JPH01230479A - Structural member of internal combustion engine - Google Patents

Structural member of internal combustion engine

Info

Publication number
JPH01230479A
JPH01230479A JP63056910A JP5691088A JPH01230479A JP H01230479 A JPH01230479 A JP H01230479A JP 63056910 A JP63056910 A JP 63056910A JP 5691088 A JP5691088 A JP 5691088A JP H01230479 A JPH01230479 A JP H01230479A
Authority
JP
Japan
Prior art keywords
thermal conductivity
internal combustion
silicon nitride
combustion engine
structural member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63056910A
Other languages
Japanese (ja)
Inventor
Takio Kojima
多喜男 小島
Mitsuyoshi Kawamura
川村 光義
Hiroshi Tajima
多島 容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP63056910A priority Critical patent/JPH01230479A/en
Publication of JPH01230479A publication Critical patent/JPH01230479A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a structural member of an internal combustion engine effective in preventing abnormal combustion, fully making use of the light-weight of ceramic, by using a sintered silicon nitride having a specific thermal conductivity as the structural member of internal combustion engine. CONSTITUTION:The objective structural member of internal combustion engine is made of a sintered silicon nitride having a thermal conductivity of >=0.05cal/ cm.sec. deg.C between 500 deg.C and 700 deg.C. The thermal conductivity of sintered silicon nitride is dependent upon the kind and amount of a sintering assistant, particle diameter, pore ratio, intergranular phase, etc. Examples of the sintering assistant to achieve such a high thermal conductivity and achieve sufficiently high mechanical strength for a structural member of an internal combustion engine are Y2O3, AlN, ZrO2, rare-earth metal oxide, etc. Preferably, the particle diameter is increased and the pore ratio and the amount of intergranular phase are decreased to increase the thermal conductivity. The increase in the particle diameter and the decrease in the pore ratio can be achieved by raising the sintering temperature.

Description

【発明の詳細な説明】 [産業上の利用分野およびその課題] 本発面は、窒化ケイ素焼結体を用℃・て成形された内燃
機関の構造部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application and Problems Therewith] The present invention relates to a structural member for an internal combustion engine formed using a silicon nitride sintered body at °C.

[従来の技術] 従来、デイ−セル機関の部品として、その優れた耐熱性
、断熱性乙こ着目して窒化ケイ素等のセラミック材が利
用・研究され、一部実用化されて(する。
[Prior Art] Ceramic materials such as silicon nitride have been used and researched as parts of day cell engines due to their excellent heat resistance and heat insulation properties, and some of them have been put into practical use.

一方、近年、点火式内燃機関むこおいても、高回転、高
出力が要求されており、軽量かつ摺動・性乙こ優れた窒
化ケイ素、サイアロン、炭化ケイ素等のセラミック材に
より吸排気弁、ビス[・ン、ピストシリング等を製造す
る乙とが試みられている。
On the other hand, in recent years, high rotation and high output have been required for ignition type internal combustion engines. Attempts are being made to manufacture biscuits, pist shillings, etc.

しかしながら、点火式内燃機関に、上述したディーゼル
機関乙こ適する窒化ケイ素を、そのまま適用することが
困難であるということが本発明者らにより見い出された
However, the present inventors have found that it is difficult to directly apply silicon nitride, which is suitable for the above-mentioned diesel engine, to an ignition-type internal combustion engine.

すなわち、火花点火式内燃機関においては、正當燃焼で
は、火花点火により燃焼が始まり、熱伝達と拡散により
、順次燃焼が進行するが、主にディーゼル機関用として
開発された従来の窒化ケイ素焼結体をシリンダ内壁面等
に用いた場合には、エンドガスが高温になりやすく、自
発火温度を超えて急激な温度上昇を招来し、ノッキング
が発生する。ノッキングの発生により、さらに燃焼室内
の各部の温度が上昇し、ついには表面着火を起こし、引
いては、機関の焼損をきたす。
In other words, in a spark-ignition internal combustion engine, in normal combustion, combustion begins with spark ignition and progresses sequentially through heat transfer and diffusion. When used on the inner wall surface of a cylinder, etc., the end gas tends to reach a high temperature, resulting in a rapid temperature rise exceeding the autoignition temperature, resulting in knocking. Due to the occurrence of knocking, the temperature of various parts within the combustion chamber further increases, eventually causing surface ignition, which eventually causes burnout of the engine.

このような状態を招くのは、従来、主にディーゼル機関
に使用していた窒化ケイ素は、熱効率の点から素材の熱
伝導率を低く設定しであるが、火花点火式内燃機関では
熱伝導率が低いと、シリンダ内壁面等が高温となり易い
からであり、その傾向は、温度上昇にともなって熱伝導
率の低下を示すセラミックでは一層加速される。このよ
うに、上記の窒化ケイ素は、点火式内燃機関用の材料と
して適するものではなかった。
This situation is caused by the fact that silicon nitride, which has traditionally been used mainly in diesel engines, has a low thermal conductivity in terms of thermal efficiency, but in spark-ignition internal combustion engines, the thermal conductivity is low. This is because if the temperature is low, the inner wall surface of the cylinder, etc. tends to reach a high temperature, and this tendency is further accelerated in ceramics whose thermal conductivity decreases as the temperature rises. Thus, the silicon nitride described above was not suitable as a material for ignition type internal combustion engines.

また、他のセラミック材として、熱伝導度の高い炭化ケ
イ素が考えられているが、これは、強度、靭性、耐熱衝
撃性が低く、これらの構造部材として使用に耐えるもの
ではなかった。
Silicon carbide, which has high thermal conductivity, has been considered as another ceramic material, but it has low strength, toughness, and thermal shock resistance, and cannot be used as structural members for these materials.

本発明は、上記従来の問題を解決することを課題とし、
窒化ケイ素焼結体の熱伝導度に着目してなされたもので
、内燃機関の構造部材の所定温度以上での温度上昇を抑
制し、ノッキングやプレイグニツシヨンといった異當燃
焼を防止することができ、しかもセラミックのもつ優れ
た軽量性等を十分に活かした内燃機関の構造部材を提供
することを目的とする。
The present invention aims to solve the above-mentioned conventional problems,
It was developed by focusing on the thermal conductivity of silicon nitride sintered bodies, and can suppress the temperature rise of structural members of internal combustion engines above a specified temperature, and prevent abnormal combustion such as knocking and pre-ignition. Moreover, it is an object of the present invention to provide a structural member for an internal combustion engine that fully takes advantage of the excellent lightness and other properties of ceramics.

[上記課題を解決するための手段] 上記請願を解決するための本発明は、内燃機関の構造部
材に500℃〜700℃における熱伝導率が少なくとも
0. 05cal/cm−sec・℃以上である窒化ケ
イ素焼結体を用いたことを要旨とする。
[Means for Solving the Above Problems] The present invention for solving the above-mentioned problems provides that structural members of internal combustion engines have a thermal conductivity of at least 0. The gist is that a silicon nitride sintered body having a temperature of 0.5 cal/cm-sec.degree. C. or higher is used.

このように本発明では、熱伝導率を500℃〜700℃
の範囲内にて0. 05cal/cm−sec+’c以
上とし、従来の窒化ケイ素焼結体の0. 04cal/
C…・sec・℃以下に比べて高く形成している。
In this way, in the present invention, the thermal conductivity is set at 500°C to 700°C.
0 within the range of 05 cal/cm-sec+'c or more, and 0. 04cal/
It is formed at a higher temperature than C...・sec・℃ or less.

ここで、窒化ケイ素焼結体の熱伝導度を左右するものは
、焼結助剤の種類やその量、さらに粒径、気孔率、粒界
相等である。
Here, the things that influence the thermal conductivity of the silicon nitride sintered body are the type and amount of the sintering aid, as well as the grain size, porosity, grain boundary phase, etc.

このような高い熱伝導度を確保するとともに内燃機関の
構造部材としての機械的強度を確保できる焼結助剤には
、例えは、Y2O3、La2’3、MgO1AQ203
、A Q N、  Z r 02および希土類元素酸化
物等がある。そして、所望の熱伝導率にするには、これ
らの焼結助剤を1種または2種以上含有させ、かつ、こ
れらの割合を適宜調製する。
Examples of sintering aids that can ensure such high thermal conductivity and mechanical strength as structural members of internal combustion engines include Y2O3, La2'3, and MgO1AQ203.
, A Q N, Z r 02 and rare earth element oxides. In order to obtain the desired thermal conductivity, one or more of these sintering aids may be contained and their ratios may be adjusted as appropriate.

例えは、焼結助剤としてA Q 203や八〇Nを用い
た場合には、AQの添加量は、全重量に対して3重量%
以下であることが望ましい。このようにAQ量を制限す
るのは、以下の理由による。すなわち、AQが増加する
と、A 0203等がSi3N4と反応し、β−サイア
ロン(S 1s−zA Q zNe−zO2)固溶体を
形成し、その固溶度は、A12203、AQN等の添加
量の増大と共に大きくなる。そして、固溶度が大きい程
、つまり式中のZの値が大きい程、熱伝導率は低下し、
AQ量が3重量%を越える場合は上述した熱伝導度の範
囲に形成することができなくなるからである。
For example, when AQ 203 or 80N is used as a sintering aid, the amount of AQ added is 3% by weight based on the total weight.
The following is desirable. The reason for limiting the AQ amount in this way is as follows. That is, when AQ increases, A0203 etc. react with Si3N4 to form a β-sialon (S1s-zAQzNe-zO2) solid solution, and the solid solubility increases as the amount of A12203, AQN, etc. added increases. growing. The larger the solid solubility, that is, the larger the value of Z in the formula, the lower the thermal conductivity.
This is because if the AQ amount exceeds 3% by weight, it will not be possible to form the film within the above-mentioned range of thermal conductivity.

また、焼結助剤にZrO2を用いる場合には、2r02
量の増加により高温での耐酸化性による劣化が激しくな
るが、7重量%以下ならば火花点火式内燃機関の構造部
品の使用環境温度以下での酸化は問題にならないので、
この範囲が望ましい。
In addition, when using ZrO2 as a sintering aid, 2r02
As the amount increases, the deterioration due to oxidation resistance at high temperatures becomes more severe, but if it is less than 7% by weight, oxidation will not be a problem at temperatures below the operating environment of structural parts of spark ignition internal combustion engines.
This range is desirable.

なお、焼結助剤は、上述したものの他に、内燃機関の使
用条件に耐える得る窒化ケイ素焼結体とすることができ
るものであれば、いずれの種類および添加量であっても
よい。
In addition to those mentioned above, the sintering aid may be of any type and amount as long as it can produce a silicon nitride sintered body that can withstand the usage conditions of an internal combustion engine.

また、熱伝導率は、粒界相、気孔率などにも依存する。The thermal conductivity also depends on the grain boundary phase, porosity, and the like.

すなわち、熱伝導率を高くするためには、粒径は大きい
方が望ましく、また気孔率、粒界相の量は少ない方が望
ましい。このように、粒径を大きくし、気孔を減らすた
めには、焼結温度を高くれはよい。したがって、Si3
N4の分解を抑えて焼結温度を上げられるガス圧焼結法
は、高熱伝導性5L3N4材料の製造には有力な方法で
ある。
That is, in order to increase the thermal conductivity, it is desirable that the grain size is large, and that the porosity and the amount of grain boundary phase are small. Thus, in order to increase the particle size and reduce pores, it is better to increase the sintering temperature. Therefore, Si3
The gas pressure sintering method, which can suppress the decomposition of N4 and increase the sintering temperature, is an effective method for producing highly thermally conductive 5L3N4 materials.

さらに、本窒化ケイ素焼結体を適用することができる内
燃機関の構造部材としては、燃焼ガスに晒され、高温に
なりやすい部品、例えは、吸排気弁、バルブシート、プ
ラグめインシュレータ、ピストン、ピストンリング、シ
リンダヘッド、シリンダ等が挙げられ、特乙こ吸排気弁
は最も高温になりやすく、面積も大きいため、本発明に
とって最適な部材である。
Furthermore, structural members of internal combustion engines to which this silicon nitride sintered body can be applied include parts that are exposed to combustion gas and easily reach high temperatures, such as intake and exhaust valves, valve seats, plug insulators, pistons, Examples include piston rings, cylinder heads, cylinders, etc., and the special intake and exhaust valves are the most suitable members for the present invention because they are the most likely to reach high temperatures and have a large area.

また、本窒化ケイ素焼結体は、摺動部品に用いた場合で
も、摺動表面の温度が下がり、摺動する相手側の金属が
凝着し難くする作用がある乙とから、金属のスカッフィ
ング摩耗が減り、寿命が長くなるばかりか、摺動抵抗を
も減らすことができ、フリクションロスの少ない内燃機
関とすることができる。
In addition, even when this silicon nitride sintered body is used in sliding parts, it lowers the temperature of the sliding surface and makes it difficult for the metal on the other side to adhere, so it can prevent metal scuffing. Not only is wear reduced and the lifespan extended, but also sliding resistance can be reduced, resulting in an internal combustion engine with less friction loss.

[作用] 内燃機関の構造部材に用いられる窒化ケイ素焼結体の熱
伝導度を、500℃〜700℃の温度範囲で少なくとも
0. 05cal/cm・sec ・℃以上にすること
により、ノッキングの防止に効果があったのは、次の理
由による。
[Function] The thermal conductivity of silicon nitride sintered bodies used for structural members of internal combustion engines is at least 0.0 in the temperature range of 500°C to 700°C. The reason why knocking was effectively prevented by increasing the temperature to 05 cal/cm·sec·°C or higher is as follows.

燃焼室内の混合気に熱を伝達するシリンダ内壁等の温度
が500℃以上に達すると、自己放熱等の影響を考慮し
て、該混合気が自己着火温度(約300℃)にまで上昇
し易いことが判明した。したがって、このような自己着
火を防止するためには、500℃以上におけるシリンダ
内壁の熱伝導度を所定値以上に高くしで、放熱を進める
ことが不可欠である。
When the temperature of the cylinder inner wall, etc., which transfers heat to the air-fuel mixture in the combustion chamber, reaches 500°C or higher, the air-fuel mixture tends to rise to the self-ignition temperature (approximately 300°C), taking into account the effects of self-heat radiation, etc. It has been found. Therefore, in order to prevent such self-ignition, it is essential to increase the thermal conductivity of the cylinder inner wall to a predetermined value or higher at temperatures of 500° C. or higher to promote heat dissipation.

ところが、金属材料は高温になるに従って熱伝導率が高
くなるがセラミックでは逆に高温になるに従い低下して
いくという性質をもつため、従来のセラミック材は、通
常300℃〜500℃範囲内の−・定温度を境とし、そ
れより低温域では、従来から使用されている耐熱金属(
例えは、5(JH36:JIS規格)よりも熱伝導率が
高いが、温度の上昇とともに低下し、高温域では耐熱金
属より低くなってしまい、0. 04cal/cm+s
ec◆℃以下である。このような熱伝導度の性質のため
に、従来の窒化ケイ素焼結体では、ノッキングの発生が
しやすいことが分かった。
However, metal materials have a property that their thermal conductivity increases as the temperature increases, while ceramics have a property that the thermal conductivity decreases as the temperature increases, so conventional ceramic materials usually have -・At a lower temperature range than the constant temperature, heat-resistant metals (
For example, the thermal conductivity is higher than that of 5 (JH36: JIS standard), but it decreases as the temperature rises, and becomes lower than that of heat-resistant metals in the high temperature range. 04cal/cm+s
It is below ec◆℃. It has been found that due to such thermal conductivity properties, conventional silicon nitride sintered bodies are susceptible to knocking.

このことから、本発明者らは、500℃以上の熱伝導度
の値について詳細に検討した結果、以下の範囲が適切で
あることが判明した。
Based on this, the present inventors conducted a detailed study on the value of thermal conductivity at 500° C. or higher, and as a result, it was found that the following range is appropriate.

すなわち、従来、内燃機関に用いられている耐熱金属の
うち最も熱伝導率が低い部類に入るNimonic80
A (J I S規格)は700°Cの熱伝導率が0.
 05cal/cm−sec+ ℃を少し下回る程度で
あるが、この耐熱鋼を用いた場合でも、ノッキングがさ
ほど問題にならずに使用されている。したがって、従来
の耐熱金属と同程度またはそれ以下にノッキングの発生
を抑制するには、熱伝導度を、500℃〜700℃の範
囲において0. 05cal/cm・sec・℃以上で
あることが必要なのである。
In other words, Nimonic 80 has the lowest thermal conductivity among the heat-resistant metals conventionally used in internal combustion engines.
A (JIS standard) has a thermal conductivity of 0.700°C.
Although the temperature is slightly below 0.5 cal/cm-sec+°C, even when this heat-resistant steel is used, knocking is not a major problem and it is used. Therefore, in order to suppress the occurrence of knocking to the same level as or lower than that of conventional heat-resistant metals, the thermal conductivity should be set to 0.0 in the range of 500°C to 700°C. It is necessary that the temperature is 0.5 cal/cm·sec·°C or higher.

なお、700℃以上の高温域は混合気の自己発火温度を
はるかに越えているため、この領域での熱伝導率はノッ
キング発生限界への影響が少ないから、さほど考慮しな
くてもよい。ただし、7゜0℃以上の温度域の熱伝導率
はプレイグニツシヨンへの影響はあるため、できるだけ
高い方が望ましい。
Note that the high temperature range of 700°C or higher far exceeds the self-ignition temperature of the air-fuel mixture, so the thermal conductivity in this range has little effect on the knocking generation limit, so there is no need to take it into consideration. However, since the thermal conductivity in the temperature range of 7.0°C or higher has an effect on pre-ignition, it is desirable that it be as high as possible.

[実施例コ 以下、本発明の実施例について、所定の熱伝導度の特性
に調整した窒化ケイ素焼結体を用いて、2000cc、
6気筒ガソリンエンジン(圧縮比9.2)の吸排気弁を
製造した場合で説明する。
[Example 7] In the following, examples of the present invention will be described using a silicon nitride sintered body adjusted to a predetermined thermal conductivity characteristic.
A case will be explained in which intake and exhaust valves for a 6-cylinder gasoline engine (compression ratio 9.2) are manufactured.

本実施例にかかる窒化ケイ素焼結体の吸排気弁は、以下
の工程を経て製造される。すなわち、Si2N4粉末お
よび焼結助剤粉末を、比表面積において、S i 3N
4 (12rrr/ g)、Y2O3(10tn’/g
)、La203(3tn’/g)、Mg0(20i/g
)、AQ203(10ぜ/g)、AQN(3イ/g)、
Z r 02 (14tTI′/ g)の粒度で製造す
る。
The intake and exhaust valve of the silicon nitride sintered body according to this example is manufactured through the following steps. That is, Si2N4 powder and sintering aid powder have a specific surface area of S i 3N
4 (12rrr/g), Y2O3 (10tn'/g
), La203 (3tn'/g), Mg0 (20i/g
), AQ203 (10g/g), AQN (3i/g),
Produced with a particle size of Z r 02 (14 tTI'/g).

次に、これらの粉末を第1表に示す組成(試料1〜3・
・・本実施例)となるように有機溶媒を加えてホットミ
ル等で湿式混合を行う。続く工程では、この混合物を乾
燥させた後に、有機バインダを用いて成形し、さらに加
熱することにより脱脂する。
Next, these powders were mixed with the composition shown in Table 1 (Samples 1 to 3).
...This example), an organic solvent is added and wet mixing is performed using a hot mill or the like. In the next step, this mixture is dried, then molded using an organic binder, and further heated to degrease it.

続いてこの成形体を、試料1については20気圧、19
00℃×2時間、試料2乙こついては10気圧、180
0℃×2時間、試料3ついては1気圧、1750℃×2
時間の条件にて焼結した後に所定の吸排気弁の形状に加
工した。
Subsequently, this molded body was heated to 20 atm and 19 atm for sample 1.
00℃ x 2 hours, sample 2 is 10 atm, 180
0℃×2 hours, 1 atm for sample 3, 1750℃×2
After sintering under certain conditions, it was processed into the shape of a predetermined intake and exhaust valve.

なお、本実施例の効果を示すために従来技術に相当する
比較例として、第1表に示す粉未刊成からなる試料4.
5について、焼結条件を1気圧、1750℃×2時間に
設定し、他の条件を本実施例と同様な条件にして吸排気
弁を製造した。さらに、第1図に示す炭化ケイ素(試料
6)、5UH36(試料7)およびN imonic8
0 A (試料8)の材料でも吸排気弁を製造した。
In order to demonstrate the effects of this example, sample 4.0, which is made of the unpublished powder shown in Table 1, was used as a comparative example corresponding to the prior art.
Regarding No. 5, an intake and exhaust valve was manufactured by setting the sintering conditions to 1 atm and 1750° C. for 2 hours, and using the other conditions similar to those of this example. Furthermore, silicon carbide (sample 6), 5UH36 (sample 7) and N imonic 8 shown in FIG.
An intake/exhaust valve was also manufactured using the material of 0 A (sample 8).

なお、これらの材料の熱伝導率は、第1図に示される。Note that the thermal conductivity of these materials is shown in FIG.

く実験例〉 上記各工程を経て製造された試料1から8を、2000
 c c、6気筒ガソリジエンジン(圧縮比9.2)に
搭載し、点火時期を進角させることにより、ノッキング
の発生状況を調査し、その結果を第2衷tこ示す。なお
エンジンの運転条件は、5600rpmで全負荷状態に
設定した。
Experimental example> Samples 1 to 8 manufactured through each of the above steps were
The system was installed in a 6-cylinder gasoline engine (compression ratio 9.2) and the occurrence of knocking was investigated by advancing the ignition timing, and the results are shown in the second section. The operating conditions of the engine were set at 5600 rpm and full load.

第2表から明らかなように、本実施例による窒化ケイ素
焼結体を使用した吸排気弁(試料1.2.3)では、従
来用いられている耐熱金属製の吸排気弁(試料7.8)
と同等以上の耐ノツキング性を示し、特に熱伝導率のよ
い試料1は耐熱鋼製の吸排気弁(試料7.8)を上回る
耐ノツキング特性のあることが分かる。
As is clear from Table 2, the intake and exhaust valves using the silicon nitride sintered body according to this example (Samples 1.2.3) are different from the conventionally used intake and exhaust valves made of heat-resistant metal (Sample 7. 8)
It can be seen that sample 1, which has a knocking resistance equal to or higher than that of the heat-resistant steel intake and exhaust valves (sample 7.8), which has particularly good thermal conductivity, has knocking resistance superior to that of the heat-resistant steel intake and exhaust valves (sample 7.8).

また、熱伝導度の低い窒化ケイ素焼結体(比較例、試料
4.5)では、進角度が小さい範囲(22°)では、耐
ノツキング特性を示すが、進角度が大きくなるにしたが
って一度ノッキングが発生し始めると、強いノッキング
が発生することが分かる。
In addition, a silicon nitride sintered body with low thermal conductivity (comparative example, sample 4.5) exhibits knocking resistance in a small advance angle range (22°), but as the advance angle increases, knocking occurs once. It can be seen that when this starts to occur, strong knocking occurs.

ざらに、炭化ケイ素製の吸H)買弁(試料6)では、試
験中400Orpm以上に上昇させる途中で破壊して内
燃機関の構造部材に適する強度が得られなかった。
In general, the silicon carbide suction valve (sample 6) broke during the test when it was raised to 400 Orpm or higher, and the strength suitable for a structural member of an internal combustion engine could not be obtained.

このように本実施例の窒化ケイ素焼結体では、点火進角
の実験から明らかなように優れた耐ノツキング特性を示
すが、このことは点火進角を同一とすれは、圧縮比を高
くすることができるととを意味するので、従来の耐熱金
属製の吸排気弁と同等またはそれ以上の圧縮比とするこ
とができるから、よってエンジンの出力特性を向上させ
ることができる。
As described above, the silicon nitride sintered body of this example exhibits excellent anti-knocking properties as evidenced by the ignition advance angle experiment, but this means that if the ignition advance angle is the same, the compression ratio will be higher. This means that the compression ratio can be equal to or higher than that of conventional intake and exhaust valves made of heat-resistant metal, and therefore the output characteristics of the engine can be improved.

また、本実施例の吸排気弁によれは、ノッキング特性を
損なうことなく、セラミックの軽量性により動弁系重量
を大幅に減少させることができ、しかもセラミック本来
の摺動性のよさを十分に活かすことができるので、従来
の金属製弁に比べて20%最高回転数を上げることがで
き、この結果最高出力が15%向上させることができる
In addition, the intake and exhaust valve of this example allows the weight of the valve train to be significantly reduced due to the lightweight nature of ceramic without impairing the knocking characteristics. As a result, the maximum rotation speed can be increased by 20% compared to conventional metal valves, and as a result, the maximum output can be increased by 15%.

第2の実施例として、第1の実施例の試料3と同じ素材
でピストンを製造しく試料3A)、これをエンジンに絹
み込んでノッキング特性の試験を行った。この試験では
ピストン頂部の厚みを変仕=11− させることにより圧縮比を変えてノッキングの発生状況
を調べた。
As a second example, a piston was manufactured using the same material as sample 3 of the first example (sample 3A), and the piston was installed in an engine to test its knocking characteristics. In this test, the occurrence of knocking was investigated by varying the thickness of the top of the piston (=11-) to change the compression ratio.

なお、比較のため、第1衷の窒化ケイ素焼結体の比較例
(試料5)と同一の材料で製造したビスI・ン(試料5
A)、および汎用のAQ合金製ピストン(試料9)につ
いても試験を行った。
For comparison, a screw I-N (sample 5) manufactured from the same material as the first comparison example (sample 5) of the silicon nitride sintered body was used.
A) and a general-purpose AQ alloy piston (sample 9) were also tested.

第3表から明らかなように、本実施例によるピストンを
使用した場合には、比較例(試料5A)に比べて圧縮比
を上昇させることができ、その程度は、AC合金製のピ
ストンとほぼ同じであることが分かった。
As is clear from Table 3, when the piston according to this example is used, the compression ratio can be increased compared to the comparative example (sample 5A), and the degree of this is almost the same as that of the AC alloy piston. It turned out to be the same.

このようにAQ金合金熱伝導率は、セラミックに比べ大
幅によいにもかかわらず、AQ合金製ピストンに対して
ほとんど差がなかった理由として、AQ合金製ピストン
の場合、ピストンの温度はさほど高くならず、排気弁側
の温度にノッキング特性が依存しているものと考えられ
る。一方、セラミックピストンの場合はAQ合金製ピス
トンに比べてかなり高温になり易く、ノッキング発生直
前の混合カス温度付近の熱伝導率に敏感に左右されるこ
とものと思われる。すなわち、実施例のピストンでは、
比較例(試料5A)に比較して500℃から700℃の
高い熱伝導度が有効に作用して圧縮比を上昇させること
ができたともの思われる。
Although the thermal conductivity of AQ gold alloy is significantly better than that of ceramic, there is almost no difference between the piston and the piston made of AQ alloy because the temperature of the piston is not so high. Rather, it is thought that the knocking characteristics depend on the temperature on the exhaust valve side. On the other hand, in the case of a ceramic piston, the temperature tends to be considerably higher than that of an AQ alloy piston, and it seems that the temperature is sensitively affected by the thermal conductivity near the temperature of the mixed scum immediately before knocking occurs. That is, in the piston of the example,
It seems that the higher thermal conductivity of 500°C to 700°C as compared to the comparative example (sample 5A) worked effectively to increase the compression ratio.

したがって、本実施例のピストンは、AQ合金製のピス
トンに比べてノッキング特性を低下させることなく、A
f2合金に比べて比強度が非常に高いという窒化ケイ素
焼結体の効果を有効に活かし、AQ合金製のそれに比べ
て30%軽量化することができ、その結果、アイドル状
態から全開状態までの到達時間を8%改善することがで
き、優れたレスポンスを得ることができた。
Therefore, the piston of this example does not reduce knocking characteristics compared to pistons made of AQ alloy,
By effectively utilizing the effect of silicon nitride sintered body, which has a very high specific strength compared to F2 alloy, it is possible to reduce the weight by 30% compared to that made of AQ alloy. We were able to improve the arrival time by 8% and obtain an excellent response.

[発明の効果] 以上説明したように本発明によれは、火花点火式内燃機
関で問題となるノッキング等の異常燃焼の発生を抑え、
セラミックのもつ優れた特長、例えは、軽量、高温耐久
性、高強度、摺動性のよさを十分に活かした高回転、高
出力の火花点火式内燃機関を可能にする構造部材を提供
することができる。
[Effects of the Invention] As explained above, according to the present invention, occurrence of abnormal combustion such as knocking, which is a problem in spark ignition internal combustion engines, can be suppressed,
To provide structural members that make full use of the excellent features of ceramics, such as light weight, high-temperature durability, high strength, and good sliding properties, to enable high-speed, high-output spark-ignition internal combustion engines. Can be done.

また、本窒化ケイ素焼結体を内燃機関の摺動部品乙こ用
いる乙とにより、窒化ケイ素焼結体が本来もつ優れた耐
摩耗性に加えて、摺動表面の温度が下がるために、相手
金属の摺動面における高温化による凝着化現象も防ぐこ
とができる。
In addition, by using this silicon nitride sintered body in sliding parts of internal combustion engines, in addition to the excellent wear resistance inherent to the silicon nitride sintered body, the temperature of the sliding surface is lowered, so It is also possible to prevent adhesion caused by high temperatures on metal sliding surfaces.

f フ j ○ Xf j ○ X

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は窒化ケイ素焼結体等についての温度と熱伝導率
との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between temperature and thermal conductivity of silicon nitride sintered bodies and the like.

Claims (1)

【特許請求の範囲】[Claims] 500℃〜700℃での熱伝導率が0.05cal/c
m・sec・℃以上である窒化ケイ焼結体を用いたこと
を特徴とする内燃機関の構造部材。
Thermal conductivity at 500℃ to 700℃ is 0.05cal/c
A structural member for an internal combustion engine, characterized in that a silicon nitride sintered body having a temperature of m·sec·°C or more is used.
JP63056910A 1988-03-10 1988-03-10 Structural member of internal combustion engine Pending JPH01230479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63056910A JPH01230479A (en) 1988-03-10 1988-03-10 Structural member of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63056910A JPH01230479A (en) 1988-03-10 1988-03-10 Structural member of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH01230479A true JPH01230479A (en) 1989-09-13

Family

ID=13040614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63056910A Pending JPH01230479A (en) 1988-03-10 1988-03-10 Structural member of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH01230479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030238A1 (en) * 2013-09-02 2015-03-05 日本碍子株式会社 Ceramic material and thermal switch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265978A (en) * 1985-09-17 1987-03-25 日本碍子株式会社 Silicon iodide sintered body and its production
JPS62265174A (en) * 1986-05-12 1987-11-18 日本碍子株式会社 Mechanical structural member
JPH01138173A (en) * 1987-11-25 1989-05-31 Toyota Motor Corp Sintered silicon nitride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265978A (en) * 1985-09-17 1987-03-25 日本碍子株式会社 Silicon iodide sintered body and its production
JPS62265174A (en) * 1986-05-12 1987-11-18 日本碍子株式会社 Mechanical structural member
JPH01138173A (en) * 1987-11-25 1989-05-31 Toyota Motor Corp Sintered silicon nitride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030238A1 (en) * 2013-09-02 2015-03-05 日本碍子株式会社 Ceramic material and thermal switch
US9656920B2 (en) 2013-09-02 2017-05-23 Ngk Insulators, Ltd. Ceramic material and thermal switch

Similar Documents

Publication Publication Date Title
US4852542A (en) Thin thermal barrier coating for engines
US4419971A (en) Cylinder liner for an internal combustion engine
KR20230126209A (en) Complex oxide type thermal barrier coating with low thermal inertia and low thermal conductivity
US12116500B2 (en) Thermal barrier coatings containing aluminosilicate particles
WO2000014396A1 (en) Adiabatic internal combustion engine
JPH01230479A (en) Structural member of internal combustion engine
JPS58162721A (en) Sub-combustion chamber for internal-combustion engine
JPH05190255A (en) Insulator for aluminum nitride-made spark plug
JP2545068B2 (en) Machine structural member
RU2236608C2 (en) Cylinder liner heat-resistent coating composition
JPS61101463A (en) High strength zirconia base ceramic engine part
JP3856939B2 (en) Engine parts and manufacturing method thereof
Lumby et al. Syalon ceramics for advanced engine components
JP3216332B2 (en) Fiber-reinforced aluminum titanate sintered body and method for producing the same
JPS60113021A (en) Nozzle part for auxiliary chamber of internal-combustion engine
JPH09157028A (en) Silicon nitride sintered compact and its production
Haag et al. Reduction of hydrocarbon emissions from SI-engines by use of carbon pistons
JP3003000B2 (en) Aluminum nitride polytype sintered body and method for producing the same
JP2967243B2 (en) Ceramic intake / exhaust port liner and method of manufacturing the same
JP3165205B2 (en) High strength low thermal conductive ceramics and method of manufacturing the same
JPS59173535A (en) Ceramic engine
JPH11139877A (en) Heat insulating silicon nitride-base sintered compact and its production
JPH03275564A (en) Material for insulator of ignition plug
JPH0196405A (en) Rocker arm
JPH11139879A (en) Silicon nitride-boron nitride composite sintered compact and its production