JPH01230278A - Wavelength stabilizing device for semiconductor laser - Google Patents

Wavelength stabilizing device for semiconductor laser

Info

Publication number
JPH01230278A
JPH01230278A JP5717188A JP5717188A JPH01230278A JP H01230278 A JPH01230278 A JP H01230278A JP 5717188 A JP5717188 A JP 5717188A JP 5717188 A JP5717188 A JP 5717188A JP H01230278 A JPH01230278 A JP H01230278A
Authority
JP
Japan
Prior art keywords
output
light
absorption
semiconductor laser
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5717188A
Other languages
Japanese (ja)
Inventor
Koji Akiyama
浩二 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP5717188A priority Critical patent/JPH01230278A/en
Publication of JPH01230278A publication Critical patent/JPH01230278A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce the size and cost of a device, by controlling the wavelengths of semiconductor lasers with the outputs of a photoelectric receiving element measuring transmitted beam intensities. CONSTITUTION:A spectrum of a plurality of absorption lines at almost equal intervals is obtained by branching the output beams of semiconductor laser 101-10n with a branching device 11, inputting them into a light modulator 12, modulating them with the output of an oscillator 17, and making them strike an absorption cell 13. When the transmitted beams through the absorption cell 13 are inputted into a lock-in amplifier 15, and when they are so controlled that the outputs of the lock-in amplifier 15 may become zero, the wavelengths of the output beams can be locked at the peak wavelengths value of the absorption lines of the absorption spectrums. Accordingly, an output of a plurality of stabilized wavelengths at equal intervals can be produced with one absorption cell.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、半導体レーザーの出力光の波長を安定化す
る装置に関し、特に複数はぼ等間隔の波長の光を出力す
る事が出来る半導体レーザーの波長安定化装置に関する
ものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a device for stabilizing the wavelength of output light of a semiconductor laser, and in particular to a semiconductor laser capable of outputting light of a plurality of wavelengths that are approximately equally spaced. This invention relates to a wavelength stabilizing device.

〈従来技術〉 第6図に半導体レーザーの波長安定化装置を示す、第6
図において、半導体レーザー1の出力光はビームスプリ
ッタ2で2つに分岐され、その−方はミラー3で反射さ
れて外部に取り出される。
<Prior art> Fig. 6 shows a wavelength stabilizing device for a semiconductor laser.
In the figure, output light from a semiconductor laser 1 is split into two by a beam splitter 2, and the other is reflected by a mirror 3 and taken out to the outside.

また、分岐された他方の光は吸収セル4に入射される。Further, the other branched light is incident on the absorption cell 4.

吸収セル4の内部には例えば87Rbのように特定の波
長の光を吸収する標準物質が封入されている。吸収セル
4を透過した光は光検出器5に入射され、その強度が測
定される。この光検出器5の出力はロックインアンプ6
で同期整流され、電流制御回路7に入力される。この電
流制御回路7の出力と周波数fmの出力を発振する発振
器8の出力は加算されて半導体レーザーに帰還され、そ
の駆動電流が制御される9発振器8の出力はまたロック
インアンプ6にも入力される。
A standard substance that absorbs light of a specific wavelength, such as 87Rb, is sealed inside the absorption cell 4 . The light transmitted through the absorption cell 4 is incident on a photodetector 5, and its intensity is measured. The output of this photodetector 5 is the lock-in amplifier 6
The current is synchronously rectified and input to the current control circuit 7. The output of this current control circuit 7 and the output of an oscillator 8 that oscillates an output of frequency fm are added and fed back to the semiconductor laser, and the output of the 9 oscillator 8 whose drive current is controlled is also input to the lock-in amplifier 6. be done.

この様な構成において、吸収セル4を透過した光は特定
の波長の光のみ吸収され、その透過光強度はその波長で
のみ弱くなる。従って、光検出器5の出力が一定になる
ように電流制御回路7により半導体レーザー1の駆動電
流を制御する事によリ、その出力光の波長を一定にする
事が出来る。
In such a configuration, only light of a specific wavelength is absorbed from the light transmitted through the absorption cell 4, and the intensity of the transmitted light becomes weak only at that wavelength. Therefore, by controlling the driving current of the semiconductor laser 1 by the current control circuit 7 so that the output of the photodetector 5 is constant, the wavelength of the output light can be made constant.

なお、半導体レーザー1の出力光は発振器8の出力によ
り周波数fmで変調され、かつロックインアンプ6によ
り同じ周波数で同期整流されるので、半導体レーザー1
の出力光の波長を正確に一定に制御する事が出来る。
Note that the output light of the semiconductor laser 1 is modulated at the frequency fm by the output of the oscillator 8, and is synchronously rectified at the same frequency by the lock-in amplifier 6.
The wavelength of the output light can be precisely controlled to a constant value.

〈発明が解決すべき課題〉 しかしながら、この様な半導体レーザーの波長安定化装
置には次のような課題がある。光通信で大容蓋のデータ
を伝送する手順の1つとして周波数多重通信がある。こ
れは、1本の光ファイバに波長がわずかずつ異なる光を
数多く伝送させ、その各々を媒体としてデータ伝送をす
るものであり、その為には等間隔で波長が異なる数多く
の光源が必要になる。第6図で示した半導体レーザーの
波長安定化装置は1つで1波長の光しか出力できないの
で、この様な周波数多重通信を行うためには数多くの装
置が必要になり、構成が複雑化し、かつ高価になるとい
う課題があった。
<Problems to be Solved by the Invention> However, such wavelength stabilizing devices for semiconductor lasers have the following problems. Frequency multiplex communication is one of the procedures for transmitting large-capacity data using optical communication. This involves transmitting a large number of lights with slightly different wavelengths through a single optical fiber, each of which is used as a medium for data transmission. To do this, many light sources with different wavelengths are required at equal intervals. . One wavelength stabilizing device for a semiconductor laser shown in Fig. 6 can output only one wavelength of light, so a large number of devices are required to perform such frequency multiplexing communication, making the configuration complicated. There was also the problem that it was expensive.

〈発明の目的〉 この発明の目的は、1つの装置でほぼ等間隔の複数の波
長の光を出力することが出来る半導体レーザーの波長安
定化装置を提供することにある。
<Objective of the Invention> An object of the present invention is to provide a wavelength stabilizing device for a semiconductor laser, which is capable of outputting light of a plurality of substantially equally spaced wavelengths with one device.

く課題を解決する為の手段〉 前記課題を解決する為に本発明では、少なくとも3つの
半導体レーザーの出力光の一部を少なくとも3つの吸収
線を有する標準物質が封入された吸収セルに入射し、前
記複数の半導体レーザーに対応して配置された受光素子
で吸収セルの透過光強度を測定し、この受光素子の出力
により前記半導体レーザーの波長を制御するようにした
ものである。
Means for Solving the Problems> In order to solve the above problems, in the present invention, a part of the output light of at least three semiconductor lasers is incident on an absorption cell in which a standard substance having at least three absorption lines is enclosed. The intensity of transmitted light of the absorption cell is measured by a light receiving element arranged corresponding to the plurality of semiconductor lasers, and the wavelength of the semiconductor laser is controlled by the output of this light receiving element.

〈実施例〉 第1図に本発明に係る半導体レーザーの波長安定化装置
の一実施例を示す。第1図において、101〜Ionは
半導体レーザーであり、それらの出力光は分岐器11に
入力されて2つに分岐される。12は光変調器であり、
分岐器11で分岐された半導体レーザー101〜ton
の出力光の一方が入射され、これらの光を変調する。光
変調器12は音響光学変調器或いは電気光学変調器を用
いる。13は吸収セルであり、光変調器12で変調され
た光が入射される。この吸収セル13には特定の波長の
光を吸収するaK準物質が封入されている。14は受光
器であり、複数の受光素子が含まれている。個別のフォ
トダイオードを並べたもの、或いはフォトダイオードア
レイを用いる。受光器14の受光素子には吸収セル13
の透過光が入射される。15はロックインアンプであり
、受光器14の出力が入力される。16は制御回路であ
り、ロックインアンプ15の出力が入力される。
<Embodiment> FIG. 1 shows an embodiment of a wavelength stabilizing device for a semiconductor laser according to the present invention. In FIG. 1, 101 to Ion are semiconductor lasers, and their output lights are input to a splitter 11 and branched into two. 12 is an optical modulator;
Semiconductor laser 101~ton branched by splitter 11
One of the output lights is incident and modulates these lights. The optical modulator 12 uses an acousto-optic modulator or an electro-optic modulator. 13 is an absorption cell into which light modulated by the optical modulator 12 is incident. This absorption cell 13 contains an aK quasi-substance that absorbs light of a specific wavelength. 14 is a light receiver, which includes a plurality of light receiving elements. A row of individual photodiodes or a photodiode array is used. The light receiving element of the light receiver 14 includes an absorption cell 13.
transmitted light is incident. 15 is a lock-in amplifier, into which the output of the light receiver 14 is input. 16 is a control circuit to which the output of the lock-in amplifier 15 is input.

この制御回路16の出力は半導体レーザー101〜Io
nに入力される。17は発振器であり、周波数fIlの
出力を発振し、その出力は光変調器12及びロックイン
アンプ15に入力される。光変調器12はこの発振器1
7の出力により入射された光を変調し、またロックイン
アンプ15は同じ信号またはその整数倍の周波数の信号
で同期整流する。181〜18nは光変調器であり、分
岐器11で分岐された半導体レーザー101〜10nの
出力光の他方の光が入射される。光変調器181〜18
nは変調信号により伝送すべきデータによって変調され
る。19は合波器であり、光変調器181〜18nの出
力光が入力され、合波されて光ファイバ或いは空間ビー
ムとして出力される。
The output of this control circuit 16 is the semiconductor laser 101 to Io.
input to n. Reference numeral 17 denotes an oscillator which oscillates an output at a frequency fIl, the output of which is input to the optical modulator 12 and the lock-in amplifier 15. The optical modulator 12 is connected to this oscillator 1.
The input light is modulated by the output of the lock-in amplifier 15, and the lock-in amplifier 15 performs synchronous rectification using the same signal or a signal having a frequency that is an integral multiple thereof. 181 to 18n are optical modulators, into which the other of the output lights of the semiconductor lasers 101 to 10n branched by the splitter 11 is inputted. Optical modulators 181-18
n is modulated by the data to be transmitted by a modulating signal. Numeral 19 is a multiplexer into which the output lights of the optical modulators 181 to 18n are input, multiplexed, and output as an optical fiber or a spatial beam.

次に、この実施例の動作を説明する0分岐器11で2つ
に分岐された半導体レーザー101〜10nの出力光の
一方は光変調器12に入射される。
Next, one of the output lights of the semiconductor lasers 101 to 10n, which are split into two by a zero splitter 11, which will explain the operation of this embodiment, is input to an optical modulator 12.

この光変調器12にはまた発振器17の出力が入力され
る。光変調器12は入射された光を発振器17の出力で
変調する。この変調された光は吸収セル13に入射され
る。吸収セル13には標準物質として例えばアセチレン
が封入されている。アセチレン等の分子の吸収スペクト
ルは電子遷移によるスペクトル、振動によるスペクトル
、回転によるスペクトルがあり、通常は振動と回転が結
合して第2図に示すような等間隔のバンド構造になり、
その為狭い部分にのみ着目すれば第3図のようにほぼ等
間隔な複数の吸収線を有するスペクトルになる。半導体
レーザー101〜Ionの出力光の°波長をこの吸収線
のうちそれぞれ異なったもの、たとえばO印を付けたも
のにロックする。すなわち、吸収セル13内の標準物質
による個々の吸収線は第4図(A)の様に表わされ、波
長によってその透過光強度が変化するが、光変調器12
によって周波数flで半導体レーザー101〜10nの
出力光の波長を変調し、吸収セル13を透過した光の強
度信号をロックインアンプ15で同じ周波数f、で同期
整流すると、(B)の様にこの波長の変化に対する透過
光強度の変化の微分値が得られる。従って、制御回路1
6により、PID制御等を行って、ロックインアンプ1
5の出力がゼロになるように半導体レーザー101〜1
0nの駆動電流または周囲温度を変化させてその出力光
の波長を制御すると、その出力光の波長を標準物質の吸
収スペクトルの吸収線のピーク波長にロックする事が出
来る。第3図に示したように、アセチレン等では吸収線
が複数個あるので、その各々の吸収線に半導体レーザー
101〜Ionの出力光の波長をロックする事により、
同時に複数の安定した波長の光を得ることが出来る。な
お、多波長出力光を変調する必要がないときは、光変調
器181〜18nは不要であり、また合波しないときは
合波器19も不要である。
The output of the oscillator 17 is also input to the optical modulator 12 . The optical modulator 12 modulates the incident light with the output of the oscillator 17. This modulated light is incident on the absorption cell 13. For example, acetylene is sealed in the absorption cell 13 as a standard substance. The absorption spectrum of molecules such as acetylene includes a spectrum due to electronic transition, a spectrum due to vibration, and a spectrum due to rotation. Usually, vibration and rotation are combined to form an equally spaced band structure as shown in Figure 2.
Therefore, if attention is focused only on a narrow portion, the spectrum will have a plurality of absorption lines at approximately equal intervals as shown in FIG. 3. The wavelengths of the output lights of the semiconductor lasers 101 to Ion are locked to different absorption lines, for example, those marked with O. That is, the individual absorption lines due to the standard material in the absorption cell 13 are expressed as shown in FIG. 4(A), and the transmitted light intensity changes depending on the wavelength.
When the wavelength of the output light of the semiconductor lasers 101 to 10n is modulated at the frequency fl by The differential value of the change in transmitted light intensity with respect to the change in wavelength can be obtained. Therefore, control circuit 1
6, performs PID control etc., and lock-in amplifier 1
Semiconductor lasers 101 to 1 so that the output of 5 becomes zero
By controlling the wavelength of the output light by changing the 0n drive current or the ambient temperature, it is possible to lock the wavelength of the output light to the peak wavelength of the absorption line of the absorption spectrum of the standard substance. As shown in FIG. 3, acetylene and the like have multiple absorption lines, so by locking the wavelength of the output light from the semiconductor lasers 101 to Ion to each absorption line,
It is possible to obtain light of multiple stable wavelengths at the same time. Note that when there is no need to modulate the multi-wavelength output light, the optical modulators 181 to 18n are unnecessary, and when multiplexing is not required, the multiplexer 19 is also unnecessary.

第5図に本発明の池の実施例を示す、この実施例は半導
体レーザー101〜LOnの駆動を流を制御する事によ
ってその出力光の波長を変調し、かつ変調周波数を変え
たものである。なお、第1図と同じ要素には同一符号を
付し、説明を省略する。第5図において、20は合波器
であり、半導体レーザー101〜Ionの出力光が入力
されてこれらの光を合波する。この合波された光は光フ
ァイバ21で伝送される。22は分波器であり、合波器
20で合波された光を再び分波する。この分波された光
は吸収セル13に入射され、この吸収セル13の透過光
は受光器14でその光強度が電流信号に変換される。2
21〜22nはロックインアンプであり、受光器14の
出力が入力される。このロックインアンプ221〜22
nにはまた発振器231〜23nから周波数f 〜で 
の気1  へへ 信号が入力される。ロックインアンプ221〜22nは
入力された受光器14の出力を周波数f、1〜f4゜で
同期整流する。これらの出力は制御回路16に入力され
る。241〜24nは加算器であり、それぞれ発振器2
31〜23nの出力と制御回路16の出力であってロッ
クインアンプ221〜22nの出力に対応する出力を加
算する。この加算器241〜24nの出力により半導体
レーザー101〜Ionの駆動電流が制御される。動作
は第1図実施例と同じなので、説明を省略する。
FIG. 5 shows an embodiment of the present invention. In this embodiment, the wavelength of the output light is modulated by controlling the driving flow of the semiconductor lasers 101 to LOn, and the modulation frequency is changed. . Note that the same elements as in FIG. 1 are given the same reference numerals and their explanations will be omitted. In FIG. 5, 20 is a multiplexer, into which the output lights of the semiconductor lasers 101 to Ion are input, and these lights are multiplexed. This multiplexed light is transmitted through the optical fiber 21. 22 is a demultiplexer, which demultiplexes the light multiplexed by the multiplexer 20 again. This demultiplexed light is incident on an absorption cell 13, and the light intensity of the light transmitted through the absorption cell 13 is converted into a current signal by a light receiver 14. 2
21 to 22n are lock-in amplifiers, into which the output of the light receiver 14 is input. This lock-in amplifier 221-22
n also has a frequency f from the oscillators 231 to 23n.
A signal is input to Noki 1. The lock-in amplifiers 221 to 22n synchronously rectify the input output of the photodetector 14 at a frequency f, 1 to f4 degrees. These outputs are input to the control circuit 16. 241 to 24n are adders, each of which is connected to the oscillator 2.
31 to 23n and the output of the control circuit 16, which corresponds to the output of the lock-in amplifiers 221 to 22n, are added. The drive currents of the semiconductor lasers 101-Ion are controlled by the outputs of the adders 241-24n. Since the operation is the same as that of the embodiment shown in FIG. 1, the explanation will be omitted.

この実施例では多波長出力光の波長が変調されるという
欠点はあるが、光変調器が不要なので構成が簡単になり
、また変調周波数を異ならしているので、相互干渉が少
なくなるという長所がある。
Although this embodiment has the disadvantage that the wavelengths of the multi-wavelength output light are modulated, it has the advantage that it simplifies the configuration because no optical modulator is required, and that mutual interference is reduced because the modulation frequencies are different. be.

なお、第1図の実施例でも半導体レーザー101〜Io
nの駆動電流を変えて変調する様にしてもよい。
Note that in the embodiment shown in FIG. 1, semiconductor lasers 101 to Io
It is also possible to modulate by changing the driving current of n.

また、第1図、第5図の実施例ではロックインアンプを
使用して吸収線の中心に半導体レーザー101〜10n
の出力光の波長をロックする様にしたが、吸収線の肩の
所にロックする様にしてもよい、この場合はロックイン
アンプは不要であり、受光器14の出力が一定になるよ
うに制御回路16により半導体レーザー101〜Ion
を制御する様にすればよい。
In addition, in the embodiments shown in FIGS. 1 and 5, a lock-in amplifier is used to place the semiconductor lasers 101 to 10n at the center of the absorption line.
Although the wavelength of the output light of the light receiver 14 is locked, it may be locked at the shoulder of the absorption line.In this case, a lock-in amplifier is not necessary, and the output of the light receiver 14 is kept constant. The control circuit 16 controls the semiconductor lasers 101 to Ion.
All you have to do is control it.

さらに、分岐器、分波器、合波器は光ファイバカグラを
用いてもよく、またビームスプリッタを用いてもよい。
Further, an optical fiber converter or a beam splitter may be used for the splitter, demultiplexer, and multiplexer.

〈発明の効果〉 以上、具体例に基づいて具体的に説明したように、この
発明では複数の半導体レーザーの出力光の一部を複数の
ほぼ等間隔の吸収線を有する標準物質が封入された吸収
セルに入射し、その透過光を前記半導体レーザーに帰還
することによって、半導体レーザーの出力光の波長を複
数の吸収線の各々にロックする様にしたものである。そ
の為、吸収セルが1個で複数のほぼ等間隔で安定した波
長の光を出力することが出来、安価でかつ小型の複数波
長の光を出力する波長安定化装置が実現出来る。
<Effects of the Invention> As explained above based on specific examples, in this invention, a part of the output light of a plurality of semiconductor lasers is encapsulated with a standard substance having a plurality of absorption lines at approximately equal intervals. The wavelength of the output light of the semiconductor laser is locked to each of a plurality of absorption lines by entering the absorption cell and returning the transmitted light to the semiconductor laser. Therefore, it is possible to output light of a plurality of stable wavelengths at approximately equal intervals with one absorption cell, and it is possible to realize an inexpensive and small wavelength stabilizing device that outputs light of a plurality of wavelengths.

【図面の簡単な説明】[Brief explanation of the drawing]

第1[Jは本発明にかかる半導体レーザーの波長安定化
装置の一実施例を示す構成図、第2図〜第4図は動作を
説明する為の特性曲線図、第5図は本発明の他の実施例
を示す構成図、第6図は従来の半導体レーザーの波長安
定化装置の構成図である。 11・・・分岐器、12・・・光変調器、13・・・吸
収セル、14・・・受光器、15,221〜22n・・
・ロックインアンプ、16・・・制御回路、20・・・
合波器、22・・・分波器、101〜Ion・・・半導
体レーザー、第3図 第4図 (A) 破表 (B) 第5図 第6図 ] b
1 [J is a configuration diagram showing an embodiment of the semiconductor laser wavelength stabilizing device according to the present invention, FIGS. 2 to 4 are characteristic curve diagrams for explaining the operation, and FIG. FIG. 6 is a block diagram showing another embodiment of the present invention, and FIG. 6 is a block diagram of a conventional wavelength stabilizing device for a semiconductor laser. DESCRIPTION OF SYMBOLS 11... Brancher, 12... Optical modulator, 13... Absorption cell, 14... Light receiver, 15,221-22n...
・Lock-in amplifier, 16... Control circuit, 20...
Multiplexer, 22...Demultiplexer, 101~Ion...Semiconductor laser, Figure 3, Figure 4 (A) Broken table (B), Figure 5, Figure 6] b

Claims (1)

【特許請求の範囲】[Claims] 少なくとも3つの半導体レーザーと、これらの半導体レ
ーザーの出力光の一部が入力され少なくとも3つのほぼ
等間隔の吸収線を有する標準物質が封入された吸収セル
と、前記半導体レーザーに対応して配置されこの吸収セ
ルの出力光が入射される少なくとも3つの受光素子と、
この受光素子の出力が入力され前記半導体レーザーの出
力光の波長を制御する制御部とを有することを特徴とす
る半導体レーザーの波長安定化装置。
at least three semiconductor lasers, an absorption cell in which a part of the output light of these semiconductor lasers is input and a standard substance having at least three substantially equally spaced absorption lines is enclosed, and the absorption cell is arranged corresponding to the semiconductor laser. at least three light receiving elements into which the output light of the absorption cell is incident;
A wavelength stabilizing device for a semiconductor laser, comprising: a control section to which the output of the light receiving element is input and controls the wavelength of the output light of the semiconductor laser.
JP5717188A 1988-03-10 1988-03-10 Wavelength stabilizing device for semiconductor laser Pending JPH01230278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5717188A JPH01230278A (en) 1988-03-10 1988-03-10 Wavelength stabilizing device for semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5717188A JPH01230278A (en) 1988-03-10 1988-03-10 Wavelength stabilizing device for semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01230278A true JPH01230278A (en) 1989-09-13

Family

ID=13048098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5717188A Pending JPH01230278A (en) 1988-03-10 1988-03-10 Wavelength stabilizing device for semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01230278A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288282A (en) * 1989-04-28 1990-11-28 Nippon Telegr & Teleph Corp <Ntt> Oscillation wavelength stabilized semiconductor laser device
JPH04116172U (en) * 1991-03-26 1992-10-16 横河電機株式会社 Frequency stabilized laser light source
JP2006073755A (en) * 2004-09-01 2006-03-16 National Institute Of Information & Communication Technology Laser frequency stabilizer using multiplex saturation spectrum

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288282A (en) * 1989-04-28 1990-11-28 Nippon Telegr & Teleph Corp <Ntt> Oscillation wavelength stabilized semiconductor laser device
JPH04116172U (en) * 1991-03-26 1992-10-16 横河電機株式会社 Frequency stabilized laser light source
JP2006073755A (en) * 2004-09-01 2006-03-16 National Institute Of Information & Communication Technology Laser frequency stabilizer using multiplex saturation spectrum

Similar Documents

Publication Publication Date Title
CN101399613B (en) Quaternary phase modulator
US6421151B1 (en) Method and arrangement for stabilizing wavelength of multi-channel optical transmission systems
CN106027152A (en) Method for generating 120GHz millimeter waves based on octuple frequency of Mach-Zehnder modulator
GB2170370A (en) Wavelength division multiplexed networks
KR100260677B1 (en) Optical component wherein either an optical field distribution of received light or an optical field distribution of a propagation mode of a receiving waveguide has a double-hump shape
JP6604580B2 (en) Frequency stabilized laser
Paolella et al. Hybrid integration of RF photonic systems
US6091495A (en) Optical interferometer and signal synthesizer using the interferometer
JPH01230278A (en) Wavelength stabilizing device for semiconductor laser
US20010055141A1 (en) Reciprocating optical modulation system
KR20150104385A (en) Coherent tunable laser apparatus
WO2021016966A1 (en) Multi-wavelength light source and optical chip
JP4124555B2 (en) Frequency stabilized semiconductor laser device
JPH0626248B2 (en) Method of interconnecting integrated circuits and integrated circuit
JP2000286500A (en) Frequency stabilizing device for wavelength division multiplexing light source
CN113300212A (en) Chip-level frequency modulation laser device
JPS60147716A (en) Optical transmitter of extinction ratio control
JPH0459796B2 (en)
JPH01164135A (en) Oscillation frequency stabilizing method for semiconductor laser in optical frequency division multiplex transmission system
JP2015090951A (en) Light source device
JPS6195322A (en) Device for generating phase modulating light for optical communication
JP2830189B2 (en) Variable frequency light source
JPS6377180A (en) Semiconductor laser wavelength stabilizer
JP3223521B2 (en) Optical frequency standard and optical frequency standard calibration device
JPS61212932A (en) Phase shift modulation light transmitter