JPH0123272B2 - - Google Patents

Info

Publication number
JPH0123272B2
JPH0123272B2 JP56164322A JP16432281A JPH0123272B2 JP H0123272 B2 JPH0123272 B2 JP H0123272B2 JP 56164322 A JP56164322 A JP 56164322A JP 16432281 A JP16432281 A JP 16432281A JP H0123272 B2 JPH0123272 B2 JP H0123272B2
Authority
JP
Japan
Prior art keywords
sizing
point
workpiece
dimensions
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56164322A
Other languages
Japanese (ja)
Other versions
JPS5866643A (en
Inventor
Gentei Inoe
Hideo Matsuhashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP16432281A priority Critical patent/JPS5866643A/en
Publication of JPS5866643A publication Critical patent/JPS5866643A/en
Publication of JPH0123272B2 publication Critical patent/JPH0123272B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • B23Q15/02Control or regulation of feed movement according to the instantaneous size and the required size of the workpiece acted upon

Description

【発明の詳細な説明】 この発明はインプロセス定寸測定方法に係り、
殊に間歇的な複数個の寸法測定値を数学的に処理
して工作寸法の定寸プロセス曲線を逐次時系列的
に求め、工作寸法が定寸に到達する時点を上記定
寸プロセス曲線の延長上の一点として想定し、こ
の想定した時点に達した時に工作機械の制御信号
を発するようにしたことを特徴とする新規にして
且つ進歩的なインプロセス定寸測定方法を開示す
るものである。
[Detailed Description of the Invention] The present invention relates to an in-process sizing measurement method,
In particular, by mathematically processing multiple intermittent dimension measurements, the sizing process curve of the workpiece dimensions is determined sequentially over time, and the point at which the workpiece size reaches the set size is determined by extending the sizing process curve. The present invention discloses a novel and progressive in-process sizing measurement method, which is characterized in that it assumes the above point and issues a control signal for the machine tool when the assumed point is reached.

一般にインプロセス定寸測定において、連続的
でなく間歇的に寸法測定するものの場合は、丁度
定寸の時点に測定動作が行われることは寧ろ偶然
であつて、定寸点を過ぎた後の最初の測定動作に
よつて定寸が追認されるようになつていた。従が
つて定寸とは云つてもその寸法は少なく共測定間
隔に相当する分だけバラツクことを理論的に余儀
なくされており、このバラツキはやむを得ないも
のだと考えられていた。
In general, in in-process sizing measurement, when dimensions are measured intermittently rather than continuously, it is more likely to be a coincidence that the measurement operation is carried out at the exact sizing point, and the first measurement after the sizing point is completed. The fixed size was confirmed by the measuring operation. Therefore, even though the dimensions are fixed, they are theoretically forced to vary by an amount corresponding to the common measurement interval, and this variation was considered to be unavoidable.

然し乍ら超精密部品の大量生産―たとえばミニ
アチユア軸受の内外輪の量産研削加工などにおい
ては、上記従来のバラツキを極力少なくしようと
しても、そのために測定間隔を縮めて頻繁に測定
動作を行うと、ゲージのトラバース機構の高速化
に伴なつてスライドの寿命低下や振動を生じ、加
工精度や能率にも悪影響を及ぼすことがあつた。
However, in the mass production of ultra-precision parts, such as mass production grinding of the inner and outer rings of miniature bearings, even if we try to reduce the above-mentioned conventional variations as much as possible, if we shorten the measurement interval and perform frequent measurement operations, the gage As the speed of the traverse mechanism increases, the life of the slide decreases and vibrations occur, which adversely affects machining accuracy and efficiency.

この発明は上記の事情に鑑みて発明したもので
あつて前記の通り、工作物が定寸に達したことを
寸法的にではなく、時間的に検出するようにし、
かくて定寸制御寸法のバラツキを少なくし、大量
生産における精度を飛躍的に向上させることを目
的とするものである。
This invention was invented in view of the above circumstances, and as mentioned above, it detects whether the workpiece has reached a fixed size not in terms of dimensions but in terms of time.
In this way, the purpose is to reduce variations in sizing control dimensions and dramatically improve accuracy in mass production.

この発明の方法を図によつて説明すると、図は
研削加工における切込サイクルと定寸プロセス曲
線の関係を示す一例であつて、横軸は時間t、縦
軸は切込量sないし工作寸法nを示してあり、直
線は荒研削、は精研削、はスパークア
ウト、は切込スライド台の急速後退を示して
いる。そして、精研削終了間際の定寸プロセス曲
線は略々直線(n=at+b)、スパークアウト
時の定寸プロセス曲線は指数凾数的(N=P
exp(QT))であることが知られている。従が
つてそれぞれの区間における測定値n1t1,n2t2
…ないしN1T1,N2T2……を逐次記憶し、記憶し
た一定数の連続した測定値から例えば最小自乗法
もしくはカルマン・フイルタを用いて上記の式に
よる近似曲線を逐次求め、この曲線の延長上の一
点として前記定寸点を想定し、且つその定寸点に
到達する時間をリアルタイムで算定する。そして
このような計算を測定動作が行われる毎にその測
定値を用いて逐次行ない、上記定寸点に到達する
時点の更新計算を行なう。
To explain the method of the present invention using a diagram, the diagram is an example showing the relationship between the cutting cycle and the sizing process curve in grinding, where the horizontal axis is time t, and the vertical axis is the depth of cut s or workpiece size. n is shown, where the straight line indicates rough grinding, the line indicates fine grinding, the line indicates spark out, and the line indicates rapid retreat of the cutting slide table. The sizing process curve just before the end of precision grinding is almost a straight line (n=at+b), and the sizing process curve at the time of sparkout is exponential (N=P
exp(QT)). Therefore, the measured values in each section are n 1 t 1 , n 2 t 2
... or N 1 T 1 , N 2 T 2 ..., are sequentially memorized, and an approximated curve according to the above formula is sequentially determined from the stored constant number of consecutive measured values using, for example, the least squares method or a Kalman filter. The sizing point is assumed to be one point on the extension of the curve, and the time to reach the sizing point is calculated in real time. Then, each time a measurement operation is performed, such calculations are performed one after another using the measured values, and an updated calculation is performed at the time when the above-mentioned sizing point is reached.

更に説明すると、たとえばスパークアウト開始
寸法nfを予め設定した一つの定寸点として、この
寸法nfに達したかどうかを検出するには、先づ最
新の連続した一定数の測定値、たとえばn1t1
n2t2,n3t3によつて、これらの測定値を結ぶ近似
曲線(n=at+b)を求める。この近似曲線は前
記の通り、たとえば最小自乗法を用いて演算した
り、カルマン・フイルタを用いて処理することに
よつて求めることができる。また使用するデータ
数を増やせば個々の測定値の中に含まれるバラツ
キとか測定誤差要因を平均化して信頼性を高める
ことができる。但しデータ数が多すぎると状況変
化(砥石切味の変化、研削状態の変化など)に対
する応答性が悪くなり、その時点の真の寸法値の
推定に誤差が生じる。
To further explain, for example, if the spark-out start dimension nf is set as one sizing point in advance, and to detect whether this dimension nf has been reached, first, a constant number of the latest consecutive measured values, for example n 1 t1 ,
An approximate curve (n=at+b) connecting these measured values is determined by n 2 t 2 and n 3 t 3 . As described above, this approximate curve can be obtained by, for example, calculating using the least squares method or processing using a Kalman filter. Furthermore, by increasing the amount of data used, it is possible to average out variations in individual measurement values and measurement error factors, thereby increasing reliability. However, if the number of data is too large, the responsiveness to changes in the situation (changes in grindstone cutting quality, changes in grinding conditions, etc.) will be poor, and errors will occur in estimating the true dimensional values at that point in time.

さて以上の如くして求めた近似曲線は、次の測
定値n4t4が入力された時に再び計算され、更新さ
れる。かくてより正確な定寸プロセス曲線を逐次
時系列的に求め、その曲線上の一点として前記定
寸点nfに到達する時間tfを計算する。この時間tf
は最新の測定動作時間(たとえばt4)よりの時間
間隔△tとして求めることもできる。従がつて上
記時間tfもしくは最新の測定動作よりの経過時間
△tを検出した時に、それがとりも直さず定寸点
nfであるとみなして前記制御信号を発するように
するのである。
Now, the approximate curve obtained as described above is calculated again and updated when the next measurement value n 4 t 4 is input. In this way, a more accurate sizing process curve is obtained sequentially in time series, and the time tf to reach the sizing point nf is calculated as one point on the curve. this time tf
can also be determined as the time interval Δt from the latest measurement operation time (for example, t 4 ). Therefore, when the above time tf or the elapsed time △t from the latest measurement operation is detected, it immediately becomes the sizing point.
nf, and the control signal is generated.

尚前記指数凾数の領域FG⌒についても同様に処
置される。
Note that the area FG⌒ of the above-mentioned exponential number is also processed in the same manner.

以上説明したように、本発明は定寸点を定寸プ
ロセス曲線上の一時点として想定し、その時点を
時間的に検出することによつて上記定寸点に到達
したものとみなすことにより、前記従来のバラツ
キを理論的にも現実的にも排除し得るもので、殊
に超精密部品の大量生産における精度を飛躍的に
向上させることができる。
As explained above, the present invention assumes that the sizing point is a point on the sizing process curve, and by detecting that point in time, it is assumed that the sizing point has been reached. The above-mentioned conventional variations can be eliminated both theoretically and practically, and accuracy in mass production of ultra-precision parts in particular can be dramatically improved.

【図面の簡単な説明】[Brief explanation of drawings]

図は研削加工における切込サイクルと定寸プロ
セス曲線の一例を示す線図である。 符号の説明、:荒研削、:精研削、
BC:スパークアウト、:急速後退、n1t1
n2t2……:測定値、N1T1,N2T2……:測定値、
nftf:定寸点の一例。
The figure is a diagram showing an example of a cutting cycle and a sizing process curve in grinding. Explanation of symbols: Rough grinding, Fine grinding,
BC: Spark out,: Rapid retreat, n 1 t 1 ,
n 2 t 2 ...: Measured value, N 1 T 1 , N 2 T 2 ...: Measured value,
nftf: An example of a fixed size point.

Claims (1)

【特許請求の範囲】[Claims] 1 機械加工中の工作物を逐次間歇的に寸法測定
し、工作物が設定した寸法に達した時に工作機械
の制御信号を発するインプロセス定寸測定方法で
あつて、上記測定値を逐次記憶し、記憶した少な
くとも3個以上の測定値に基いて、工作寸法の定
寸プロセス曲線を逐次時系列的に求め、工作物が
設定した寸法になる時点を上記定寸プロセス曲線
の延長上の一点として想定し、この想定した時点
に達した時に、工作物の切込みを停止してスパー
クアウトに入り、さらに別に設定した寸法に対し
て同様な想定を行いその想定した時点に達した時
にスパークアウトを完了する制御信号を発するよ
うにしたことを特徴とするインプロセス定寸測定
方法。
1. An in-process sizing measurement method in which the dimensions of a workpiece being machined are measured intermittently and a control signal is issued to the machine tool when the workpiece reaches a set dimension, and the above measurement values are sequentially stored. , based on at least three or more memorized measurement values, determine the sizing process curve of the workpiece dimensions in a time-series manner, and define the point in time when the workpiece reaches the set dimensions as a point on the extension of the above-mentioned sizing process curve. When the assumed point is reached, the cutting of the workpiece is stopped and spark-out is initiated.Then, the same assumption is made for the dimensions set separately, and spark-out is completed when the assumed point is reached. An in-process sizing measurement method characterized by emitting a control signal that
JP16432281A 1981-10-16 1981-10-16 Measurement of in-process fixed size Granted JPS5866643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16432281A JPS5866643A (en) 1981-10-16 1981-10-16 Measurement of in-process fixed size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16432281A JPS5866643A (en) 1981-10-16 1981-10-16 Measurement of in-process fixed size

Publications (2)

Publication Number Publication Date
JPS5866643A JPS5866643A (en) 1983-04-20
JPH0123272B2 true JPH0123272B2 (en) 1989-05-01

Family

ID=15790950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16432281A Granted JPS5866643A (en) 1981-10-16 1981-10-16 Measurement of in-process fixed size

Country Status (1)

Country Link
JP (1) JPS5866643A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337822A (en) * 1992-06-01 1993-12-21 Tokyo Seimitsu Co Ltd Control device for processing machine

Also Published As

Publication number Publication date
JPS5866643A (en) 1983-04-20

Similar Documents

Publication Publication Date Title
EP0352635B1 (en) Numerically controlled grinding machine
US4551950A (en) Truing apparatus for a grinding wheel with rounded corners
CN106378668B (en) A kind of control method of five axis double-ended grinding machine
JP2005088191A (en) Method and device for aligning work having pre-cut teeth on gear finishing machine
CN112912208B (en) Tool detection in a workpiece processing machine
GB2168271A (en) Method for determining the position of a workpiece in a numerically controlled machine and a numerically controlled machine for carrying out such a method
US5183026A (en) Method and apparatus for dressing an angular grinding wheel
US4420910A (en) Control device for a grinding machine
JP6590711B2 (en) Manufacturing system and manufacturing method
US4223484A (en) Electronic control device for grinding machines, based on the evaluation of truing diamond position relative to workpiece
JPH0123272B2 (en)
JPH1133801A (en) Groove machining device
JP3627225B2 (en) Truing device for grinding wheel
JP3809670B2 (en) Grinding machine and control method thereof
RU50136U1 (en) DEVICE FOR PREDICTION OF ACCURACY OF PARTS PROCESSING ON HIGH-PRECISION CNC EQUIPMENT
JP4581647B2 (en) Truing method and grinding machine
SU1024245A1 (en) Apparatus for grinding
SU1414593A1 (en) Self-adjusting system for controlling working cyclone of crossfeed in infeed grinding
SU1324822A1 (en) Method of positioning the cutting tool
JP3651082B2 (en) Grinding equipment
JPH06335859A (en) Grinding device
RU1783575C (en) Process of manufacture of magnetic heads and device to accomplish it
JPS597504A (en) Tool origin setting device of numerically controlled machine tool
JPH0624857U (en) Grinding machine groove core position, groove R dimension control device
RU1808660C (en) Method for manufacturing parts on flat-grinding machine