JPS62265174A - Mechanical structural member - Google Patents

Mechanical structural member

Info

Publication number
JPS62265174A
JPS62265174A JP61106870A JP10687086A JPS62265174A JP S62265174 A JPS62265174 A JP S62265174A JP 61106870 A JP61106870 A JP 61106870A JP 10687086 A JP10687086 A JP 10687086A JP S62265174 A JPS62265174 A JP S62265174A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride sintered
sintered body
temperature
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61106870A
Other languages
Japanese (ja)
Other versions
JP2545068B2 (en
Inventor
功 小田
隆雄 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP61106870A priority Critical patent/JP2545068B2/en
Publication of JPS62265174A publication Critical patent/JPS62265174A/en
Application granted granted Critical
Publication of JP2545068B2 publication Critical patent/JP2545068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は窒化珪素焼結体により構成した機械構造部材に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mechanical structural member made of a sintered silicon nitride body.

(従来の技術) 従来、ターボチャージャーロータ。エンジンのビスi〜
ンキャツブ、シリンダライナー、ガスタービンロータ等
の機械構造部材にZr Oz 。
(Conventional technology) Conventionally, turbocharger rotor. engine screw i
ZrOz for mechanical structural parts such as engine covers, cylinder liners, and gas turbine rotors.

3i 3NaWの耐熱性セラミックスを使用し、稼動温
度を上昇して熱効率を上げる試みがなされてきた。
Attempts have been made to use 3i 3NaW heat-resistant ceramics to increase operating temperatures and increase thermal efficiency.

(発明が解決しようとする問題点) しかしながら、上記機械構造部材の材料として7’r 
02を使用した場合は、Zr 02は熱伝導率が0.0
07cal /cm・sec −℃と低く断熱性に浸れ
るものの、熱膨張率が高いので耐熱衝撃性が低く、また
比重が高く重い欠点があった。
(Problem to be solved by the invention) However, as the material of the mechanical structural member, 7'r
When Zr 02 is used, the thermal conductivity of Zr 02 is 0.0.
Although it has a low thermal insulation property of 0.07 cal/cm·sec -°C, it has a high coefficient of thermal expansion, so it has low thermal shock resistance, and has a high specific gravity and is heavy.

また、従来高温構造材料として使用されている3i 3
N<は緻密かつ高強度であり、熱膨張率も低いため、Z
r 02と比較して耐熱衝撃性には優しルが熱伝導率は
約0.07cal/ cm −sec −℃と高い為、
断熱性に劣る欠点があった。そのため、例えばターボチ
ャージャーロータやガスタービンロ′−タとして3i 
3N+を使用した場合は、今風部材との結合部の温度が
上昇し易く、高い稼動温度を1qる事が困難であったり
、シリンダライナーとして使用した場合は断熱効果が悪
い分だけ熱損失が増大する欠点があった。
In addition, 3i3, which has been conventionally used as a high-temperature structural material,
N< is dense, has high strength, and has a low coefficient of thermal expansion, so Z
Compared to r 02, it has better thermal shock resistance, and its thermal conductivity is higher at approximately 0.07 cal/cm -sec -℃.
It had the disadvantage of poor insulation properties. Therefore, for example, 3i can be used as a turbocharger rotor or gas turbine rotor.
When using 3N+, the temperature at the joint with modern components tends to rise, making it difficult to reduce the high operating temperature to 1q, and when used as a cylinder liner, the heat loss increases due to the poor insulation effect. There was a drawback.

本発明の目的は上述した不具合を解消して、従来の窒化
珪素焼結体を用いた機lF!構造部材より高温での?!
肋性能を向上することのできる機械構造部材を提供しよ
うとするものである。
The purpose of the present invention is to solve the above-mentioned problems and to improve the performance of a conventional silicon nitride sintered body. At higher temperatures than structural members? !
The present invention aims to provide a mechanical structural member that can improve structural performance.

(問題点を解決するための手段) 本発明の機械構造部材は、熱伝導率が0.030cat
 /C11l−3ec ・℃未満である高密度窒化珪素
焼結体を用いたことを特徴とするものである。
(Means for solving the problem) The mechanical structural member of the present invention has a thermal conductivity of 0.030 cat.
It is characterized by using a high-density silicon nitride sintered body having a temperature of less than /C11l-3ec·°C.

(作 用) 上述した構成において、熱伝導率が0.030Ca l
/cl−3ec ・℃未満の窒化珪素焼結体を使用して
機械構造部材を構成すると、特に稼動温度が高く、稼動
効率が良好な部材を得ることができる。すなわち本発明
は、高密度で高温強度等の機械的性質が使用条件に耐え
ろる任意の窒化珪素焼結体のうち熱伝導率が0.030
cal /cm−sec ・℃未満の窒化珪素焼結体を
使用すれば、良好なa温稼動率を達成できる機械構造部
材を得ることができることを見出したことによる。なお
、l!4温強度等の他の性質は直接本発明の機械構造部
材に関係するものではないが、もちろんこれらの性質も
良好な方が良いことは言うまでもない。
(Function) In the above configuration, the thermal conductivity is 0.030 Cal.
When a mechanical structural member is constructed using a silicon nitride sintered body having a temperature of less than /cl-3ec.degree. C., a member with particularly high operating temperature and good operating efficiency can be obtained. In other words, the present invention provides a silicon nitride sintered body having a thermal conductivity of 0.030 among any silicon nitride sintered bodies that have high density and mechanical properties such as high-temperature strength that can withstand the usage conditions.
This is because it has been found that by using a silicon nitride sintered body having a temperature of less than cal/cm-sec .degree. In addition, l! Although other properties such as four-temperature strength are not directly related to the mechanical structural member of the present invention, it goes without saying that the better these properties are, the better.

(実施例) 本発明で使用する熱伝導率が0.030cal /cm
・sec ・℃未満の窒化珪素焼結体としては、例えば
本願出願人による特願昭60−204985に明らかな
ようにMO、Sr 、CeおよびA1の化合物を、M(
10に換算して0.5〜5ffiffi%、SrOに換
算して0.5〜5重量%、01302に換算して 1〜
10重量%およびAl2O3゛に換算して1〜2帽1%
を含み残部が窒化珪素よりなる窒化珪素焼結体や、ある
いは特願昭60−204986に明らかなようにSr。
(Example) The thermal conductivity used in the present invention is 0.030 cal/cm
As a silicon nitride sintered body having a temperature of less than ・sec ・℃, for example, as disclosed in Japanese Patent Application No. 60-204985 filed by the applicant of the present application, compounds of MO, Sr, Ce and A1 can be used.
0.5-5ffiffi% in terms of 10, 0.5-5% by weight in terms of SrO, 1-5% in terms of 01302
10% by weight and 1-2% 1% in terms of Al2O3
A silicon nitride sintered body containing silicon nitride with the remainder being silicon nitride, or Sr as disclosed in Japanese Patent Application No. 60-204986.

Mill 、 Ce 、 ZrおよびAIの化合物を、
SrOに換算して0.1〜18重量%、MOOに換算し
て0.2〜25重謹気量Cen2に換算しT O,1〜
20ffl母%、z「02に換算して0.1〜15重盪
%およびAl2O3に換算して1〜2幅1%含み残部が
窒化珪素よりなる窒化珪素焼結体が、その高温強度が高
い点で好適である。しかしながら本発明は上述した窒化
珪素焼結体に限定されるものでないことは明らかであり
、機械的性質が使用条件に耐えつるとともに熱伝導率が
0.030cal /cm −sec −℃未満の窒化
珪素焼結体であればすべてのものが使用できることは言
うまでもない。
Compounds of Mill, Ce, Zr and AI,
0.1 to 18% by weight in terms of SrO, 0.2 to 25 in terms of MOO, T O,1 to
A silicon nitride sintered body containing 20 ffl mother%, 0.1 to 15 wt% in terms of 02 and 1 to 2 width in terms of Al2O3, with the remainder being silicon nitride, has high high temperature strength. However, it is clear that the present invention is not limited to the above-mentioned silicon nitride sintered body, and it is preferable that the present invention is not limited to the above-mentioned silicon nitride sintered body. It goes without saying that any silicon nitride sintered body having a temperature below -°C can be used.

以下、実際の例について説明する。An actual example will be explained below.

哀j」LL 本発明の実施例である熱伝導率0.030cal /C
I・sec ・℃未満の窒化珪素焼結体を用いたチップ
径60mmのターボチャージャーローターを使い、以下
の実験を行なった。
LL Thermal conductivity is an example of the present invention: 0.030 cal/C
The following experiment was conducted using a turbocharger rotor with a tip diameter of 60 mm and made of a silicon nitride sintered body with a temperature of less than I.sec.°C.

ローターを金属製の軸に圧入法により結合後、予め内側
にビスを突出させローターが回転出来ないようにしたハ
ウジングに装着し、外部から上記軸のジャーナル部へ熱
電対を挿入し、ホットスピンテスターにとりつけた。次
に、ホットスピンテスターのバーナーからガス流880
℃の条件で10分間高温ガス流をローターに送り、加熱
した。その侵、高温ガス流と軸冷却オイルの循環を同時
に停止してジャーナル部の温度上昇を測定した。更にこ
の条件での運転・停止を10回くり返した後でローター
をとり出し、軸への冷却オイル焼きつきの程度を確認し
た。また比較例として、熱伝導率が0.030cal 
/ae −sec ・℃以上の窒化珪素焼結体を用いた
ローターに関しても同様の実験を行なった。結果を第1
表に示す。
After the rotor is connected to the metal shaft by press-fitting, it is installed in a housing that has screws protruding from the inside to prevent the rotor from rotating.A thermocouple is inserted from the outside into the journal of the shaft, and a hot spin tester is used. I was attached to it. Next, the gas flow 880 from the burner of the hot spin tester
The rotor was heated by sending a hot gas stream through the rotor for 10 minutes at .degree. In response to this, we simultaneously stopped the flow of high-temperature gas and the circulation of shaft cooling oil and measured the temperature rise in the journal. After repeating operation and stopping under these conditions 10 times, the rotor was taken out and the extent of the cooling oil seizing on the shaft was checked. As a comparative example, the thermal conductivity is 0.030 cal.
A similar experiment was also conducted regarding a rotor using a silicon nitride sintered body having a temperature of /ae -sec .degree. C. or higher. Results first
Shown in the table.

なお、各窒化珪素焼結体の熱伝導率は、レーザー法熱定
数測定II!を使用してレーザーフラッシュ法により測
定した。試料形状は直径101111. I!31さ3
a+mとし、片面をカーボンスプレーによりコーティン
グし、裏側への熱雷対接着には銀ペーストを使用した。
The thermal conductivity of each silicon nitride sintered body was determined by laser method thermal constant measurement II! It was measured by the laser flash method using The sample shape has a diameter of 101111. I! 31sa3
A+M, one side was coated with carbon spray, and silver paste was used for thermal lightning bonding to the back side.

(X)  レーザーフラッシュ法による。(X) By laser flash method.

第1表に明らかなように、熱伝導率0.030cal/
 01− sec ・℃未満の窒化珪素焼結体を用いた
O−ターは、エンジン急停止時の軸ジヤーナル部の温度
上界が抑制され、その繰り返しによる冷却オイルの軸へ
の焼きつきも軽減されることがわかった。
As is clear from Table 1, the thermal conductivity is 0.030 cal/
The O-tar, which uses a silicon nitride sintered body with a temperature of less than 01-sec ℃, suppresses the upper temperature limit of the shaft journal part when the engine suddenly stops, and reduces the burning of cooling oil on the shaft due to repeated cycles. It turns out that

実施例2 排気ω288cc、単気筒副燃焼空式ディーゼルエンジ
ンに、第2表に示すように本発明の実施例である熱伝導
率が0.030cal 101− See ・℃未満の
窒化珪素焼結体を用いたシリンダライナーとシリンダヘ
ッド、ピストンヘッドを取りつけた場合(No、1〜4
)及び、同じディーゼルエンジンに比較例として熱伝導
率が0.030cal /aa −sec・℃以上の窒
化珪素焼結体を用いたシリンダライナーとシリンダヘッ
ド、ピストンヘッドを取りつけた場合(No、5)につ
いて、2400rpm+全負荷の運転時において冷却水
の入口、出口温度を測定し冷却熱量を求め、燃料消費量
から算出される供給熱量に対する冷却水損失割合を算出
し、第2表に示した。
Example 2 A silicon nitride sintered body having a thermal conductivity of less than 0.030 cal 101- See ·°C, which is an example of the present invention, as shown in Table 2, was used in a single-cylinder sub-combustion pneumatic diesel engine with an exhaust of ω 288 cc. When the used cylinder liner, cylinder head, and piston head are installed (No. 1 to 4)
) and a case where a cylinder liner, cylinder head, and piston head using a silicon nitride sintered body with a thermal conductivity of 0.030 cal/aa-sec・℃ or higher is installed as a comparative example in the same diesel engine (No. 5). , during operation at 2400 rpm + full load, the inlet and outlet temperatures of the cooling water were measured to determine the amount of cooling heat, and the ratio of cooling water loss to the amount of heat supplied calculated from the fuel consumption was calculated and shown in Table 2.

第2表 (1)レーザーフラッシュ法による   (2)JIS
  R−1601による第2表から明らかなように、熱
伝導率が0.030cal / cm −sec ・℃
未満の窒化珪素焼結体を用いた本発明のシリンダライナ
ーとシリンダヘッド。
Table 2 (1) By laser flash method (2) JIS
As is clear from Table 2 according to R-1601, the thermal conductivity is 0.030 cal/cm-sec・℃
The cylinder liner and cylinder head of the present invention use a silicon nitride sintered body of less than or equal to 100%.

ビス]−ンヘッドは、比較例に比べてディーゼルエンジ
ンの冷却水損失割合を低減させることがわかった。
The engine head was found to reduce the cooling water loss rate of the diesel engine compared to the comparative example.

また、室温強度が低いと使用時にクラックが発生し、強
度の高い窒化珪素焼結体を使用することが望ましいこと
がわかった。これは、空温強度の低い窒化珪素では一般
に高温強度も低く、かつ耐熱衝撃性に劣るためと考えら
れる。
In addition, it was found that if the room temperature strength is low, cracks will occur during use, so it is desirable to use a silicon nitride sintered body with high strength. This is thought to be because silicon nitride, which has low air temperature strength, generally has low high temperature strength and poor thermal shock resistance.

実施例3 実施例2の第2表に示すシリンダーNo、1゜2.5に
おいてシリンダーブロックとシリンダーヘッドの間から
挿入した熱電対をシリンダーライナー内表面に加工した
溝に耐熱接着剤で接着した。
Example 3 In cylinder No. 1°2.5 shown in Table 2 of Example 2, a thermocouple inserted between the cylinder block and the cylinder head was adhered to a groove formed on the inner surface of the cylinder liner with a heat-resistant adhesive.

シリンダー内壁および冷却水が25℃の状態でエンジン
を始動し、シリンダー内壁温度の上昇を測定した。結果
を第1図に示す。
The engine was started with the cylinder inner wall and cooling water at 25° C., and the rise in cylinder inner wall temperature was measured. The results are shown in Figure 1.

第1図から明らかなように、熱伝導率が0.030ca
l /C1l −See ・℃未満の窒化珪素焼結体を
用いたシリンダライナーは、比較例に比べて始動時にシ
リンダー内壁温度が速やかに上昇することがわかり、始
動特性の向上が期待できる。
As is clear from Figure 1, the thermal conductivity is 0.030ca.
It was found that the cylinder liner using the silicon nitride sintered body having a temperature of less than 1/C1l -See .degree. C. causes the cylinder inner wall temperature to rise more quickly at startup than the comparative example, and is expected to improve the startup characteristics.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
の機械構造部材によれば、熱伝導率が0.030cal
 /Cl1l −SeG ・℃未満の低熱伝導率の高密
度窒化珪素焼結体を使用して機械構造部材を構成してい
るため、従来の窒化珪素焼結体を用いた機械構造部材に
比べて断熱性に優れ、特に高温での稼動性能を向上する
ことができる。
(Effects of the Invention) As is clear from the detailed explanation above, the mechanical structural member of the present invention has a thermal conductivity of 0.030 cal.
/Cl1l -SeG ・Since the mechanical structural members are constructed using high-density silicon nitride sintered bodies with low thermal conductivity of less than ℃, they have better thermal insulation than mechanical structural members using conventional silicon nitride sintered bodies. It has excellent properties and can improve operating performance, especially at high temperatures.

そのため本発明の機械構造部材は、ディーゼルエンジン
の副燃焼室、シリンダーヘッドおよびピストンギャップ
、さらにターボチャージャロータ。
Therefore, the mechanical structural member of the present invention is applicable to a sub-combustion chamber, cylinder head and piston gap of a diesel engine, as well as a turbocharger rotor.

ガスタービンロータ等のエンジン部品、更にベアリング
等の機械部品として好適に応用することができる。
It can be suitably applied to engine parts such as gas turbine rotors and mechanical parts such as bearings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の機械部品におけるシリンダー内壁温度
の上昇を示すグラフである。 特許出願人   日本碍子株式会社 第1図 晴F/l (t)
FIG. 1 is a graph showing the rise in cylinder inner wall temperature in the mechanical parts of the present invention. Patent applicant Nippon Insulator Co., Ltd. Figure 1 Haru F/l (t)

Claims (1)

【特許請求の範囲】[Claims] 1、熱伝導率が0.030cal/cm・sec・℃未
満である高密度窒化珪素焼結体を用いたことを特徴とす
る機械構造部材。
1. A mechanical structural member characterized by using a high-density silicon nitride sintered body having a thermal conductivity of less than 0.030 cal/cm·sec·°C.
JP61106870A 1986-05-12 1986-05-12 Machine structural member Expired - Lifetime JP2545068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61106870A JP2545068B2 (en) 1986-05-12 1986-05-12 Machine structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106870A JP2545068B2 (en) 1986-05-12 1986-05-12 Machine structural member

Publications (2)

Publication Number Publication Date
JPS62265174A true JPS62265174A (en) 1987-11-18
JP2545068B2 JP2545068B2 (en) 1996-10-16

Family

ID=14444571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106870A Expired - Lifetime JP2545068B2 (en) 1986-05-12 1986-05-12 Machine structural member

Country Status (1)

Country Link
JP (1) JP2545068B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345174A (en) * 1986-08-07 1988-02-26 株式会社 香蘭社 Boron nitride base sintered body
JPH01230479A (en) * 1988-03-10 1989-09-13 Ngk Spark Plug Co Ltd Structural member of internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127666U (en) * 1985-01-28 1986-08-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127666U (en) * 1985-01-28 1986-08-11

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345174A (en) * 1986-08-07 1988-02-26 株式会社 香蘭社 Boron nitride base sintered body
JPH01230479A (en) * 1988-03-10 1989-09-13 Ngk Spark Plug Co Ltd Structural member of internal combustion engine

Also Published As

Publication number Publication date
JP2545068B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
US5020319A (en) Hollow heat-resisting body assembly for internal combustion engine
EP0391950A4 (en) Thin thermal barrier coating for engines
US6733907B2 (en) Hybrid ceramic material composed of insulating and structural ceramic layers
US6528190B1 (en) Fiber coating compounds for reinforced ceramic matrix composites
JPS60101201A (en) Joining structure in turbine shaft
US6916551B2 (en) Thermal barrier coating material, gas turbine parts and gas turbine
JP2016211570A (en) System for thermally isolating turbine shroud
JPS62265174A (en) Mechanical structural member
JPS6064129A (en) Combustion device for combustion turbine
JPS58162721A (en) Sub-combustion chamber for internal-combustion engine
JPS6347881B2 (en)
JPS6013922A (en) Gas dynamic pressure wave overcharger for overcharging vehicle internal combustion engine
JPH04147957A (en) Heat insulating aluminum-based member
CN112963238A (en) Adiabatic internal combustion engine combustion system based on adiabatic combustion chamber and Miller cycle
RU2236608C2 (en) Cylinder liner heat-resistent coating composition
JPS59206693A (en) No-lubrication type vane vacuum pump
Nandeeswaran et al. Experimental Investigation on Performance of Single Cylinder Diesel Engine with Mullite and Aluminium Titanate as Thermal Barrier Coating
JPS6233072Y2 (en)
JPS59220350A (en) Porous heat-resisting composite body
JPH04219205A (en) High temperature member made of ceramic
JPS6313384Y2 (en)
JPS6214347Y2 (en)
JPS62131954A (en) Method of forming heat insulating layer in cooling passage of engine
JPS597011B2 (en) Rotary piston engine rotor
JPS59195588A (en) Heat insulative ceramics

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term