JPH02155633A - Preparation of truss structure made of fiber reinforced plastic - Google Patents

Preparation of truss structure made of fiber reinforced plastic

Info

Publication number
JPH02155633A
JPH02155633A JP63309155A JP30915588A JPH02155633A JP H02155633 A JPH02155633 A JP H02155633A JP 63309155 A JP63309155 A JP 63309155A JP 30915588 A JP30915588 A JP 30915588A JP H02155633 A JPH02155633 A JP H02155633A
Authority
JP
Japan
Prior art keywords
resin
mandrel
impregnated
laminate
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63309155A
Other languages
Japanese (ja)
Other versions
JP2685549B2 (en
Inventor
Hiroshi Kamiyoshihara
上吉原 廣
Kazuaki Amaoka
和昭 天岡
Naoya Takizawa
滝沢 尚哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP63309155A priority Critical patent/JP2685549B2/en
Publication of JPH02155633A publication Critical patent/JPH02155633A/en
Application granted granted Critical
Publication of JP2685549B2 publication Critical patent/JP2685549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To inexpensively prepare a truss structure having lightweight properties, high strength and high rigidity by laminating a laminate composed of the first resin impregnated fibers to the first mandrel and laminating a laminate composed of the second resin impregnated fibers to the second mandrel in mutual contact relation to the first mandrel. CONSTITUTION:A second resin impregnated fibers composed of the same material as the first resin impregnated fibers are helically wound around the first and second mandrels 1, 3 by a filament winding apparatus to form a laminate 8 composed of the second resin impregnated fibers. Subsequently, the laminate 2 of the first rein impregnated fibers and the laminate 8 composed of the second resin impregnated fibers are tacked and, thereafter, the third mandrel 9 having a triangular cross-section is connected to the second mandrel 3. This connection is performed by inserting a fixing pin 10 in the pin hole part 11 of the third mandrel 1 and the pin hole 12 of the second mandrel 3. The gap of the boundary part of the second and third mandrels 3, 9 is also filled with a filler 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化プラスチック製トラス構造体の製造法
に係り、特にフィラメントワインディング装置を使用し
て繊維強化プラスチック製トラス構造翼を製造するのに
好適の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a fiber-reinforced plastic truss structure, and particularly to a method for manufacturing a fiber-reinforced plastic truss structure wing using a filament winding device. Concerning a preferred manufacturing method.

〔従来の技術〕[Conventional technology]

近年航空機、特に軽量・高強度・高剛性を要求されるそ
の翼構造には繊維強化プラスチック複合材が多く使用さ
れつつある。従来の繊維強化プラスチック複合材使用の
翼構造は、特公昭42−27423号公報に開示されて
いるようにハニカムコアや発泡コアと桁と繊維強化プラ
スチック複合材製外板と後縁材等を11前に個々に製作
しておき、これらを接着剤等で結合組立てるものであっ
た。
In recent years, fiber-reinforced plastic composite materials have been increasingly used in aircraft wing structures, especially those that require light weight, high strength, and high rigidity. Conventional wing structures using fiber-reinforced plastic composite materials include honeycomb cores, foam cores, spars, fiber-reinforced plastic composite outer panels, trailing edge materials, etc., as disclosed in Japanese Patent Publication No. 42-27423. They were manufactured individually beforehand and then assembled together using adhesive or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述の方法は各部材を個々に製作しこれらを
結合組立てるため、自動化が困難で製造コストが非常に
高くなるという問題がある。また、翼構造を多数の部分
に分割して各部分をハンドレイアップにより製作し夫々
をスプライス(重ね継ぎ)する方法が考えられる。しか
しこの方法は強化用繊維の配向が不連続となってしまい
強度が低ドし、更にスプライスにより板厚が増し局部的
板厚増を生じてしまうという問題に加えて、製造方法全
体の自動化がやはり難しいという問題もある。
However, the above-mentioned method has problems in that it is difficult to automate and the manufacturing cost is extremely high because each member is manufactured individually and then assembled together. Another possible method is to divide the wing structure into a large number of parts, manufacture each part by hand layup, and then splice each part. However, with this method, the orientation of reinforcing fibers becomes discontinuous, resulting in low strength. Furthermore, splicing increases the thickness of the plate, resulting in localized increases in plate thickness. In addition, it is difficult to automate the entire manufacturing method. There are still some difficult issues.

そこで、本発明の目的は繊維強化プラスチック製購造体
を軽量・高強度・高剛性化できかつ安随に製造すること
ができる繊維強化プラスチック製トラス構造体の製造法
を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing a fiber-reinforced plastic truss structure that can be made lightweight, strong, and rigid, and can be manufactured easily.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するために本願の第1の発明は、多角形
断面の第1マンドレルに樹脂を含浸した第1繊維をフィ
ラメントワインディング装置によってヘリカルワインデ
ィングし、上記第1マンドレルに上記第1樹脂含浸繊維
の積層体を形成する第1工程と、このヘリカルワインデ
ィングされた第1マンドレルに多角形断面の第2マンド
レルを接合し、この第1マンドレルの第1樹脂含浸繊維
の積層体と第2マンドレルとに樹脂を含浸した第2繊維
をフィラメントワインディング装置によりヘリカルワイ
ンディングして上記第1及び第2マンドレルに上記第2
樹脂含浸繊維の積層体を形成する第2工程と、上記ヘリ
カルワインディングされた第1及び第2マンドレル上の
上記第1及び第2樹脂含浸繊維を硬化して成形する第3
工程と、上記成形後に上記第1及び第2マンドレルを取
出す第4工程とを具備するものである。
In order to achieve this object, the first invention of the present application involves helically winding a first fiber impregnated with a resin onto a first mandrel having a polygonal cross section using a filament winding device; a first step of forming a laminate of the first resin-impregnated fibers of the first mandrel, and joining a second mandrel with a polygonal cross section to the helically wound first mandrel; A second fiber impregnated with resin is helically wound by a filament winding device to the first and second mandrels.
a second step of forming a laminate of resin-impregnated fibers; and a third step of curing and molding the first and second resin-impregnated fibers on the helically wound first and second mandrels.
and a fourth step of taking out the first and second mandrels after the molding.

また、上記第2工程は、上記第2樹脂含浸繊維のヘリカ
ルワインディング後に上記第1及び第2マンドレルの少
なくとも一方に多角形断面の第3マンドレルを接合し、
その後上記第1及び第2マンドレルの上記第2樹脂含浸
繊維と第3マンドレルとに樹脂を含浸した第3繊維をフ
ィラメントワインディング装置によりヘリカルワインデ
ィングして上記第1、第2、第3マンドレルに上記第3
樹脂含浸繊維の積層体を形成する工程を含み、上記第3
工程は上記第3樹脂含浸繊維を上記第1及び第2樹脂含
浸繊維と同時に硬化成形することが望ましい。
Further, in the second step, after the helical winding of the second resin-impregnated fiber, a third mandrel having a polygonal cross section is joined to at least one of the first and second mandrels,
Thereafter, the second resin-impregnated fibers of the first and second mandrels and the third fibers impregnated with resin are helically wound by a filament winding device to the first, second, and third mandrels. 3
the step of forming a laminate of resin-impregnated fibers;
In the step, it is desirable to cure and mold the third resin-impregnated fiber at the same time as the first and second resin-impregnated fibers.

更に、上記第2工程は、上記第2樹脂含浸繊維の積層体
の形成後にヒート・コンパクションによって上記第1及
び第2樹脂含浸繊維の積層体をタックし、この後に上記
第3マンドレルの接合を行うことが好ましい。
Further, in the second step, after forming the laminate of the second resin-impregnated fibers, the laminate of the first and second resin-impregnated fibers is tacked by heat compaction, and then the third mandrel is joined. It is preferable.

本願の第2の発明は多角形断面の複数のマンドレルに個
々に樹脂を含浸した繊維をフィラメントワインディング
装置によってヘリカルワインディングして上記各マンド
レルに上記樹脂含浸繊維の第1積層体を形成する第1工
程と、これらのマンドレルを接合した後に、上記接合さ
れたマンドレル全体に樹脂を含浸した繊維をフィラメン
トワインディング装置によってヘリカルワインディング
して上記マンドレル全体に上記樹脂含浸繊維の第2積層
体を形成する第2工程、上記マンドレル上の上記第1及
び第2積層体の樹脂含浸繊維を硬化して成形する第3工
程と、上記成形後に上記各マンドレルを取出す第4工程
とを具備するものである。
The second invention of the present application is a first step of helically winding fibers impregnated with resin individually onto a plurality of mandrels having a polygonal cross section using a filament winding device to form a first laminate of the resin-impregnated fibers on each mandrel. After joining these mandrels, a second step of helically winding the resin-impregnated fibers over the entire joined mandrels using a filament winding device to form a second laminate of the resin-impregnated fibers over the entire mandrels. , a third step of curing and molding the resin-impregnated fibers of the first and second laminates on the mandrel, and a fourth step of taking out each of the mandrels after the molding.

〔作 用〕[For production]

第1発明では、第1樹脂含浸織錐の積層体は第1マンド
レルに積層され、第2樹脂含浸繊維の積層体は互いに接
合された第1マンドレルと第2マンドレルに積層される
ため、第1及び第2樹脂含浸繊維の硬化によって一体成
形の繊維強化プラスチック製トラス構造体が製造される
In the first invention, the laminate of the first resin-impregnated woven aperture is laminated on the first mandrel, and the laminate of the second resin-impregnated fiber is laminated on the first mandrel and the second mandrel that are joined to each other. By curing the second resin-impregnated fibers, an integrally molded fiber-reinforced plastic truss structure is manufactured.

第2発明では、各マンドレルには個々に被覆された樹脂
含浸繊維積層体と全体に被覆された樹脂含浸繊維積層体
とが順次積層されているため、硬化処理により一体成形
の繊維強化プラスチック製トラス構造体が製造される。
In the second invention, since the individually coated resin-impregnated fiber laminate and the overall resin-impregnated fiber laminate are sequentially laminated on each mandrel, an integrally formed fiber-reinforced plastic truss is formed by curing treatment. A structure is manufactured.

〔実施例〕〔Example〕

以下に本発明による繊維強化プラスチック製トラス構造
体の製造法の実施例を図面を参照して説明する。
EMBODIMENT OF THE INVENTION Below, the Example of the manufacturing method of the fiber reinforced plastic truss structure by this invention is demonstrated with reference to drawings.

第1図は航空機の翼後縁部に使用される繊維強化プラス
チック製トラス構造体の製造法の実施例の各工程を概略
的に示したもので、第2図は樹脂含浸繊維の積層体を硬
化した時の状態を詳細に示したものである。
Figure 1 schematically shows each step of an example of a manufacturing method for a fiber-reinforced plastic truss structure used for the trailing edge of an aircraft wing, and Figure 2 shows a laminate of resin-impregnated fibers. This shows in detail the state when it is cured.

第1図と第2図において、4角形断面のマンドレル1に
熱硬化性樹脂を含浸した第1繊維を図示を省略したフィ
ラメントワインディング装置によりヘリカルワインディ
ングして第1樹脂含浸繊維の積層体2を形成する。なお
、この繊維としては例えばプリプレグロービングやプリ
プレグチーブや識維糸等を使用することができる。
1 and 2, a first fiber impregnated with a thermosetting resin is helically wound onto a mandrel 1 having a rectangular cross section using a filament winding device (not shown) to form a laminate 2 of first resin-impregnated fibers. do. In addition, as this fiber, for example, prepreg gloving, prepreg chive, fiber yarn, etc. can be used.

次いで、このヘリカルワインディングされた第1マンド
レル1に3角形断面の第2のマンドレル3を接合する。
Next, a second mandrel 3 having a triangular cross section is joined to the helically wound first mandrel 1.

この接合は第2図に示したように固定ピン4を第1マン
ドレル1のピン穴部5と第2マンドレル3のピン穴部6
とに挿入して両者を一体的に固定することによって行わ
れる。この後に第1及び第2マンドレル1.3の境界部
の隙間にフィラー7が充填される。この後、第1樹脂含
浸繊維と同一の材料からなる第2の樹脂含浸繊維を第1
及び第2マンドレル1.3にフィラメントワインディン
グ装置によりヘリカルワインディングして第2樹脂含浸
繊維の積層体8を形成する。
In this connection, as shown in FIG.
This is done by inserting it into the body and fixing the two together. After this, the gap between the first and second mandrels 1.3 is filled with filler 7. After this, a second resin-impregnated fiber made of the same material as the first resin-impregnated fiber is added to the first resin-impregnated fiber.
Then, helical winding is performed on the second mandrel 1.3 using a filament winding device to form a second resin-impregnated fiber laminate 8.

次いで、ヒートコンパクションにより第1樹脂含浸繊維
の積層体2と第2樹脂含浸繊維の積層体8とをタックさ
せた後に、3角形断面の第3のマンドレル9を第2のマ
ンドレル3に接合する。この接合も上述と同様に第2図
に示したように固定ピン10を第3マンドレル1のピン
穴部11と第2マンドレル3のピン穴部12とに挿入す
ることによって行われる。第2及び第3マンドレル39
の境界部間隙にもフィラー13が充填される。
Next, after the first resin-impregnated fiber laminate 2 and the second resin-impregnated fiber laminate 8 are tacked together by heat compaction, the third mandrel 9 having a triangular cross section is joined to the second mandrel 3. This joining is also performed by inserting the fixing pin 10 into the pin hole 11 of the third mandrel 1 and the pin hole 12 of the second mandrel 3 as shown in FIG. 2 in the same manner as described above. 2nd and 3rd mandrel 39
The filler 13 is also filled in the boundary gap.

この後に、第1樹脂含浸繊維と同一の材料からなる第3
の樹脂含浸繊維を第1、第2及び第3マンドレル1,3
.9にフィラメントワインディング装置によりヘリカル
ワインディングして第3樹脂含浸繊維の積層体14を形
成する。こうして、第1マンドレル1には第1、第2及
び第3樹脂含浸繊維層2.8. 14が順次積層され、
第2マンドレル3には第2及び第3樹脂含浸繊維層8゜
14が順次積層され、第3マンドレル9には第3樹脂含
浸繊維層14のみが積層される。
This is followed by a third resin-impregnated fiber made of the same material as the first resin-impregnated fiber.
The resin-impregnated fibers are placed on the first, second and third mandrels 1 and 3.
.. 9, helical winding is performed using a filament winding device to form a laminate 14 of third resin-impregnated fibers. Thus, the first mandrel 1 has first, second and third resin-impregnated fiber layers 2.8. 14 are sequentially stacked,
The second and third resin-impregnated fiber layers 8 14 are sequentially laminated on the second mandrel 3 , and only the third resin-impregnated fiber layer 14 is laminated on the third mandrel 9 .

次いで、位置EPにおいて樹脂含浸繊維層2、8.14
をトリムした後、第4図に示したように一体固定のマン
ドレル1. 3. 9を固定用治具15に載置しこれを
真空バック16でバギングし、即ち被覆する。この後に
真空バック16内を真空化してから加圧及び加熱して第
1、第2及び第3樹脂含浸繊維層2,8.14を硬化さ
せ成形する。
Then, at position EP, resin-impregnated fiber layer 2, 8.14
After trimming the integrally fixed mandrel 1. as shown in FIG. 3. 9 is placed on a fixing jig 15 and then bagged, that is, covered, with a vacuum bag 16. Thereafter, the inside of the vacuum bag 16 is evacuated, and then pressure and heat are applied to harden and mold the first, second, and third resin-impregnated fiber layers 2, 8, and 14.

こうして第2図に示した一体成形品が作製され、最後に
第1乃至第3マンドレル1,3.9を引抜くことによっ
て第3図に示した航空機の翼後縁部用の成形のmff1
強化プラスチック製トラス構造体が完成する。
In this way, the integrally molded product shown in FIG. 2 is produced, and finally by pulling out the first to third mandrels 1, 3.9, the molded mff1 for the trailing edge of an aircraft wing shown in FIG.
The reinforced plastic truss structure is completed.

なお、上記実施例では樹脂として、熱硬化性樹脂を使用
したが熱硬化性樹脂を使用することもできる。
In the above embodiments, a thermosetting resin was used as the resin, but a thermosetting resin may also be used.

第5図は上記実施例の変形例を示したもので、第1マン
ドレル15として左右対称形状のものを使用しこれに上
記実施例と全く同様に第1樹脂含浸繊維層2を積層した
後、第1マンドレル15の左右に夫々第2マンドレル3
,3を接合する。その後の工程は上記実施例と同じであ
る。第3樹脂含没繊維層14を積層した後に、位置EP
IとEP2でトリムする。この変形例により繊維強化プ
ラスチック製トラス構造体を2個同時に成形することが
できる。
FIG. 5 shows a modification of the above embodiment, in which a symmetrical first mandrel 15 is used, and the first resin-impregnated fiber layer 2 is laminated thereon in exactly the same manner as in the above embodiment. Second mandrels 3 are placed on the left and right sides of the first mandrel 15, respectively.
, 3 are joined. The subsequent steps are the same as in the above embodiment. After laminating the third resin-impregnated fiber layer 14, the position EP
Trim with I and EP2. This modification allows two fiber-reinforced plastic truss structures to be molded at the same time.

第6図は第3マンドレル9を省略した例を示したもので
、この例では第1及び第2マンドレル1゜3の全体に2
層の樹脂含浸繊維層8A、8Bが積層されている。
FIG. 6 shows an example in which the third mandrel 9 is omitted, and in this example, the entire first and second mandrels 1°3 are
The resin-impregnated fiber layers 8A and 8B are laminated.

第7図は5個のマンドレル16.17,18゜19.2
0を使用して翼中間部用の繊維強化プラスチック製トラ
ス構造体を製造する例を示したもので、マンドレル16
には樹脂含浸va維層21が積層され、マンドレル17
には樹脂含浸繊維層22が積層され、マンドレル18に
は樹脂含浸繊維層23が積層され、マンドレル1つには
樹脂含浸繊維層24が積層され、マンドレル20には樹
脂含浸繊維層25が積層されている。これらのマンドレ
ル16〜20が接合された後に全体の外表面に樹脂含浸
繊維層26が積層される。この例では、各マンドレルと
も積層される樹脂含浸繊維層の数か等しく (2層)な
る。
Figure 7 shows five mandrels 16.17, 18°19.2
This shows an example of manufacturing a fiber-reinforced plastic truss structure for the intermediate part of a wing using mandrel 16.
A resin-impregnated VA fiber layer 21 is laminated on the mandrel 17.
A resin-impregnated fiber layer 22 is laminated on the mandrel 18, a resin-impregnated fiber layer 23 is laminated on the mandrel, a resin-impregnated fiber layer 24 is laminated on one mandrel, and a resin-impregnated fiber layer 25 is laminated on the mandrel 20. ing. After these mandrels 16 to 20 are joined, a resin-impregnated fiber layer 26 is laminated on the entire outer surface. In this example, the number of resin-impregnated fiber layers laminated on each mandrel is the same (2 layers).

第8図は繊維強化プラスチック製トラス構造体の翼中間
部27と繊維強化プラスチック製トラス購造体の翼後縁
部28とを結合用術29を介して接着又は打鋲組立した
例を示したものである。
FIG. 8 shows an example in which a wing intermediate portion 27 of a fiber-reinforced plastic truss structure and a wing trailing edge portion 28 of a fiber-reinforced plastic truss structure are assembled by bonding or riveting via a joining technique 29. It is something.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、フィラ
メントワインディング装置を使用して一体成形により繊
維強化プラスチック製トラス構造体を製造することがで
きるため、製造コストが非常に安価となる。また、トラ
ス構造でありかつまたフィラメントワインディングによ
り繊維配向を所望の方向に制御することができるため、
軽量・高強度・高剛性の構造体が得られる。もちろん、
l\ンドレイアップによる欠点、即ち繊維配向の不連続
性やスプライスによる局部的な板厚増等は生じない。
As is clear from the above description, according to the present invention, a fiber-reinforced plastic truss structure can be manufactured by integral molding using a filament winding device, so the manufacturing cost is extremely low. In addition, it has a truss structure and the fiber orientation can be controlled in the desired direction by filament winding.
A lightweight, high-strength, and highly rigid structure can be obtained. of course,
The drawbacks caused by dry-up, such as discontinuity in fiber orientation and local increase in board thickness due to splices, do not occur.

の製造法の実施例の各工程を示した概略図、第2図はマ
ンドレルに樹脂含浸繊維層を積層した状態を示した断面
図、第3図は製造された繊維強化プラスチック製トラス
構造体を示した斜視図、第4図は樹脂含浸繊維層を硬化
処理する工程を示した断面図、第5図及び第6図は夫々
上記実施例の変形例を示した断面図、第7図は翼中間部
用の繊維強化プラスチック製トラス構造体の製造法の一
工程を示した断面図、第8図は繊維強化プラスチック製
トラス購造体の翼中間部と繊維強化プラスチック製トラ
ス構造体翼後縁部とを結合した状態を示した端面図であ
る。
Fig. 2 is a cross-sectional view showing a state in which resin-impregnated fiber layers are laminated on a mandrel, and Fig. 3 is a schematic diagram showing each step of an embodiment of the manufacturing method. FIG. 4 is a cross-sectional view showing the process of hardening the resin-impregnated fiber layer, FIGS. 5 and 6 are cross-sectional views showing modifications of the above embodiment, and FIG. 7 is a cross-sectional view showing a modification of the above embodiment. A cross-sectional view showing one step in the manufacturing method of a fiber-reinforced plastic truss structure for the intermediate section. Figure 8 shows the wing intermediate section of the fiber-reinforced plastic truss structure and the trailing edge of the fiber-reinforced plastic truss structure wing. FIG.

1・・・第1マンドレル、2・・・第1樹脂含浸繊維の
積層体、3・・・第2マンドレル、8・・・第2樹脂含
浸繊維の積層体、9・・・第3マンドレル、14・・・
第3樹脂含浸繊維の積層体、15〜20・・・マンドレ
ル、21〜26・・・樹脂含浸繊維の積層体。
DESCRIPTION OF SYMBOLS 1... First mandrel, 2... Laminate of first resin-impregnated fibers, 3... Second mandrel, 8... Laminate of second resin-impregnated fibers, 9... Third mandrel, 14...
Third laminate of resin-impregnated fibers, 15-20...mandrel, 21-26... laminate of resin-impregnated fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は繊維強化プラスチック製トラス構造体出願人代
理人  佐  藤  −雄
Figure 1 shows the applicant's representative for the fiber-reinforced plastic truss structure, Mr. Sato.

Claims (1)

【特許請求の範囲】 1、多角形断面の第1マンドレルに樹脂を含浸した第1
繊維をフィラメントワインディング装置によってヘリカ
ルワインディングして上記第1マンドレルに上記第1樹
脂含浸繊維の積層体を形成する第1工程と、このヘリカ
ルワインディングされた第1マンドレルに多角形断面の
第2マンドレルを接合し、この第1マンドレルの第1樹
脂含浸繊維の積層体と第2マンドレルとに樹脂を含浸し
た第2繊維をフィラメントワインディング装置によりヘ
リカルワインディングして上記第1及び第2マンドレル
に上記第2樹脂含浸繊維の積層体を形成する第2工程と
、上記ヘリカルワインディングされた第1及び第2マン
ドレル上の上記第1及び第2樹脂含浸繊維を硬化して成
形する第3工程と、上記成形後に上記第1及び第2マン
ドレルを取出す第4工程とを具備することを特徴とする
繊維強化プラスチック製トラス構造体の製造法。 2、上記第2工程は、上記第2樹脂含浸繊維のヘリカル
ワインディング後に上記第1及び第2マンドレルの少な
くとも一方に多角形断面の第3マンドレルを接合し、そ
の後上記第1及び第2マンドレルの上記第2樹脂含浸繊
維と第3マンドレルとに樹脂を含浸した第3繊維をフィ
ラメントワインディング装置によりヘリカルワインディ
ングして上記第1、第2、第3マンドレルに上記第3樹
脂含浸繊維の積層体を形成する工程を含み、上記第3工
程は上記第3樹脂含浸繊維を上記第1及び第2樹脂含浸
繊維と同時に硬化成形することを特徴とする請求項1記
載の繊維強化プラスチック製トラス構造体の製造法。 3、上記第2工程は、上記第2樹脂含浸繊維の積層体の
形成後にヒート・コンパクションによって上記第1及び
第2樹脂含浸繊維の積層体をタックし、この後に上記第
3マンドレルの接合を行うことを特徴とする請求項2記
載の繊維強化プラスチック製トラス構造体の製造法。 4、多角形断面の複数のマンドレルに個々に樹脂を含浸
した繊維をフィラメントワインディング装置によってヘ
リカルワインディングして上記各マンドレルに上記樹脂
含浸繊維の第1積層体を形成する第1工程と、これらの
マンドレルを接合した後に、上記接合されたマンドレル
全体に樹脂を含浸した繊維をフィラメントワインディン
グ装置によってヘリカルワインディングして上記マンド
レル全体に上記樹脂含浸繊維の第2積層体を形成する第
2工程と、上記マンドレル上の上記第1及び第2積層体
の樹脂含浸繊維を硬化して成形する第3工程と、上記成
形後に上記各マンドレルを取出す第4工程とを具備する
ことを特徴とする繊維強化プラスチック製トラス構造体
の製造法。
[Claims] 1. A first mandrel having a polygonal cross section impregnated with a resin.
A first step of helically winding the fibers using a filament winding device to form a laminate of the first resin-impregnated fibers on the first mandrel, and joining a second mandrel having a polygonal cross section to the helically wound first mandrel. Then, the laminate of the first resin-impregnated fibers of the first mandrel and the second mandrel are helically wound with the second fibers impregnated with the resin using a filament winding device, so that the first and second mandrels are impregnated with the second resin. a second step of forming a fiber laminate; a third step of curing and molding the first and second resin-impregnated fibers on the helically wound first and second mandrels; A method for manufacturing a fiber-reinforced plastic truss structure, comprising a fourth step of taking out the first and second mandrels. 2. The second step is to join a third mandrel having a polygonal cross section to at least one of the first and second mandrels after the helical winding of the second resin-impregnated fiber, and then to join the third mandrel having a polygonal cross section to at least one of the first and second mandrels. A laminate of the third resin-impregnated fibers is formed on the first, second, and third mandrels by helically winding the second resin-impregnated fibers and the third fibers impregnated with the resin on the third mandrel using a filament winding device. The method for manufacturing a fiber-reinforced plastic truss structure according to claim 1, wherein the third step includes curing and molding the third resin-impregnated fiber at the same time as the first and second resin-impregnated fibers. . 3. In the second step, after forming the laminate of the second resin-impregnated fibers, the laminate of the first and second resin-impregnated fibers is tacked by heat compaction, and then the third mandrel is joined. The method for manufacturing a fiber-reinforced plastic truss structure according to claim 2. 4. A first step of forming a first laminate of the resin-impregnated fibers on each mandrel by helically winding the resin-impregnated fibers individually onto a plurality of mandrels having a polygonal cross section using a filament winding device; a second step of helically winding the resin-impregnated fibers over the entire joined mandrel using a filament winding device to form a second laminate of the resin-impregnated fibers over the entire mandrel; A fiber-reinforced plastic truss structure characterized by comprising a third step of curing and molding the resin-impregnated fibers of the first and second laminates, and a fourth step of removing each mandrel after the molding. How the body is manufactured.
JP63309155A 1988-12-07 1988-12-07 Manufacturing method of fiber reinforced plastic truss structure Expired - Fee Related JP2685549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63309155A JP2685549B2 (en) 1988-12-07 1988-12-07 Manufacturing method of fiber reinforced plastic truss structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63309155A JP2685549B2 (en) 1988-12-07 1988-12-07 Manufacturing method of fiber reinforced plastic truss structure

Publications (2)

Publication Number Publication Date
JPH02155633A true JPH02155633A (en) 1990-06-14
JP2685549B2 JP2685549B2 (en) 1997-12-03

Family

ID=17989583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63309155A Expired - Fee Related JP2685549B2 (en) 1988-12-07 1988-12-07 Manufacturing method of fiber reinforced plastic truss structure

Country Status (1)

Country Link
JP (1) JP2685549B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547629A (en) * 1994-09-27 1996-08-20 Competition Composites, Inc. Method for manufacturing a one-piece molded composite airfoil
US5943758A (en) * 1997-09-30 1999-08-31 Grafalloy Corporation Fabrication of a hollow composite-material shaft having an integral collar
WO2000018566A1 (en) * 1998-09-30 2000-04-06 Toray Industries, Inc. Hollow structure of fiber-reinforced resin and method of manufacturing the same
JP2008522896A (en) * 2004-12-08 2008-07-03 エアバス・ユ―ケ―・リミテッド Truss structure
EP4257347A1 (en) * 2022-04-09 2023-10-11 Rohr, Inc. Composite part with crossbeam supports and methods of forming composite parts

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828806B1 (en) * 2006-08-04 2008-05-09 현대자동차주식회사 Manufacturing method for hybrid driveshaft of vehicle
US10272619B2 (en) * 2014-05-19 2019-04-30 The Boeing Company Manufacture of a resin infused one-piece composite truss structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547629A (en) * 1994-09-27 1996-08-20 Competition Composites, Inc. Method for manufacturing a one-piece molded composite airfoil
US5943758A (en) * 1997-09-30 1999-08-31 Grafalloy Corporation Fabrication of a hollow composite-material shaft having an integral collar
WO2000018566A1 (en) * 1998-09-30 2000-04-06 Toray Industries, Inc. Hollow structure of fiber-reinforced resin and method of manufacturing the same
JP2008522896A (en) * 2004-12-08 2008-07-03 エアバス・ユ―ケ―・リミテッド Truss structure
EP4257347A1 (en) * 2022-04-09 2023-10-11 Rohr, Inc. Composite part with crossbeam supports and methods of forming composite parts

Also Published As

Publication number Publication date
JP2685549B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
KR101900967B1 (en) Composite structures having integrated stiffeners with smooth runouts and method of making the same
CA2857783C (en) Laminated composite radius filler with geometric shaped filler element and method of forming the same
KR101837217B1 (en) Composite Structures having Integrated Stiffeners and Method of Making the Same
US7097731B2 (en) Method of manufacturing a hollow section, grid stiffened panel
US9623620B2 (en) Three-dimensional reuseable curing caul for use in curing integrated composite components and methods of making the same
EP1555204A1 (en) Wing of composite material and method of fabricating the same
US20140166208A1 (en) Preforming pre-preg
JPH04301410A (en) Manufacture of composite material product having complicate form
US20100043955A1 (en) Flat-Cured Composite Structure
KR20140055993A (en) Composite radius fillers and method of forming the same
CN101351327B (en) Technology for manufacturing compound structure with embedded precuring mold
KR101864051B1 (en) Manufacturing Method of Light-weight Wing and Blades Using Composite Materials
US20080187699A1 (en) Method For the Manufacturing of a Hollow Fiber Reinforced Structural Member
JPH03248997A (en) Fuselage construction of aircraft and forming method thereof
KR20140067900A (en) Multi-box spar and skin
JP4187878B2 (en) Aircraft composite wing and method for manufacturing the same
JPH02155633A (en) Preparation of truss structure made of fiber reinforced plastic
JP3590346B2 (en) FRP structure
US20200384721A1 (en) Composite Panel Sandwich Structures with Integrated Joints
EP4001101B1 (en) Fabrication of multi-segment spars
JPH02307734A (en) Preparation of beam made of frp
JPH0674369A (en) Parallel joint member and manufacture thereof for fiber reinforced resin-made pipe
JPH0143612B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees