厚が薄くなるに徒って曲げ強度及び軸
方向に対し直角方向への圧縮強度(耐座屈性)が低下す
ることとなり、肉厚を薄くするにも限界があった。特に
、引抜き成形においては、金型内部並びに引取り部での
成形体の損傷等の問題が発生し、成形が困難であった。
'Nobibe-hashi' Traditionally, long and lightweight structural materials have been required in the various fields mentioned above, and fiber-reinforced composite materials using carbon fibers, glass fibers, etc. as reinforcing fibers have been proposed as such structural materials. ing. In order to further reduce weight, the composite material is molded into a hollow pipe shape.
In order to further reduce weight, the wall thickness of hollow pipes tends to be thinner, but as the wall thickness becomes thinner, the bending strength and compressive strength in the direction perpendicular to the axial direction (buckling resistance) decrease. There was a limit to how thin the wall could be. In particular, in pultrusion molding, problems such as damage to the molded product inside the mold and at the take-off portion occurred, making molding difficult.

本発明者等は、紙、プラスチック又は軽量金属材料にて
形成された細長形状の長尺ハニカム構造体から成る長尺
軽量補強材の外表面に薄肉の繊維強化樹脂層を形成する
ことにより、軸方向の引張強度、圧縮強度のみならず曲
げ強度及び軸方向に対し直角方向への圧縮強度(耐座屈
性)にも優れた長尺軽量の繊維強化複合樹脂成形品を実
現化し得、又斯る成形品は通常の引抜成形法(プルトル
ージョン)にて極めて好適に製造し得ることを見出した
The present inventors have developed an axial structure by forming a thin fiber-reinforced resin layer on the outer surface of an elongated lightweight reinforcing material consisting of an elongated honeycomb structure made of paper, plastic, or lightweight metal material. It is possible to realize a long and lightweight fiber-reinforced composite resin molded product that has excellent not only directional tensile strength and compressive strength but also bending strength and compressive strength (buckling resistance) in a direction perpendicular to the axial direction. It has been found that a molded article can be manufactured very suitably by a conventional pultrusion method.

又、斯る長尺ハニカム構造体は、成形品を引抜成形法に
て製造する際にマンドレルとして機能することができ、
従ってマンドレルを特別に用意する必要がなく、更に又
成形品の損傷もなく極めて効率よく且つ迅速に製造し得
るという利点があることが分かった。
In addition, such a long honeycomb structure can function as a mandrel when manufacturing a molded product by a pultrusion method,
Therefore, it has been found that there is an advantage that there is no need to specially prepare a mandrel, and that the molded product can be manufactured extremely efficiently and quickly without damage.

本発明は斯る新規な知見に基づきなされたものである。The present invention has been made based on this new knowledge.

発」Lの1 本発明の目的は、軸方向の引張強度、圧縮強度のみなら
ず曲げ強度及び軸方向に対し直角方向への圧縮強度(耐
座屈性)に優れた、種々の分野で軽量構造材として使用
可能な矩形断面を有した長尺軽量の繊維強化複合樹脂引
抜成形品及びその製造法を提供することである。
The object of the present invention is to provide a lightweight material that can be used in various fields, with excellent not only axial tensile strength and compressive strength, but also bending strength and compressive strength (buckling resistance) in a direction perpendicular to the axial direction. An object of the present invention is to provide a long, lightweight fiber-reinforced composite resin pultrusion molded product having a rectangular cross section that can be used as a structural material, and a method for manufacturing the same.

本発明の他の目的は、特別にマンドレルを必要とするこ
となく、更に成形品の損傷もなく極めて効率よく、引抜
成形法にて長尺軽量の繊維強化複合樹脂引抜成形品及び
その製造法を提供することである。
Another object of the present invention is to produce a long and lightweight fiber-reinforced composite resin pultruded product using a pultrusion method very efficiently without requiring a special mandrel and without damaging the molded product, and a method for producing the same. It is to provide.

口      るため 上記諸口的は本発明に係る長尺軽量繊維強化複合樹脂引
抜成形品及びその製造法によって達成される。要約すれ
ば本発明は、細長形状の軽量ハニカム構造体と、該軽量
ハニカム構造体の外周囲を全部又は部分的に囲包して形
成された繊維強化樹脂層とを具備することを特徴とする
長尺軽量ta!11強化複合樹脂引抜成形品である。ハ
ニカム構造体とu&維強化樹脂層との間には接着層を介
在させることもできる。又、ハニカム構造体は紙、アラ
ミド等のプラスチック又は軽量金属材料にて形成され繊
維強化樹脂層の強化繊維は炭素m1m1、ガラス繊維又
はアラミド繊維であり、該a維に含浸されるマトリクス
樹脂はエポキシ、不飽和ポリエステル、ビニルエステル
等の熱硬化性樹脂、及びナイロン6、ナイロン66、ポ
リカーボネート、ポリアセタール、ポリフェニレンスル
ファイド、ポリプロピレン等の熱可塑性樹脂とされる。
Therefore, the above-mentioned objectives are achieved by the long lightweight fiber-reinforced composite resin pultrusion molded product and the manufacturing method thereof according to the present invention. In summary, the present invention is characterized by comprising an elongated lightweight honeycomb structure and a fiber-reinforced resin layer formed by entirely or partially surrounding the outer periphery of the lightweight honeycomb structure. Long lightweight ta! 11 reinforced composite resin pultrusion molded product. An adhesive layer can also be interposed between the honeycomb structure and the U&fiber reinforced resin layer. The honeycomb structure is made of paper, plastic such as aramid, or lightweight metal material, and the reinforcing fibers of the fiber-reinforced resin layer are carbon m1m1, glass fiber, or aramid fiber, and the matrix resin impregnated into the a fibers is epoxy. , thermosetting resins such as unsaturated polyester and vinyl ester, and thermoplastic resins such as nylon 6, nylon 66, polycarbonate, polyacetal, polyphenylene sulfide, and polypropylene.

斯る長尺軽量繊維強化複合樹脂引抜成形品は、(a)細
長形状のハニカム構造体を用意する工程; (b)必要
に応じて、前記ハニカム構造体の外周囲の全部又は部分
的に接着層を形成する工程;(c)前記ハニカム構造体
に樹脂含浸lII雑を配置して所定の肉厚を有した繊維
強化樹脂層を形成する工程:次いで(d)前記繊維強化
樹脂層を有した軽量補強材を金型へと引込んで所定の寸
法形状に賦形し、固化する工程;を有することを特徴と
する長尺軽量Fam強化複合樹脂引抜成形品の製造法に
て好適に製造される。
Such a long lightweight fiber-reinforced composite resin pultruded product is produced by (a) preparing an elongated honeycomb structure; (b) adhering all or part of the outer periphery of the honeycomb structure, if necessary; a step of forming a layer; (c) a step of arranging a resin-impregnated resin layer on the honeycomb structure to form a fiber-reinforced resin layer having a predetermined thickness; then (d) a step of forming the fiber-reinforced resin layer. Suitably manufactured by a method for manufacturing a long lightweight Fam-reinforced composite resin pultrusion molded product, which is characterized by the step of drawing a lightweight reinforcing material into a mold, shaping it into a predetermined size and shape, and solidifying it. .

支ムj 次に、本発明に係る長尺軽量繊維強化複合樹脂引抜成形
品について更に詳しく説明する。
Strut j Next, the elongated lightweight fiber-reinforced composite resin pultrusion molded product according to the present invention will be described in more detail.

第1図には本発明に従った矩形断面を有した細長形状の
長尺軽量繊維強化複合樹脂引抜成形品が例示される9本
実施例によれば、本発明に係る長尺軽量ti&維強化複
合樹脂引抜成形品lは、断面が矩形とされる細長形状の
長尺軽量補強材、つまりハニカム構造体2と、該ハニカ
ム構造体の外周囲を全部囲包して形成された繊維強化樹
脂層4とから成る。ハニカム構造体2は、例えばアルミ
ニウムにて製造された市販のALL/8−5052−.
002 (商品名:昭和飛行機工業株式会社製)等が好
適に使用可使である。ハこカム構造体としては、アルミ
ニウム以外の例えばジュラルミンのような軽金属、紙、
アラミド樹脂等のようなプラスチック等の軽材料で構成
することも可能である。
FIG. 1 shows an example of an elongated lightweight fiber-reinforced composite resin pultrusion molded product having a rectangular cross section according to the present invention. The composite resin pultrusion molded product 1 consists of an elongated lightweight reinforcing material with a rectangular cross section, that is, a honeycomb structure 2, and a fiber reinforced resin layer formed by surrounding the entire outer periphery of the honeycomb structure. It consists of 4. The honeycomb structure 2 is a commercially available ALL/8-5052-. made of aluminum, for example.
002 (trade name: manufactured by Showa Aircraft Industry Co., Ltd.) etc. can be suitably used. The cam structure can be made of light metals other than aluminum, such as duralumin, paper,
It is also possible to construct it from a light material such as plastic such as aramid resin or the like.

本発明に従えば、繊維強化樹脂層4は、ハニカム構造体
2の全外周囲に形成する必要はなく、第2図に図示され
るように、ハニカム構造体2を部分的に囲包して形成す
ることもできる。第2図の実施例では、1ata強化樹
脂層4は、圧縮強度を増大せしめるためにハニカム構造
体2の孔部開口部が位置している対向する二つの側面に
形成される。
According to the present invention, the fiber-reinforced resin layer 4 does not need to be formed around the entire outer periphery of the honeycomb structure 2, but may be formed by partially surrounding the honeycomb structure 2, as shown in FIG. It can also be formed. In the embodiment of FIG. 2, the 1ata reinforcing resin layer 4 is formed on two opposite sides of the honeycomb structure 2 where the hole openings are located to increase the compressive strength.

又、本発明によると、後で説明するように、引抜成形時
にハニカム構造体の回りに適合される繊維強化樹脂層か
らの未だ硬化されていない流動性のある液体状のマトリ
クス樹脂がハニカム構造体の孔部開口部から内部へと進
入するのを防止するために製造時には該孔部開口部が、
第1図に図示されるように両側部に位置するように配置
するのが好ましい。
Also, according to the present invention, as will be explained later, the uncured, flowable liquid matrix resin from the fiber-reinforced resin layer that is fitted around the honeycomb structure during pultrusion forms the honeycomb structure. During manufacturing, the hole opening is
It is preferable to arrange them so that they are located on both sides as shown in FIG.

更には、第3図に図示するように、繊維強化樹脂層4を
形成するに先立ってハニカム構造体の孔部開口部にテー
プ状接着剤6を張付け、製造時にマトリクス樹脂がハニ
カム構造体の孔部開口部から内部へと進入するのを防止
することが好ましい、このとき、テープ状接着剤6とし
て、熱硬化型の粘着テープ或いは熱硬化型の粘着剤を両
面に塗布したテープを使用し、ハニカム構造体2と繊維
強化樹脂層4との間の接合強度を高め、結果的に繊維強
化複合樹脂引抜成形品lの曲げ、圧縮強度を向上せしめ
ることができる。斯るテープ状接着剤6としては、例え
ばFM  123−5  アドヒーシブ フィルム(商
品名、米国アメリカンシアナミド カンパニー製)を好
適に使用することができる。
Furthermore, as shown in FIG. 3, prior to forming the fiber-reinforced resin layer 4, a tape-like adhesive 6 is pasted onto the hole openings of the honeycomb structure, so that the matrix resin is bonded to the holes of the honeycomb structure during manufacturing. It is preferable to prevent the adhesive from entering the interior through the opening. In this case, a thermosetting adhesive tape or a tape coated with thermosetting adhesive on both sides is used as the tape adhesive 6. The bonding strength between the honeycomb structure 2 and the fiber-reinforced resin layer 4 can be increased, and as a result, the bending and compressive strengths of the fiber-reinforced composite resin pultruded product 1 can be improved. As such tape-like adhesive 6, for example, FM 123-5 Adhesive Film (trade name, manufactured by American Cyanamid Company) can be suitably used.

更に、本発明の他の実施例が第4A図に図示される。つ
まり1本発明に係る長尺軽量のm維強化複合樹脂引抜成
形品1は、その繊維強化樹脂層4は軽量補強材2の全外
周囲を囲包して形成され、強化繊維を軸方向に整列して
形成される軸方向繊維層4aと、強化H&雄を軸線に対
し所定角度にて螺旋状に巻付けることにより形成される
l!!旋状繊維層4bとを具備するように構成すること
もできる。又、軸方向繊維層4aと螺旋状m*層4bと
は互い違いに複数層形成することができる。成形品の最
内層は図示されるように、軸方向繊維層4aとすること
もできるが、又螺旋状繊維層4bとすることもできる。
Additionally, another embodiment of the invention is illustrated in FIG. 4A. In other words, in the long and lightweight m-fiber-reinforced composite resin pultruded product 1 according to the present invention, the fiber-reinforced resin layer 4 is formed by surrounding the entire outer periphery of the lightweight reinforcing material 2, and the reinforcing fibers are oriented in the axial direction. The axial fiber layer 4a formed in alignment and the l! ! It can also be configured to include a spiral fiber layer 4b. Further, a plurality of axial fiber layers 4a and spiral m* layers 4b can be formed alternately. The innermost layer of the molded article can be an axial fiber layer 4a, as shown, but it can also be a helical fiber layer 4b.

更に、最外層は螺旋状繊維層4bとすることができるが
、第4A図に図示されるように、該螺旋状mis層4b
の上に軸方向繊維層4aを形成するのが好ましい、この
理由は、成形品の最外層を軸方向繊維層4aとすること
により成形品の連続製造に際し、円滑な運転が可能とな
るからである。
Furthermore, the outermost layer can be a helical fiber layer 4b, but as illustrated in FIG. 4A, the helical mis layer 4b
It is preferable to form the axial fiber layer 4a on top of the molded product, because by forming the axial fiber layer 4a as the outermost layer of the molded product, smooth operation becomes possible during continuous production of the molded product. be.

螺旋方向繊維層4bにおける軸線方向に対する巻付は角
度、及び各繊維R4a、4bにおける繊維の密度、層厚
さ等は任意に選択し得るが、−例を挙げれば、巻付は角
度は、45°〜80°とされ、繊維層4a、4bにおけ
る繊維含宥量は、体積%で50〜60%とされるのが好
適である。
The winding angle with respect to the axial direction in the helical direction fiber layer 4b, the density of the fibers in each fiber R4a, 4b, layer thickness, etc. can be arbitrarily selected, but to give an example, the winding angle is 45. 80 degrees, and the fiber content in the fiber layers 4a and 4b is preferably 50 to 60% by volume.

又、v11維強化樹脂層4の強化繊維及びマトリクス樹
脂は任意のものを使用し得るが、強化繊維としては通常
、炭素繊維、ガラス繊維又はアラミド繊維が好適であり
、該amに含浸されるマトリクス樹脂はエポキシ、不飽
和ポリエステル、ビニルエステル等の熱硬化性樹脂、及
びナイロン6、ナイロン66、ポリカーボネート、ポリ
アセタール、ポリフェニレンスルファイド、ポリプロピ
レン等の熱可塑性樹脂とされる。マトリクス樹脂には、
所望に応じ、CaCO3,マイカ、A文(OH)3、タ
ルク等の充填剤と、更には耐熱性、耐候性を改良するた
めの添加剤及び着色剤等が添加される。繊維強化樹脂層
4における繊維含有績は、上述のように、体積%で50
〜60%とされるのが好適である。
Furthermore, any reinforcing fibers and matrix resin can be used for the v11 fiber-reinforced resin layer 4, but carbon fibers, glass fibers, or aramid fibers are usually suitable as the reinforcing fibers, and the matrix resin impregnated with the am The resins include thermosetting resins such as epoxy, unsaturated polyester, and vinyl ester, and thermoplastic resins such as nylon 6, nylon 66, polycarbonate, polyacetal, polyphenylene sulfide, and polypropylene. For matrix resin,
If desired, fillers such as CaCO3, mica, Amon (OH)3, and talc, as well as additives and colorants for improving heat resistance and weather resistance, are added. As mentioned above, the fiber content in the fiber reinforced resin layer 4 is 50% by volume.
It is suitable that it is made into 60%.

更には、本実施例においても、第4B図に図示するよう
に、#pU維強化樹脂層4、即ち、本実施例では最内層
である軸方向繊維層4aを形成するに先立ってハニカム
構造体の孔部開口部にテープ状接着剤6を張付け、製造
時にマトリクス樹脂がハニカム構造体の孔部開口部から
内部へと進入するのを防止することが好ましい、又、こ
のとき、テープ状接着剤6として、M硬化型の粘着テー
プ或いは熱硬化型の粘着剤を両面に塗布したテープを使
用し、ハニカム構造体2と軸方向繊維層4aとの間の接
合強度を高め、結果的にm雄強化複合樹脂引抜成形品l
の曲げ、圧縮強度を安定して向上せしめることができる
。斯るテープ状接着剤6としては、−上述したように、
例えばFM  123−5 アドヒーシブ フィルム(
商品名、米国アメリカン シアナミド カンパニー製)
を好適に使用することができ己。
Furthermore, in this embodiment as well, as shown in FIG. 4B, the honeycomb structure is It is preferable to apply a tape-shaped adhesive 6 to the hole openings of the honeycomb structure to prevent the matrix resin from entering the honeycomb structure through the hole openings during manufacturing. 6, an M-curing adhesive tape or a tape coated with a thermosetting adhesive on both sides is used to increase the bonding strength between the honeycomb structure 2 and the axial fiber layer 4a, and as a result, Reinforced composite resin pultrusion molded product
It is possible to stably improve the bending and compressive strength of. As such tape-shaped adhesive 6, - as mentioned above,
For example, FM 123-5 Adhesive Film (
(Product name: American Cyanamid Company)
You can use it suitably yourself.

テープ状接IjI′1116から成る接着層は、繊4強
化複合樹脂引抜成形品1の曲げ、圧縮強度を向1−せし
める目的のためには、ハニカム構造体の孔部間「1部以
外の外周囲部分でもよく、更にはハニカム構造体の外周
囲全部にわたって設けることちり能である。
For the purpose of increasing the bending and compressive strength of the fiber-reinforced composite resin pultrusion molded product 1, the adhesive layer consisting of the tape-like adhesive IjI'1116 is used between the pores of the honeycomb structure. It may be provided on the periphery, or even over the entire outer periphery of the honeycomb structure.

次に、本発明に係る長尺軽量m維強化複合樹脂引U成形
品の製造法について説明する。
Next, a method for producing a long lightweight m-fiber reinforced composite resin-drawn U-molded product according to the present invention will be described.

第5図を参照すると、細に形状のハニカム構造体2が連
続的に金型(ダイス)8へと供給される。必要に応じて
、ハニカム構造体2の外周囲の全部或いは部分的にテー
プ状接着剤6が接着される。一方、マトリクス樹脂が含
浸された強化FiAmfかハニカム構造体2の周囲へと
供給され、ハニカム構造体2と共に金型8へと引込まれ
、該金型にて繊維強化樹脂層4は所定の寸法形状に賦形
し、固化される。
Referring to FIG. 5, a finely shaped honeycomb structure 2 is continuously supplied to a mold (die) 8. As shown in FIG. If necessary, a tape-like adhesive 6 is adhered to the entire or partial outer periphery of the honeycomb structure 2. On the other hand, the reinforced FiAmf impregnated with matrix resin is supplied around the honeycomb structure 2 and drawn into the mold 8 together with the honeycomb structure 2, and in the mold the fiber reinforced resin layer 4 is formed into a predetermined size and shape. It is shaped and solidified.

U&雄強化樹脂層4が複数の層、つまり軸方向繊維層4
a及び螺旋状繊維層4bから成っている場合には、ハニ
カム構造体2の上に樹脂含浸繊維を、必要に応じて接着
層6を介して、軸方向に配δするか又は螺旋方向に巻付
けて、所定の肉厚を有した第1の繊維層を形成し、該第
1の繊維層を固化するに先立って該繊維層の上に樹脂含
浸m維を前記第1の繊維層とは異なる方向に配列するこ
とにより第2の繊a層を形成し、必要に応じて、前記工
程を所9回数繰り返し行ない、軸方向繊維層及び螺旋方
向繊維層から成る未硬化の繊維層積層体とされる繊維強
化樹脂層4が形成される。該繊維強化樹脂層4が形成さ
れたハニカム構造体2は、第5′Aに図示するように、
金型8へと引込まれ、該金型にて繊維強化樹脂層4は所
定の寸法形状に賦形されそして固化される。
The U & male reinforcing resin layer 4 is a plurality of layers, that is, the axial fiber layer 4
a and a spiral fiber layer 4b, the resin-impregnated fibers are arranged on the honeycomb structure 2 in the axial direction δ or wound in the helical direction via the adhesive layer 6 as necessary. to form a first fiber layer having a predetermined thickness, and before solidifying the first fiber layer, resin-impregnated m-fibers are applied on the fiber layer. A second fiber layer A is formed by arranging fibers in different directions, and if necessary, the above step is repeated nine times to form an uncured fiber layer laminate consisting of an axial fiber layer and a helical fiber layer. A fiber-reinforced resin layer 4 is formed. The honeycomb structure 2 on which the fiber-reinforced resin layer 4 is formed is, as shown in 5'A,
The fiber-reinforced resin layer 4 is drawn into a mold 8, shaped into a predetermined size and shape in the mold, and solidified.

上記引抜成形は、通常のオーバーワイングーにて好適に
実施される。
The above-mentioned pultrusion molding is suitably carried out in a normal overwinter.

次ニ、* −/< −ryインダーを使用して第4図に
図示される本発明に係る炭素繊維強化複合樹脂引抜成形
品を製造する場合について第6図を参照して説明する。
Next, the case where the carbon fiber reinforced composite resin pultrusion molded product according to the present invention shown in FIG. 4 is manufactured using the *-/<-ry inder will be described with reference to FIG. 6.

第6図には上記矩形断面形状を有した炭素繊維強化複合
樹脂引抜成形品1を製造するための引抜成形機10の一
実施例が示される0本実施例では、特に、第4図に図示
されるように、最内層より軸方向炭素繊維強化樹脂層4
a、螺旋状炭素繊維強化樹脂層4b、軸方向炭素繊維強
化樹脂層4a、螺旋状炭素H&繊維強化樹脂層b及び軸
方向炭素繊維強化樹脂層4aから成る5層構成の炭素繊
維強化複合樹脂引抜成形品lが製造されるものとする。
FIG. 6 shows an embodiment of the pultrusion molding machine 10 for manufacturing the carbon fiber reinforced composite resin pultrusion molded product 1 having the rectangular cross-sectional shape. As shown in FIG.
a, a five-layer carbon fiber reinforced composite resin drawing consisting of a spiral carbon fiber reinforced resin layer 4b, an axial carbon fiber reinforced resin layer 4a, a spiral carbon H & fiber reinforced resin layer b, and an axial carbon fiber reinforced resin layer 4a Assume that a molded product l is manufactured.

本引抜成形機10によれば、炭素m雄12が巻付けられ
た多数のクリール14がクリールスタンド16(16a
、16b)に軸架される0本実施例では、クリールスタ
ンド16は3基設けられ、第1のクリールスタンド16
aからのlにXmMl 12aはガイド板18により樹
脂含浸槽20へと導入され、マトリクス樹脂が含浸され
る。余分の樹脂が絞られた4!4詣含浸宝素繊維12a
はガイド板22によりオーバーワイングー24に供給さ
れ、該オーバーワイングー24に取付けられたマンドレ
ル、つまり本発明では細長形状のハニカム構造体2に対
し軸線方向に整列して縦添えされる(最内層となる軸方
向炭素ta維強化樹脂層4aの形成)、同時に、該オー
バーワインダー24は該オーバーワインダー24に搭載
された複数個のクリール24aから繰り出される炭素繊
維24bが、L記縦添えされた軸方向炭素繊維強化樹脂
層4aの上に所定の角度、例えば70度の巻付は角度に
て巻付けられ、螺旋状炭素繊維強化樹脂層4bが形成さ
れる。クリール24aからの炭素繊維にはマトリクス樹
脂は含浸されていないが、ハニカム構造体2に巻付けら
れたとき、下層の軸方向炭素繊維強化樹脂層及び次の工
程にて縦添えされる軸方向炭素繊維強化樹脂層からの余
剰マトリクス樹脂が含浸される。
According to the present pultrusion molding machine 10, a large number of creels 14 around which carbon m male 12 are wound are mounted on a creel stand 16 (16a).
, 16b). In this embodiment, three creel stands 16 are provided, and the first creel stand 16
The XmMl 12a from a to l is introduced into the resin impregnation tank 20 by the guide plate 18, and is impregnated with matrix resin. 4!4 impregnated jewel fiber 12a with excess resin squeezed out
is supplied to the overwine goo 24 by the guide plate 22, and is vertically aligned in the axial direction with respect to the mandrel attached to the overwine goo 24, that is, the elongated honeycomb structure 2 in the present invention (innermost layer (Formation of axial carbon fiber reinforced resin layer 4a) At the same time, the overwinder 24 has carbon fibers 24b unwound from a plurality of creels 24a mounted on the overwinder 24, and the carbon fibers 24b are attached vertically to the shaft. The spiral carbon fiber reinforced resin layer 4b is wound on the carbon fiber reinforced resin layer 4a at a predetermined angle, for example, 70 degrees. The carbon fibers from the creel 24a are not impregnated with matrix resin, but when wound around the honeycomb structure 2, the carbon fibers are impregnated with the lower axial carbon fiber-reinforced resin layer and the axial carbon fibers that are attached longitudinally in the next step. Excess matrix resin from the fiber reinforced resin layer is impregnated.

第2及び第3のクリールスタンド16bはクリールスタ
ンド16aを挟んで対称に配置され、同様に作動するた
めに、第6図では図面上、手前側のクリールスタンド1
6bのみを詳細に図示して説明し、他方のクリールスタ
ンド16bの説明は省略する。クリールスタンド16b
からの炭素繊112bの中の一部のm維12cはガイド
板28により樹脂含浸槽30へと導入され、マトリクス
樹脂が含浸される。余分の樹脂が絞られた樹脂含浸炭素
繊維12cはガイド板32.34によりオーバーワイン
ダー36に供給される。該樹脂含浸炭素繊維12cは、
オーバーワインダ−24,36の中心部を貫通する、今
や軸線方向及び螺旋方向の2層の強化炭素繊維強化樹脂
層が形成されているハニカム構造体2に対し軸方向へと
供給され、螺旋状の炭素繊維24b上に縦添えされる(
2番目の軸方向炭素繊維強化樹脂層4aの形成)、同時
に、該オーバーワインダー36は該オーパーワインダー
36に搭載された複数個のクリール36aから繰り出さ
れる炭素繊維36bが、上記縦添えされた軸方向炭素繊
維強化樹脂層4aの上に所定の角度、例えば70度の巻
付は角度にて巻付けられ、螺旋状炭素繊維強化樹脂fi
4bが形成される。該オーバーワインダー36は前記オ
ーバーワインダー24とは逆方向に回転され、従ってオ
ーバーワインダー36にて形成される螺旋状炭素繊維強
化樹脂層4bの巻付方向と、オーバーワインダー24に
て形成された螺旋状炭素繊維強化樹脂層4bの巻付方向
とは逆向きとなる。
The second and third creel stands 16b are arranged symmetrically with the creel stand 16a in between, and in order to operate in the same manner, in FIG.
6b will be illustrated and explained in detail, and the explanation of the other creel stand 16b will be omitted. Creel stand 16b
A part of the m-fibers 12c among the carbon fibers 112b are introduced into the resin impregnation tank 30 by the guide plate 28 and impregnated with matrix resin. The resin-impregnated carbon fiber 12c from which excess resin has been squeezed is supplied to the overwinder 36 by guide plates 32, 34. The resin-impregnated carbon fiber 12c is
It is fed in the axial direction to the honeycomb structure 2 in which two reinforced carbon fiber reinforced resin layers, one in the axial direction and the other in the helical direction, are formed, passing through the center of the overwinders 24 and 36. Vertically attached on the carbon fiber 24b (
(formation of the second axial carbon fiber reinforced resin layer 4a), at the same time, the overwinder 36 allows the carbon fibers 36b unwound from the plurality of creels 36a mounted on the overwinder 36 to The spiral carbon fiber reinforced resin fi is wound on the carbon fiber reinforced resin layer 4a at a predetermined angle, for example, 70 degrees.
4b is formed. The overwinder 36 is rotated in the opposite direction to the overwinder 24, so that the winding direction of the spiral carbon fiber reinforced resin layer 4b formed by the overwinder 36 and the spiral shape formed by the overwinder 24 are different. The winding direction is opposite to the winding direction of the carbon fiber reinforced resin layer 4b.

クリール36aからの炭素amにはマトリクス樹脂は含
浸されていないが、マンドレルに巻付けられたとき、下
層の軸方向炭素繊維強化樹脂層及び次の工程にて縦添え
される軸方向炭素繊維強化樹脂層からの余剰マトリクス
樹脂が含浸される。
The carbon am from the creel 36a is not impregnated with matrix resin, but when wound around the mandrel, the lower axial carbon fiber-reinforced resin layer and the axial carbon fiber-reinforced resin that will be longitudinally applied in the next step Excess matrix resin from the layer is impregnated.

前記螺旋状に巻付けられた炭素繊維36bの上には、第
2のクリールスタンド16bからの炭素譲雄12bの残
余の繊M112dであって、ガイド板40.42により
樹脂含浸槽44へと導入され、マトリクス樹脂が含浸さ
れ、次いで余分の樹脂が絞られ、ガイド板46.48に
より案内供給された樹1指含浸炭素繊維12dが軸線方
向に整列して配置され、最外層の軸方向炭素繊維強化樹
脂層4aが形成される。
On the spirally wound carbon fiber 36b, the remaining fibers M112d of the carbon fiber 12b from the second creel stand 16b are introduced into the resin impregnation tank 44 by the guide plate 40.42. The carbon fibers 12d impregnated with a matrix resin are then squeezed out, and the carbon fibers 12d impregnated with one finger are guided and supplied by guide plates 46 and 48 and arranged in alignment in the axial direction, and the axial carbon fibers of the outermost layer are A reinforced resin layer 4a is formed.

このようにしてマンドレル26上には軸方白炭J繊維強
化樹脂層4a及び螺旋状炭素繊維強化樹脂層4bが所定
層だけ積層された炭素繊維強化樹脂層積層体50が形成
される。
In this way, a carbon fiber reinforced resin layer laminate 50 is formed on the mandrel 26, in which a predetermined number of the axial white charcoal J fiber reinforced resin layer 4a and the spiral carbon fiber reinforced resin layer 4b are laminated.

本実施例にて、ハニカム構造体2としてはアルミニウム
製のハニカム構造体(商品名:AL1/8−5052−
.002.昭和飛行機工業株式会社製)を使用した。ハ
ニカム構造体2の外形状は18X1Bmmであった。
In this example, the honeycomb structure 2 is an aluminum honeycomb structure (product name: AL1/8-5052-
.. 002. (manufactured by Showa Aircraft Industry Co., Ltd.) was used. The outer shape of the honeycomb structure 2 was 18×1 Bmm.

強化繊維としては、線径7μm、強度340kg / 
m rn’の炭素繊維を使用し、各樹脂含浸槽20.3
0.44にはマトリクス樹脂としてはエポキシ樹脂10
0wt%と、充填剤として炭酸カルシウムを10wt%
加えた樹脂液を1智して収容し、炭素m雄に含浸させた
The reinforcing fiber has a wire diameter of 7 μm and a strength of 340 kg/
Using m rn' carbon fiber, each resin impregnation tank 20.3
For 0.44, epoxy resin 10 is used as the matrix resin.
0wt% and 10wt% calcium carbonate as a filler.
The added resin liquid was collected and impregnated into the carbon layer.

4二述のようにしてハニカム構造体2上に内側より樹脂
含浸炭素繊維から成る軸方向炭素m雄強化樹脂層4a、
螺旋状炭素繊維強化樹脂層4)1、軸方向炭素繊維強化
樹脂層4a、螺旋状炭素繊維強化樹脂層4b及び軸方向
炭素繊維強化樹脂層4aの5層から構成される炭、[維
強化樹脂層積層体50が形成される。
4. As described above, an axial carbon male reinforced resin layer 4a made of resin-impregnated carbon fiber is placed on the honeycomb structure 2 from the inside,
Charcoal composed of five layers: spiral carbon fiber reinforced resin layer 4) 1, axial carbon fiber reinforced resin layer 4a, spiral carbon fiber reinforced resin layer 4b, and axial carbon fiber reinforced resin layer 4a. A layer stack 50 is formed.

該ハニカム構造体?上に形成された炭素繊維強化樹脂層
50は次いで、矩形断面形状を有した金型52内へと引
入れられる。
The honeycomb structure? The carbon fiber reinforced resin layer 50 formed thereon is then drawn into a mold 52 having a rectangular cross-sectional shape.

このようにして、極めて好適に金型52にて所定形状寸
法に賦形された繊維強化樹脂層50は加熱装置!(図示
せず)を利用することにより固化(硬化)され、炭素繊
維強化複合樹脂引抜成形品lが形成される。金型52の
下流側には引抜機54及びカッター56が配置され、該
炭素繊維強化複合樹脂引抜成形品lを抜取ると共に、該
炭素繊維強化複合樹脂引抜成形品lを所定長さにて切断
する。引抜機54及びカッター56の構造及び作用は当
業者には周知であるのでこれ以上の説明は省略する。
In this way, the fiber reinforced resin layer 50, which has been extremely suitably shaped into a predetermined shape and size using the mold 52, is heated! (not shown) to form a carbon fiber-reinforced composite resin pultrusion molded product 1. A drawing machine 54 and a cutter 56 are arranged on the downstream side of the mold 52 to extract the carbon fiber reinforced composite resin pultrusion molded product l and cut the carbon fiber reinforced composite resin pultrusion molded product l into a predetermined length. do. The structure and operation of the puller 54 and cutter 56 are well known to those skilled in the art and will not be further described.

以上の構成とされる製造方法及び引抜成形機を使用して
、外形が23X23mm、各炭素繊維強化樹脂層の厚さ
は0.5mm、肉厚2.5mmの矩形の炭素繊維強化樹
脂引抜成形品を1m7分の速度にて製造することができ
た。
Using the manufacturing method and pultrusion molding machine configured as described above, a rectangular carbon fiber reinforced resin pultrusion molded product with an outer diameter of 23 x 23 mm, a thickness of each carbon fiber reinforced resin layer of 0.5 mm, and a wall thickness of 2.5 mm is produced. could be manufactured at a speed of 1 m7 minutes.

このようにして製造した引抜成形品1は十分に実用に適
した強度を有するものであった。
The pultrusion molded product 1 produced in this manner had sufficient strength for practical use.

え貫LA」 以4―説明したように、本発明に従った長尺軽量繊維強
化複合樹脂引抜成形品は軸方向のみならず横方向圧縮及
び曲げに対する強度(耐座屈性)が従来の成形品に比較
し飛曜的に向トしたものとなり、又本発明による製造方
法によると断る繊維強化複合樹脂引抜成形品が極めて簡
単に且つ連続的に製造し得るという利点がある。
As explained in Section 4 of ``Enuki LA'', the long lightweight fiber-reinforced composite resin pultruded product according to the present invention has higher strength against compression and bending (buckling resistance) not only in the axial direction but also in the lateral direction (buckling resistance) than conventional molding. The production method according to the present invention has the advantage that fiber-reinforced composite resin pultrusion molded products can be produced extremely easily and continuously.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る長尺軽量繊維強化複合樹脂引抜
成形品の斜視図である。 @2図、第3図、第4A図及び第4B図は、未発[!1
に係る長尺軽[[1強化複合樹脂引抜成形品の他の実施
例の断面図である。 第5図及び第6図は、本発明に従って長尺軽量&a維強
化複合樹脂引抜成形品を製造する際の工程を説明する概
略説明図である。 1:繊維強化複合樹脂引抜成形品 2:長尺軽量)\ニカム構造体 4:繊維強化樹脂層 6・テープ状接着剤 8.52:金型 第1図 第2図
FIG. 1 is a perspective view of a long lightweight fiber-reinforced composite resin pultrusion molded product according to the present invention. @ Figures 2, 3, 4A, and 4B are unreleased [! 1
FIG. 1 is a cross-sectional view of another example of a long light weight [[1] reinforced composite resin pultrusion molded product. FIG. 5 and FIG. 6 are schematic explanatory diagrams illustrating the steps of manufacturing a long lightweight & a-fiber reinforced composite resin pultrusion molded product according to the present invention. 1: Fiber-reinforced composite resin pultrusion molded product 2: Long, lightweight)\Nicum structure 4: Fiber-reinforced resin layer 6/tape adhesive 8.52: Mold Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)細長形状の軽量ハニカム構造体と、該軽量ハニカム
構造体の外周囲を全部又は部分的に囲包して形成された
繊維強化樹脂層とを具備することを特徴とする長尺軽量
繊維強化複合樹脂引抜成形品。 2)ハニカム構造体の外周囲は、全部又は部分的に接着
層を介して繊維強化樹脂層に接合されて成る請求項1記
載の長尺軽量繊維強化複合樹脂引抜成形品。 3)(a)細長形状のハニカム構造体を用意する工程; (b)必要に応じて、前記ハニカム構造体の外周囲の全
部又は部分的に接着層を形成する工程; (c)前記ハニカム構造体に樹脂含浸繊維を配置して所
定の肉厚を有した繊維強化樹脂層を形成する工程;次い
で (d)前記繊維強化樹脂層を有した軽量補強材を金型へ
と引込んで所定の寸法形状に賦形し、固化する工程; を有することを特徴とする長尺軽量繊維強化複合樹脂引
抜成形品の製造法。
[Claims] 1) A lightweight honeycomb structure having an elongated shape and a fiber-reinforced resin layer formed by completely or partially surrounding the outer periphery of the lightweight honeycomb structure. A long lightweight fiber-reinforced composite resin pultruded product. 2) The elongated lightweight fiber-reinforced composite resin pultruded product according to claim 1, wherein the outer periphery of the honeycomb structure is wholly or partially joined to the fiber-reinforced resin layer via an adhesive layer. 3) (a) A step of preparing an elongated honeycomb structure; (b) A step of forming an adhesive layer on all or part of the outer periphery of the honeycomb structure, if necessary; (c) The honeycomb structure a step of arranging resin-impregnated fibers on the body to form a fiber-reinforced resin layer having a predetermined thickness; then (d) drawing the lightweight reinforcing material having the fiber-reinforced resin layer into a mold to obtain a predetermined size; A method for producing a long lightweight fiber-reinforced composite resin pultrusion molded product, comprising the steps of shaping into a shape and solidifying it.
JP63296761A 1987-12-21 1988-11-24 Continuous, length light-weight fiber reinforced composite resin pultrusion product and its manufacture Pending JPH01237130A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63296761A JPH01237130A (en) 1987-12-21 1988-11-24 Continuous, length light-weight fiber reinforced composite resin pultrusion product and its manufacture
US07/439,997 US5139843A (en) 1988-11-24 1989-11-21 Elongated lightweight fiber reinforced composite resin pultrusion-formed piece
CA002003746A CA2003746A1 (en) 1988-11-24 1989-11-23 Elongated lightweight fiber reinforced composite resin pultrusion-formed piece and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32319087 1987-12-21
JP62-323190 1987-12-21
JP63296761A JPH01237130A (en) 1987-12-21 1988-11-24 Continuous, length light-weight fiber reinforced composite resin pultrusion product and its manufacture

Publications (1)

Publication Number Publication Date
JPH01237130A true JPH01237130A (en) 1989-09-21

Family

ID=26560836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296761A Pending JPH01237130A (en) 1987-12-21 1988-11-24 Continuous, length light-weight fiber reinforced composite resin pultrusion product and its manufacture

Country Status (1)

Country Link
JP (1) JPH01237130A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395999A2 (en) * 1989-05-04 1990-11-07 Bayer Ag Thermoplastic compositions and their use for melt pultrusion processes
WO2008117911A1 (en) * 2007-03-26 2008-10-02 Lg Electronics Inc. Reinforcing component for refrigerator
KR101310758B1 (en) * 2007-03-26 2013-09-25 엘지전자 주식회사 Refrigerator with side surface reinforcing component
KR101328049B1 (en) * 2007-03-26 2013-11-08 엘지전자 주식회사 Refrigerator
JP2021045934A (en) * 2019-09-20 2021-03-25 株式会社Subaru Fiber-reinforced resin composite material
JP2021049696A (en) * 2019-09-25 2021-04-01 株式会社Subaru Fiber-reinforced resin composite

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395999A2 (en) * 1989-05-04 1990-11-07 Bayer Ag Thermoplastic compositions and their use for melt pultrusion processes
WO2008117911A1 (en) * 2007-03-26 2008-10-02 Lg Electronics Inc. Reinforcing component for refrigerator
US8500225B2 (en) 2007-03-26 2013-08-06 Lg Electronics Inc. Reinforcing component for refrigerator
KR101310758B1 (en) * 2007-03-26 2013-09-25 엘지전자 주식회사 Refrigerator with side surface reinforcing component
KR101328049B1 (en) * 2007-03-26 2013-11-08 엘지전자 주식회사 Refrigerator
JP2021045934A (en) * 2019-09-20 2021-03-25 株式会社Subaru Fiber-reinforced resin composite material
JP2021049696A (en) * 2019-09-25 2021-04-01 株式会社Subaru Fiber-reinforced resin composite
US12091096B2 (en) 2019-09-25 2024-09-17 Subaru Corporation Fiber-reinforced resin composite

Similar Documents

Publication Publication Date Title
US5139843A (en) Elongated lightweight fiber reinforced composite resin pultrusion-formed piece
US4284679A (en) Filled resin coated tape
US5279879A (en) Hybrid prepreg containing carbon fibers and at least one other reinforcing fiber in specific positions within the prepreg
US4512836A (en) Method of producing composite structural members
EP0400599A2 (en) Composite cellular sandwich structure
US8167782B2 (en) Method and apparatus for making a paint roller and product produced thereby
US4789577A (en) Multichannel structures made of composites, processes and semifinished products for the manufacture thereof
US4576849A (en) Curved composite beam
US10041193B2 (en) Sandwich core material
EP1160072A2 (en) Continuous reinforcing fiber sheet and manufacturing method thereof
JP2004506537A (en) Coated crushable shaped structural member and method of manufacturing the same
US6823918B2 (en) Integrally reinforced composite sandwich joint and process for making the same
US5245813A (en) Structural beam
JPH01237130A (en) Continuous, length light-weight fiber reinforced composite resin pultrusion product and its manufacture
JPH05502286A (en) Composite threading collar
JP2659110B2 (en) Fiber reinforced resin composite pipe and method for producing the same
JP2685549B2 (en) Manufacturing method of fiber reinforced plastic truss structure
JPH01166937A (en) Long-sized, light-weight and fiber-reinforced composite draw molding and its manufacture
JPH01166936A (en) Long-sized, thin, hollow and carbon fiber-reinforced composite resin draw molding and its manufacture
JP2004502573A (en) Core-containing shaped composite structural member and method of manufacturing the same
KR102507820B1 (en) Method for manufacturing multilayer fiber reinforced resin composite and molded product using the same
JPH064294B2 (en) Method for manufacturing FRP beam
JPH06122168A (en) Reinforced plastic pipe and production thereof
JPS6192833A (en) Manufacture of coiled fiber reinforced plastic laminated body
JPS6161966B2 (en)