JPH01233773A - Semiconductor nonvolatile memory - Google Patents

Semiconductor nonvolatile memory

Info

Publication number
JPH01233773A
JPH01233773A JP6009088A JP6009088A JPH01233773A JP H01233773 A JPH01233773 A JP H01233773A JP 6009088 A JP6009088 A JP 6009088A JP 6009088 A JP6009088 A JP 6009088A JP H01233773 A JPH01233773 A JP H01233773A
Authority
JP
Japan
Prior art keywords
gate electrode
floating gate
nonvolatile memory
source region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6009088A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kojima
芳和 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP6009088A priority Critical patent/JPH01233773A/en
Publication of JPH01233773A publication Critical patent/JPH01233773A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a memory whose program characteristic is excellent and which is suitable for becoming minute by a method wherein, in a floating gate type semiconductor nonvolatile memory, a source region is formed of a thin and shallow junction. CONSTITUTION:After a gate oxide film 5 has been formed on the surface of a semiconductor substrate 1, a floating gate electrode 6, a control gate insulating film 7 and a control gate electrode 8 are formed one after another on the surface of the substrate 1. Then, a thin and shallow source region 3 and a dense and deep drain region 4 are formed by ion implantation in a self-alignment manner with reference to the floating gate electrode 6. A dense and deep region 2 for wiring use is formed to be away from the floating gate electrode 6. The drain region 4 is formed in a self-alignment manner by making use of the floating gate electrode 6 as a mask.

Description

【発明の詳細な説明】 〔産業上の利用分野) この発明は、コンピュータに代表される電子機器の情報
記憶デバイスとして用いられている半導体不揮発性メモ
リに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor nonvolatile memory used as an information storage device in electronic equipment such as computers.

〔発明の概要〕[Summary of the invention]

この発明は、浮遊ゲート型半導体不揮発性メモリにおい
て、ソース領域を薄くて浅い接合で形成することにより
、プログラム特性が優れ、微細化に適したメモリを実現
するためのものである。
The present invention is intended to realize a floating gate type semiconductor nonvolatile memory that has excellent program characteristics and is suitable for miniaturization by forming a source region with a thin and shallow junction.

〔従来の技術〕[Conventional technology]

従来、第2図に示すように、半導体基板1の表面にゲー
ト絶縁膜5を介して、浮遊ゲート電極6及び制御ゲート
電極8が形成され、その浮遊ゲート電極6に対して自己
整合的にイオン注入によりソース領域2及びドレイン領
域4を形成していた。
Conventionally, as shown in FIG. 2, a floating gate electrode 6 and a control gate electrode 8 are formed on the surface of a semiconductor substrate 1 via a gate insulating film 5, and ions are formed in a self-aligned manner with respect to the floating gate electrode 6. A source region 2 and a drain region 4 were formed by implantation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の半導体不揮発性メモリにおいては、ソー
ス領域2と浮遊ゲート電極6との容量が小さくできない
ために、浮遊ゲート電極6と制御ゲート電極8との容量
を木き(することにより、容量結合比を大きくしてプロ
グラム電圧を低電圧化せざるおえなかった。即ち、制御
ゲート電極8と浮遊ゲート電極6との容量を大きくする
ために、メモリの面積を大きくせざるおえなかった。
However, in conventional semiconductor nonvolatile memory, since the capacitance between the source region 2 and the floating gate electrode 6 cannot be reduced, the capacitance between the floating gate electrode 6 and the control gate electrode 8 is reduced (by reducing the capacitance coupling). It was necessary to increase the ratio and lower the programming voltage. That is, in order to increase the capacitance between the control gate electrode 8 and the floating gate electrode 6, it was necessary to increase the area of the memory.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、この発明は、ソ−ス領域
をドレイン領域より薄くて浅い接合で形成することによ
り、ソース領域と浮遊ゲート電極との容量を減少させて
、プログラム特性に優れ、かつ、微細化に適した半導体
不揮発性メモリを実現した。
In order to solve the above problems, the present invention reduces the capacitance between the source region and the floating gate electrode by forming the source region with a thinner and shallower junction than the drain region, resulting in excellent programming characteristics. In addition, we have realized a semiconductor nonvolatile memory that is suitable for miniaturization.

〔実施例〕〔Example〕

以下に、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明の半導体不揮発性メモリの断面図であ
る。メモリがN型トランジスタの場合について説明する
。P型半導体基板lの表面に、ゲート酸化膜5を形成す
る0次に、浮遊ゲート電極6と制御ゲート絶縁膜7と制
御ゲート電極8を順次形成する。一般に、浮遊ゲート電
極6は、制御ゲート電極8に対して自己整合的にパター
ニングされる。従って、浮遊ゲート電極6の巾は制御ゲ
ート電極8の巾とほぼ等しく形成される。次に、薄くて
浅いソース領域3と濃くて深いドレイン領域4を浮遊ゲ
ート電極6に対して自己整合的にイオン注入により形成
する。配線用の濃くて深いソース領域2は、浮遊ゲート
電極6より離れて形成される。この濃いソース領域は、
浮遊ゲート′T!1極6と制御ゲート電極8とから成る
段差部を利用してサイドウオールを形成した後に、サイ
ドウオールをマスクとしてイオン注入により形成すれば
、浮遊ゲート電極6に対して一定の距離をおいて自己整
合的に形成できる。ドレイン領域4は、サイドウオール
形成前に、浮遊ゲート電極6をマスクとして自己整合的
に形成する。ドレイン領域4に約10v5制御ゲート電
極8に約12.5V印加して、ドレイン領域4近くにチ
ャネル電流によるホットエレクトロンを発生して、その
一部を浮遊ゲート電極6へ注入する。注入されたメモリ
は、注入されないメモリのチャネルコンダクタンスが低
くなることから情報を記憶する。浮遊ゲート電極の電位
は、次式より与えられる。
FIG. 1 is a sectional view of a semiconductor nonvolatile memory according to the present invention. A case where the memory is an N-type transistor will be explained. After forming a gate oxide film 5 on the surface of a P-type semiconductor substrate 1, a floating gate electrode 6, a control gate insulating film 7, and a control gate electrode 8 are sequentially formed. Generally, floating gate electrode 6 is patterned in a self-aligned manner with respect to control gate electrode 8. Therefore, the width of the floating gate electrode 6 is formed to be approximately equal to the width of the control gate electrode 8. Next, a thin and shallow source region 3 and a thick and deep drain region 4 are formed by ion implantation in a self-aligned manner with respect to the floating gate electrode 6. A dense and deep source region 2 for wiring is formed apart from the floating gate electrode 6. This dense source region is
Floating Gate 'T! If a sidewall is formed by using the stepped portion formed by the single pole 6 and the control gate electrode 8, and then formed by ion implantation using the sidewall as a mask, the self-portion is formed at a certain distance from the floating gate electrode 6. Can be formed consistently. Drain region 4 is formed in a self-aligned manner using floating gate electrode 6 as a mask before sidewall formation. Approximately 10V is applied to the drain region 4 and approximately 12.5V is applied to the control gate electrode 8 to generate hot electrons near the drain region 4 due to the channel current, and a portion of them are injected into the floating gate electrode 6. Injected memory stores information because the channel conductance of non-injected memory is lower. The potential of the floating gate electrode is given by the following equation.

Ct       Ct       CtCt   
          CT ここで、 Ccei制御ゲート電極8と浮遊ゲート電極6との間の
容量 CD ;ドレイン領域4と浮遊ゲート電極6との間の容
量 C3:ソース領域3と浮遊ゲート電極6との間の容量 C1Elk  ;基板1と浮遊ゲート電極6との間の容
量 Cア ;浮遊ゲート電極6のまわりの全容量(CCG+
CD +Cs 十〇sub )Vec;制御ゲート電極
8の電位 VDiドレイン領域4の電位 ■3 ;ソース領域3の電位 ■3□ ;基板1の電位 Q、i浮遊ゲート電極6中の電荷量 従ッテ、vs = V sub −Ovとすれば、V、
は次式のようになる。
Ct Ct CtCt
CT Here, Ccei Capacitance CD between control gate electrode 8 and floating gate electrode 6; Capacitance C3 between drain region 4 and floating gate electrode 6: Capacitance C1Elk between source region 3 and floating gate electrode 6 ;Capacitance Ca between substrate 1 and floating gate electrode 6 ;Total capacitance around floating gate electrode 6 (CCG+
CD +Cs 10 sub)Vec; Potential of control gate electrode 8 VDi Potential of drain region 4 ■3; Potential of source region 3 ■3□; Potential Q of substrate 1; , vs = V sub −Ov, then V,
is as follows.

Ct           Ct     、    
 Ctプログラム特性を確保するための容量結合比は(
2)式より、次式のようになる。
Ct Ct,
The capacitive coupling ratio to ensure Ct programming characteristics is (
From formula 2), the following formula is obtained.

Cy   Cs +CB +C5ub +Ccc第1図
のような構造の半導体不揮発性メモリにすることにより
、浮遊ゲート電極6とソース領域3との間の容量C8を
小さくできる。C5が小さくなるため、制御ゲート電極
8と浮遊ゲート電極6の間の容量C6゜を小さくしても
、同じ容量結合比が得られる。即ち、小さな半導体不揮
発性メモリが可能になる。又、ソース領域3は浅くて薄
い接合であるため、ソース領域3とドレイン領域4との
間の長さであるチャネル長も短くすることができる。チ
ャネル長を短くできることから、さらにプログラム特性
に優れた小さな半導体メモリが可能になる。
Cy Cs +CB +C5ub +CccBy forming a semiconductor nonvolatile memory having the structure shown in FIG. 1, the capacitance C8 between the floating gate electrode 6 and the source region 3 can be reduced. Since C5 becomes smaller, the same capacitive coupling ratio can be obtained even if the capacitance C6 between the control gate electrode 8 and floating gate electrode 6 is reduced. That is, a small semiconductor non-volatile memory becomes possible. Furthermore, since the source region 3 is a shallow and thin junction, the channel length, which is the length between the source region 3 and the drain region 4, can also be shortened. The ability to shorten the channel length enables smaller semiconductor memories with even better programmability.

本発明に用いた薄くて浅いソース領域3は、製造工程を
増やさずに形成できる。半導体不揮発性メモリの制御系
の回路のチャネル長が2μm以内になると、ドレイン領
域端でのホフトエレクトロン発生による信転性の低下を
防ぐために、ソース及びドレイン領域を薄い濃度で形成
することが必要になってくる。従って、本発明の浅いソ
ース領域3は、メモリ周辺回路用トランジスタの薄いソ
ース及びドレイン領域と同時に形成することにより、工
程数を増加せずにつくることができる。
The thin and shallow source region 3 used in the present invention can be formed without increasing the number of manufacturing steps. When the channel length of the control system circuit of semiconductor nonvolatile memory becomes less than 2 μm, it becomes necessary to form the source and drain regions with a thin concentration in order to prevent a decrease in reliability due to the generation of hoft electrons at the edge of the drain region. It's coming. Therefore, the shallow source region 3 of the present invention can be formed without increasing the number of steps by forming the thin source and drain regions of the memory peripheral circuit transistor at the same time.

又、本発明の半導体不揮発性メモリのドレイン領域4は
、プログラム時に充分ホットエレクトロンを発生する必
要があるために、ソース領域3と異なり濃い領域で形成
する必要がある。ドレイン領域4をソース領域3より濃
くすることにより、プログラム特性の優れた半導体不揮
発性メモリが可能になる。
Further, the drain region 4 of the semiconductor nonvolatile memory of the present invention needs to generate sufficient hot electrons during programming, and therefore, unlike the source region 3, it needs to be formed in a dense region. By making the drain region 4 denser than the source region 3, a semiconductor nonvolatile memory with excellent program characteristics can be achieved.

第3図は、本発明の半導体不揮発性メモリの第2の実施
例の断面図である。制御ゲート領域18が基板lの表面
に形成されている。制御ゲート絶縁膜17を介して浮遊
ゲート電極6が上に形成されている。第3図のように、
制御ゲート領域18が、基板1内に形成された場合も、
ソース領域3をドレイン領域4に比べ薄く浅く形成する
ことにより、プログラム特性に優れた微細化に適した半
導体不揮発性メモリを実現できる。
FIG. 3 is a sectional view of a second embodiment of the semiconductor nonvolatile memory of the present invention. A control gate region 18 is formed on the surface of substrate l. Floating gate electrode 6 is formed on top with control gate insulating film 17 interposed therebetween. As shown in Figure 3,
Also when the control gate region 18 is formed within the substrate 1,
By forming the source region 3 thinner and shallower than the drain region 4, a semiconductor nonvolatile memory with excellent program characteristics and suitable for miniaturization can be realized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の半導体不揮発性メモリは
、ソース領域をドレイン領域より薄く、かつ、浅い接合
で形成することにより、プログラム特性に優れ、微細化
に適した半導体不揮発性メモリを可能にする効果がある
As explained above, the semiconductor nonvolatile memory of the present invention has excellent program characteristics and is suitable for miniaturization by forming the source region thinner than the drain region and with a shallow junction. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明にかかる半導体不揮発性メモリの断
面図であり、第2図は従来の半導体不揮発性メモリの断
面図である。第3図は、本発明の半導体不揮発性メモリ
の他の実施例の断面図である。 1・・・半導体基板 3・・・薄くて浅いソース領域 4・・・ドレイン領域 6・・・浮遊ゲート電極 8・・・制御ゲート電極 出願人 セイコー電子工業株式会1社 第1図 第2図
FIG. 1 is a sectional view of a semiconductor nonvolatile memory according to the present invention, and FIG. 2 is a sectional view of a conventional semiconductor nonvolatile memory. FIG. 3 is a sectional view of another embodiment of the semiconductor nonvolatile memory of the present invention. 1... Semiconductor substrate 3... Thin and shallow source region 4... Drain region 6... Floating gate electrode 8... Control gate electrode Applicant: Seiko Electronic Industries, Ltd. 1 company Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  半導体基板表面に間隔をおいて形成されたソース領域
とドレイン領域と、前記ソース領域とドレイン領域の間
のチャネル領域上にゲート絶縁膜を介して形成された浮
遊ゲート電極とから成る半導体不揮発性メモリにおいて
、前記ソース領域の濃度が前記ドレイン領域より薄く形
成されていることを特徴とする半導体不揮発性メモリ。
A semiconductor nonvolatile memory comprising a source region and a drain region formed at intervals on the surface of a semiconductor substrate, and a floating gate electrode formed on a channel region between the source region and the drain region with a gate insulating film interposed therebetween. A semiconductor nonvolatile memory according to claim 1, wherein the source region is formed to have a lower concentration than the drain region.
JP6009088A 1988-03-14 1988-03-14 Semiconductor nonvolatile memory Pending JPH01233773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6009088A JPH01233773A (en) 1988-03-14 1988-03-14 Semiconductor nonvolatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6009088A JPH01233773A (en) 1988-03-14 1988-03-14 Semiconductor nonvolatile memory

Publications (1)

Publication Number Publication Date
JPH01233773A true JPH01233773A (en) 1989-09-19

Family

ID=13132045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6009088A Pending JPH01233773A (en) 1988-03-14 1988-03-14 Semiconductor nonvolatile memory

Country Status (1)

Country Link
JP (1) JPH01233773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150684A (en) * 1998-11-13 2000-05-30 Samsung Electronics Co Ltd Nonvolatile memory device and its manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126674A (en) * 1983-01-10 1984-07-21 Toshiba Corp Semiconductor device for information memory
JPS60207385A (en) * 1984-03-31 1985-10-18 Toshiba Corp Semiconductor memory device
JPS6124282A (en) * 1984-07-13 1986-02-01 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126674A (en) * 1983-01-10 1984-07-21 Toshiba Corp Semiconductor device for information memory
JPS60207385A (en) * 1984-03-31 1985-10-18 Toshiba Corp Semiconductor memory device
JPS6124282A (en) * 1984-07-13 1986-02-01 Hitachi Ltd Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150684A (en) * 1998-11-13 2000-05-30 Samsung Electronics Co Ltd Nonvolatile memory device and its manufacture
JP4663836B2 (en) * 1998-11-13 2011-04-06 三星電子株式会社 Nonvolatile memory device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5773343A (en) Semiconductor device having a recessed channel structure and method for fabricating the same
US4404577A (en) Electrically alterable read only memory cell
US5172200A (en) MOS memory device having a LDD structure and a visor-like insulating layer
US5051794A (en) Non-volatile semiconductor memory device and method for manufacturing the same
US5614429A (en) Method for fabricating EEPROM with control gate in touch with select gate
JPH11135654A (en) Split-gate flash memory cell structure
KR970003845B1 (en) Eeprom flash memory cell, memory device and manufacturing method thereof
KR930006142B1 (en) Mos semiconductor device with inversion layer
US6025229A (en) Method of fabricating split-gate source side injection flash memory array
US5019881A (en) Nonvolatile semiconductor memory component
JP3271105B2 (en) Semiconductor device and method for forming the same
JPH01233773A (en) Semiconductor nonvolatile memory
JPS61216482A (en) Nonvolatile semiconductor memory device
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP2598523B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP2784765B2 (en) Manufacturing method of semiconductor nonvolatile memory
JPH08204031A (en) Manufacture of nonvolatile semiconductor memory element
JP2797466B2 (en) Nonvolatile semiconductor memory device
JPS61148863A (en) Semiconductor integrated circuit device
JPH03245567A (en) Semiconductor device
KR960003658B1 (en) Nand type memory device and the manufacturing process thereof
JPH04167472A (en) Semiconductor memory device and production method
KR970011139B1 (en) Non-volatile semiconductor memory device & method of operating the same
JPH04364786A (en) Semiconductor memory
JPH01179369A (en) Manufacture of nonvolatile semiconductor memory