JPH0459796B2 - - Google Patents

Info

Publication number
JPH0459796B2
JPH0459796B2 JP61011894A JP1189486A JPH0459796B2 JP H0459796 B2 JPH0459796 B2 JP H0459796B2 JP 61011894 A JP61011894 A JP 61011894A JP 1189486 A JP1189486 A JP 1189486A JP H0459796 B2 JPH0459796 B2 JP H0459796B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
frequency
output
wavelength
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61011894A
Other languages
Japanese (ja)
Other versions
JPS62171174A (en
Inventor
Koji Akyama
Akira Oote
Hideto Iwaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61011894A priority Critical patent/JPS62171174A/en
Priority to GB8627744A priority patent/GB2187592B/en
Priority to US06/937,359 priority patent/US4833681A/en
Priority to US06/942,448 priority patent/US4893353A/en
Priority to US06/943,670 priority patent/US4856899A/en
Priority to DE3643553A priority patent/DE3643553C2/en
Priority to DE3643629A priority patent/DE3643629C2/en
Priority to GB8630375A priority patent/GB2185567B/en
Priority to DE3643569A priority patent/DE3643569C2/en
Priority to GB8630374A priority patent/GB2185619B/en
Publication of JPS62171174A publication Critical patent/JPS62171174A/en
Priority to US07/293,020 priority patent/US4912526A/en
Publication of JPH0459796B2 publication Critical patent/JPH0459796B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/002Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light using optical mixing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1303Stabilisation of laser output parameters, e.g. frequency or amplitude by using a passive reference, e.g. absorption cell

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 ≪産業上の利用分野≫ 本発明は、半導体レーザの波長を原子や分子の
吸収線に制御して安定化する半導体レーザ波長安
定化装置の特性の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION <<Industrial Application Field>> The present invention relates to improving the characteristics of a semiconductor laser wavelength stabilizing device that stabilizes the wavelength of a semiconductor laser by controlling it to the absorption line of atoms or molecules.

≪従来の技術≫ 第8図は従来の半導体レーザ波長安定化装置を
示す構成ブロツク図である。半導体レーザLDの
電流に周波数fnの変調信号を重畳してレーザ出力
の発振波長を変調し、ビームスプリツタBSで分
離した光の一方を特定の波長で吸収を起こす標準
物質を封入した吸収セルCLに入射する。ビーム
スプリツタBSで分離した他方の光はミラーMで
反射されて出力光となる。吸収セルCLからの出
射光は光検出器PDで電気信号に変換され、ロツ
クインアンプLAで同期整流される。制御手段CT
でロツクインアンプLAの出力が一定値となるよ
うに半導体レーザLDの電流を制御することによ
り、半導体レーザLDの波長を吸収セルCL内の原
子の吸収線にロツクさせることができる。
<<Prior Art>> FIG. 8 is a structural block diagram showing a conventional semiconductor laser wavelength stabilizing device. An absorption cell that modulates the oscillation wavelength of the laser output by superimposing a modulation signal of frequency f n on the current of the semiconductor laser LD, and encloses a standard material that absorbs one of the lights at a specific wavelength after being separated by the beam splitter BS. Inject into CL. The other light separated by the beam splitter BS is reflected by the mirror M and becomes output light. The light emitted from the absorption cell CL is converted into an electrical signal by the photodetector PD, and synchronously rectified by the lock-in amplifier LA. Control means CT
By controlling the current of the semiconductor laser LD so that the output of the lock-in amplifier LA becomes a constant value, the wavelength of the semiconductor laser LD can be locked to the absorption line of the atoms in the absorption cell CL.

≪発明が解決しようとする問題点≫ しかしながら、上記のような構成の半導体レー
ザ波長安定化装置では、半導体レーザの出力光の
平均周波数は標準物質の吸収線にロツクされて安
定となるが、変調周波数fnで常に周波数が変動し
ているので、発振周波数の瞬時値は安定ではな
い。
<<Problems to be Solved by the Invention>> However, in the semiconductor laser wavelength stabilizing device configured as described above, the average frequency of the output light of the semiconductor laser is locked to the absorption line of the standard material and becomes stable, but the modulation Since the frequency is constantly changing at f n , the instantaneous value of the oscillation frequency is not stable.

本発明はこのような問題点を解決するためにな
されたもので、発振周波数が瞬時的にも高安定な
半導体レーザ波長安定化装置を実現することを目
的とする。
The present invention has been made to solve these problems, and an object of the present invention is to realize a semiconductor laser wavelength stabilizing device whose oscillation frequency is highly stable even momentarily.

≪問題点を解決するための手段≫ 本発明は標準物質の吸収スペクトル線に半導体
レーザの波長を制御して波長を安定化する半導体
レーザ波長安定化装置に係るもので、その特徴と
するところは半導体レーザLD1と、この半導体
レーザの出力光の一部を入射して周波数変調する
音響光学変調器UM1と、第1の周波数信号を発
生する第1の信号発生器SG1と、第2の周波数
信号を発生する第2の信号発生器SG2と、前記
第2の信号発生器の出力を前記第1の信号発生器
で出力で周波数変調し、この変調信号で前記音響
光学変調器を駆動する駆動手段SW1と、前記音
響光学変調器が出力する1次回折光および0次回
折光を入射して特定の波長で吸収を起こす標準物
質を封入した吸収セルCL1と、この吸収セルを
透過した前記1次回折光および0次回折光を電気
信号の変換する光検出器PD1と、この光検出器
の出力電気信号を前記第1の周波数fnまたはその
整数倍の周波数で同期検波し、その検波出力に基
づいて前記半導体レーザの発振波長を制御する同
期検波手段LA1とを備えた点にある。
<<Means for Solving the Problems>> The present invention relates to a semiconductor laser wavelength stabilizing device that stabilizes the wavelength by controlling the wavelength of a semiconductor laser according to the absorption spectrum line of a standard substance. A semiconductor laser LD1, an acousto-optic modulator UM1 that modulates the frequency by inputting a part of the output light of the semiconductor laser, a first signal generator SG1 that generates a first frequency signal, and a second frequency signal. a second signal generator SG2 that generates a second signal generator, and a drive means that frequency-modulates the output of the second signal generator with the output of the first signal generator and drives the acousto-optic modulator with this modulated signal. SW1, an absorption cell CL1 filled with a standard substance that causes absorption at a specific wavelength upon incidence of the first-order diffracted light and zero-order diffracted light output from the acousto-optic modulator; A photodetector PD1 converts the 0th order diffracted light into an electrical signal, and the output electrical signal of this photodetector is synchronously detected at the first frequency f n or an integral multiple thereof, and based on the detected output, the semiconductor The present invention also includes a synchronous detection means LA1 for controlling the oscillation wavelength of the laser.

≪実施例≫ 以下本発明を図面を用いて詳しく説明する。≪Example≫ The present invention will be explained in detail below using the drawings.

第1図は本発明の一実施例を示す構成ブロツク
図である。LD1は半導体レーザ、PE1はこの半
導体レーザLD1を冷却または加熱するペルチエ
素子、CT1はこのペルチエ素子PEを駆動して前
記半導体レーザLD1の温度を一定に制御する温
度制御手段、TB1はこれらを格納して温度変動
を減少させる恒温槽、BS1は前記半導体レーザ
の出力光を2方向に分離するビームスプリツタ、
UM1はこのビームスプリツタBS1の一方の出
射光を入射し変調手段を構成する音響光学変調
器、CL1はこの音響光学変調器UM1の回折光
出力を入射し特定の波長の光を吸収する標準物質
(ここではCs)を封入した吸収セル、PD1はこ
の吸収セルCL1の透過光を入射する光検出器、
A1はこの光検出器PD1の出力電気信号を入力
する増幅器、LA1はこの増幅器A1の電気出力
を入力するロツクインアンプ、CT2はこのロツ
クインアンプLA1の出力を入力し前記半導体レ
ーザLD1の電流を制御する制御手段を構成する
PIDコントローラ、SW1は前記音響光学変調器
UM1にその一端が接続するスイツチ、SG1は
その出力で前記スイツチSW1が周波数fn(例れば
2kHz)でオンオフする信号発生器、SG2は前記
スイツチSW1の他端に接続する周波数fD(例れば
80MHz)の第2の信号発生器である。
FIG. 1 is a block diagram showing an embodiment of the present invention. LD1 is a semiconductor laser, PE1 is a Peltier element that cools or heats the semiconductor laser LD1, CT1 is a temperature control means that drives the Peltier element PE to keep the temperature of the semiconductor laser LD1 constant, and TB1 stores these. BS1 is a beam splitter that separates the output light of the semiconductor laser into two directions;
UM1 is an acousto-optic modulator that receives the output light from one side of the beam splitter BS1 and constitutes a modulation means, and CL1 is a standard material that receives the diffracted light output of the acousto-optic modulator UM1 and absorbs light of a specific wavelength. PD1 is a photodetector that receives the transmitted light of this absorption cell CL1,
A1 is an amplifier that inputs the output electric signal of this photodetector PD1, LA1 is a lock-in amplifier that inputs the electric output of this amplifier A1, and CT2 inputs the output of this lock-in amplifier LA1 to control the current of the semiconductor laser LD1. Configure the control means to control
PID controller, SW1 is the acousto-optic modulator
A switch, SG1, whose one end is connected to UM1 is its output, and the switch SW1 has a frequency f n (for example,
SG2 is a signal generator that turns on and off at a frequency f D (e.g. 2kHz) connected to the other end of the switch SW1.
80MHz) second signal generator.

上記のような構成の半導体レーザ波長安定化装
置の動作を以下に詳しく説明する。半導体レーザ
LD1は恒温槽TB1内で温度検出信号を入力す
る制御手段CT1によりペルチエ素子PE1を介し
て一定温度に制御されている。半導体レーザLD
1の出力光はビームスプリツタBS1で2方向に
分離され、反射光は外部への出力光となり透過光
は音響光学変調器UM1に入射する。スイツチ
SW1がオンの時音響光学変調器UM1は信号発
生器SG2の周波数fDの出力で駆動されるので、
周波数ν0の入射光の大部分は回折して周波数(ド
ツプラ)シフトを受け、1次回折光として周波数
ν0+fDの光が吸収セルCL1に入射する。スイツチ
SW1がオフのときは入射光は全て0次回折光と
して周波数ν0で吸収セルCL1に入射する。スイ
ツチSW1は信号発生器SG1の周波数fnのクロツ
クで駆動されるので、吸収セルCL1に入射する
光は変調周波数fn、変調深さfDの周波数変調を受
けることになる。第2図はCs原子のエネルギー
準位を示す説明図で、第3図のスペクトル吸収線
図に示すように852.112nm付近の波長で9.2GHz離
れた位置に2本の吸収スペクトルを有する。吸収
セルCL1に音響光学変調器UM1で変調された
光が入射すると、第4図の動作説明図に示すよう
に吸収信号の箇所でのみ透過光量が変調を受けて
出力に信号が現れる。この信号を光検出器PD1
で電気信号に変換し増幅器A1を介してロツクイ
ンアンプLA1において周波数fnで同期検波すれ
ば、第5図の周波数特性曲線図に示すような1次
微分波形が得られる。PIDコントローラCT2に
より半導体レーザLD1の電流を制御して、ロツ
クインアンプLA1の出力を前記1次微分波形の
中心のロツク(制御)すれば半導体レーザの出力
光はνs−fD/2の安定な周波数となる。
The operation of the semiconductor laser wavelength stabilizing device configured as described above will be explained in detail below. semiconductor laser
LD1 is controlled to a constant temperature via Peltier element PE1 by control means CT1 which inputs a temperature detection signal in constant temperature bath TB1. semiconductor laser LD
1 is split into two directions by a beam splitter BS1, the reflected light becomes output light to the outside, and the transmitted light enters the acousto-optic modulator UM1. switch
When SW1 is on, the acousto-optic modulator UM1 is driven by the output of the signal generator SG2 at the frequency f D , so
Most of the incident light with the frequency ν 0 is diffracted and undergoes a frequency (Doppler) shift, and the light with the frequency ν 0 +f D enters the absorption cell CL1 as the first-order diffracted light. switch
When SW1 is off, all incident light enters the absorption cell CL1 as 0th-order diffracted light at a frequency ν 0 . Since the switch SW1 is driven by the clock of the signal generator SG1 at the frequency f n , the light incident on the absorption cell CL1 is subjected to frequency modulation at the modulation frequency f n and the modulation depth f D . FIG. 2 is an explanatory diagram showing the energy level of a Cs atom, and as shown in the spectral absorption diagram in FIG. 3, it has two absorption spectra at wavelengths around 852.112 nm and located 9.2 GHz apart. When light modulated by the acousto-optic modulator UM1 enters the absorption cell CL1, the amount of transmitted light is modulated only at the location of the absorption signal, and a signal appears at the output, as shown in the operational diagram of FIG. This signal is transmitted to photodetector PD1
If the signal is converted into an electric signal via the amplifier A1 and synchronously detected at the frequency f n in the lock-in amplifier LA1, a first-order differential waveform as shown in the frequency characteristic curve diagram of FIG. 5 is obtained. If the current of the semiconductor laser LD1 is controlled by the PID controller CT2 and the output of the lock-in amplifier LA1 is locked (controlled) at the center of the first-order differential waveform, the output light of the semiconductor laser becomes stable at ν s −f D /2. frequency.

このような構成の半導体レーザ波長安定化装置
によれば、レーザの発振周波数が変調されていな
いので、瞬時的にも非常に安定な光源となる。
According to the semiconductor laser wavelength stabilizing device having such a configuration, since the oscillation frequency of the laser is not modulated, it becomes an extremely stable light source even momentarily.

また音響光学変調器UM1の回折効率が変化し
ても、変調に寄与しない光の成分(0次回折光)
が増えて信号強度が下がるのみで、中心波長には
影響しない。
Furthermore, even if the diffraction efficiency of the acousto-optic modulator UM1 changes, the light component that does not contribute to modulation (0th-order diffracted light)
increases and the signal strength decreases, but does not affect the center wavelength.

また低い変調周波数fnと高い周波数偏移fDを同
時にとることができるため、レーザ波長の吸収中
心からのずれ検出に関するS/N比が高くなり、
レーザ出力の安定性が優れている。
In addition, since it is possible to have a low modulation frequency f n and a high frequency deviation f D at the same time, the S/N ratio for detecting the deviation of the laser wavelength from the absorption center increases.
Excellent laser output stability.

なお上記の実施例ではロツクインアンプLA1
の参照周波数として変調周波数fnを用いたがその
整数倍の周波数としてもよい。
In the above embodiment, the lock-in amplifier LA1
Although the modulation frequency f n is used as the reference frequency, a frequency that is an integral multiple of the modulation frequency f n may be used.

また吸収セルCL1の標準物質としては、Csの
ほかに例えばRb、NH3、H2Oなどを用いてもよ
い。
Further, as a standard substance for the absorption cell CL1, in addition to Cs, for example, Rb, NH 3 , H 2 O, etc. may be used.

また上記の実施例では変調手段として音響光学
変調器を用いているが、これに限らず、例えば電
気光学素子を用いた位相変調器を用いてもよい。
これには例えば縦型変調器、横型変調器、進行波
形変調器などがある(Amnon Yarif:光エレク
トロニクスの基礎(丸善)、p247〜p253)。
Further, in the above embodiment, an acousto-optic modulator is used as the modulation means, but the present invention is not limited to this, and a phase modulator using an electro-optic element may be used, for example.
These include, for example, vertical modulators, horizontal modulators, traveling waveform modulators, etc. (Amnon Yarif: Fundamentals of Optoelectronics (Maruzen), p.247-p.253).

また上記の実施例では制御手段の出力で半導体
レーザの電流を制御しているが、これに限らず半
導体レーザの温度を制御してもよい。
Further, in the above embodiment, the current of the semiconductor laser is controlled by the output of the control means, but the present invention is not limited to this, and the temperature of the semiconductor laser may also be controlled.

第6図は第1図装置の変形例を示す要部構成ブ
ロツク図である。第1図装置と相違する部分は、
正弦波信号発生器SG20(例えば変調周波数fn
=2kHz)でFM変調器FM1を制御することによ
り正弦波で音響光学変調器UM1を変調する点に
ある。
FIG. 6 is a block diagram illustrating a modification of the apparatus shown in FIG. 1. The parts that differ from the device in Figure 1 are:
Sine wave signal generator SG20 (e.g. modulation frequency f n
By controlling the FM modulator FM1 at a frequency of 2 kHz), the acousto-optic modulator UM1 is modulated with a sine wave.

第7図は本発明の第2の実施例の光学系部分を
示す要部構成ブロツク図である。第1図装置と異
なる部分のみについて以下に説明する。HM1は
半導体レーザLD1の出力光を2方向に分離して
その反射光を一方向から音響光学変調器UM1に
入射するハーフミラー、M1はこのハーフミラー
HM1を透過した光を反射してその反射光を別方
向から音響光学変調器UM1に入射するミラーで
ある。スイツチSW1がオフのときはハーフミラ
ーHM1で反射した光は音響光学変調器UM1を
透過して周波数ν0で吸収セルCLに入射する。ス
イツチSW1がオンのときはミラーM1で反射し
た光が音響光学変調器UM1で回折し、周波数ν0
+fDで吸収セルCL1に入射する。
FIG. 7 is a block diagram showing the main part of the optical system of a second embodiment of the present invention. Only the parts that are different from the apparatus shown in FIG. 1 will be explained below. HM1 is a half mirror that separates the output light of the semiconductor laser LD1 into two directions and makes the reflected light enter the acousto-optic modulator UM1 from one direction, and M1 is this half mirror.
This is a mirror that reflects the light that has passed through HM1 and makes the reflected light enter the acousto-optic modulator UM1 from a different direction. When the switch SW1 is off, the light reflected by the half mirror HM1 passes through the acousto-optic modulator UM1 and enters the absorption cell CL at a frequency ν 0 . When switch SW1 is on, the light reflected by mirror M1 is diffracted by acousto-optic modulator UM1, and the frequency ν 0
+f D enters the absorption cell CL1.

このような構成の半導体レーザ波長安定化装置
によれば、吸収セル内で光路が動かないという利
点がある。
The semiconductor laser wavelength stabilizing device having such a configuration has the advantage that the optical path does not move within the absorption cell.

なお上記の各実施例において音響光学変調器
UM1の出射光の一部をポンプ光として吸収セル
に入射し、他の一部を反対の方向から細い光束で
プローブ光として吸収セルに入射して飽和吸収信
号を得る飽和吸収法(堀、角田、北野、薮崎、小
川::飽和吸収分光を用いた半導体レーザの周波
数安定化、信学技報OQE82−116)を用いれば、
より安定な半導体レーザ波長安定化装置を実現す
ることができる。
Note that in each of the above embodiments, the acousto-optic modulator
A part of the emitted light from UM1 enters the absorption cell as pump light, and the other part enters the absorption cell from the opposite direction as a probe light to obtain a saturated absorption signal (Saturation absorption method (Hori, Tsunoda). , Kitano, Yabusaki, Ogawa: Frequency stabilization of semiconductor lasers using saturation absorption spectroscopy, IEICE Technical Report OQE82-116).
A more stable semiconductor laser wavelength stabilizing device can be realized.

≪発明の効果≫ 以上述べたように本発明によれば、発振周波数
が瞬時的にも高安定な半導体レーザ波長安定化装
置を簡単な構成で実現することができる。
<<Effects of the Invention>> As described above, according to the present invention, a semiconductor laser wavelength stabilizing device whose oscillation frequency is highly stable even instantaneously can be realized with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成ブロツク
図、第2図は第1図装置の動作を説明するための
説明図、第3図は第1図装置の動作を説明するた
めの特性曲線図、第4図は第1図装置の動作を説
明するための動作説明図、第5図は第1図装置の
動作を説明するための第2の特性曲線図、第6図
は第1図装置の変形例を示す要部構成ブロツク
図、第7図は本発明の第2の実施例を示す要部構
成ブロツク図、第8図は従来の半導体レーザ波長
安定化装置を示す構成ブロツク図である。 LD1……半導体レーザ、UM1……音響光学
変調器、SG1……第1の信号発生器、SG2……
第2の信号発生器、SW1……駆動手段、CL1…
…吸収セル、PD1……光検出器、fn……第1の
周波数、fD……第2の周波数、LA1……同期検
波手段。
Fig. 1 is a configuration block diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram for explaining the operation of the apparatus shown in Fig. 1, and Fig. 3 is a characteristic diagram for explaining the operation of the apparatus shown in Fig. 1. 4 is an operation explanatory diagram for explaining the operation of the device shown in FIG. 1, FIG. 5 is a second characteristic curve diagram for explaining the operation of the device shown in FIG. 7 is a block diagram showing the main part of a modification of the device; FIG. 7 is a block diagram showing the main part of a second embodiment of the present invention; FIG. 8 is a block diagram of a conventional semiconductor laser wavelength stabilizing device. It is. LD1... Semiconductor laser, UM1... Acousto-optic modulator, SG1... First signal generator, SG2...
Second signal generator, SW1...driving means, CL1...
...absorption cell, PD1...photodetector, fn ...first frequency, fD ...second frequency, LA1...synchronous detection means.

Claims (1)

【特許請求の範囲】 1 標準物質の吸収スペクトル線に半導体レーザ
の波長を制御して波長を安定化する半導体レーザ
波長安定化装置において、 半導体レーザLD1と、 この半導体レーザの出力光の一部を入射して周
波数変調する音響光学変調器UM1と、 第1の周波数信号を発生する第1の信号発生器
SG1と、 第2の周波数信号を発生する第2の信号発生器
SG2と、 前記第2の信号発生器の出力を前記第1の信号
発生器の出力で周波数変調し、この変調信号で前
記音響光学変調器を駆動する駆動手段SW1と、 前記音響光学変調器が出力する1次回折光およ
び0次回折光を入射して特定の波長で吸収を起こ
す標準物質を封入した吸収セルCL1と、 この吸収セルを透過した前記1次回折光および
0次回折光を電気信号に変換する光検出器PD1
と、 この光検出器の出力電気信号を前記第1の周波
数fnまたはその整数倍の周波数で同期検波し、そ
の検波出力に基づいて前記半導体レーザの発振波
長を制御する同期検波手段LA1と を備えたことを特徴とする半導体レーザ波長安定
化装置。 2 標準物質としてRbまたはCsを用いた特許請
求の範囲第1項記載の半導体レーザ波長安定化装
置。
[Claims] 1. A semiconductor laser wavelength stabilization device that stabilizes the wavelength by controlling the wavelength of a semiconductor laser according to the absorption spectrum line of a standard substance, comprising a semiconductor laser LD1 and a part of the output light of this semiconductor laser. an acousto-optic modulator UM1 that performs frequency modulation upon input; and a first signal generator that generates a first frequency signal
SG1 and a second signal generator that generates a second frequency signal
SG2; driving means SW1 for frequency modulating the output of the second signal generator with the output of the first signal generator and driving the acousto-optic modulator with this modulated signal; An absorption cell CL1 containing a standard substance that causes absorption at a specific wavelength upon input of the output 1st-order diffracted light and 0th-order diffracted light, and converts the 1st-order diffracted light and 0th-order diffracted light transmitted through this absorption cell into electrical signals. Photodetector PD1
and synchronous detection means LA1 for synchronously detecting the output electrical signal of the photodetector at the first frequency f n or an integral multiple thereof, and controlling the oscillation wavelength of the semiconductor laser based on the detected output. A semiconductor laser wavelength stabilizing device characterized by comprising: 2. The semiconductor laser wavelength stabilizing device according to claim 1, which uses Rb or Cs as a standard substance.
JP61011894A 1985-12-20 1986-01-24 Stabilizer for wavelength of semiconductor laser Granted JPS62171174A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP61011894A JPS62171174A (en) 1986-01-24 1986-01-24 Stabilizer for wavelength of semiconductor laser
GB8627744A GB2187592B (en) 1985-12-26 1986-11-20 Semiconductor laser wavelength stabilizer
US06/937,359 US4833681A (en) 1985-12-26 1986-12-03 Semiconductor laser wavelength stabilizer
US06/942,448 US4893353A (en) 1985-12-20 1986-12-16 Optical frequency synthesizer/sweeper
US06/943,670 US4856899A (en) 1985-12-20 1986-12-18 Optical frequency analyzer using a local oscillator heterodyne detection of incident light
DE3643553A DE3643553C2 (en) 1985-12-20 1986-12-19 Device for generating and wobbling optical frequencies
DE3643629A DE3643629C2 (en) 1985-12-26 1986-12-19 Device for stabilizing the wavelength of a semiconductor laser
GB8630375A GB2185567B (en) 1985-12-20 1986-12-19 Optical frequency analyzer
DE3643569A DE3643569C2 (en) 1985-12-20 1986-12-19 Optical frequency analyzer
GB8630374A GB2185619B (en) 1985-12-20 1986-12-19 Optical frequency synthesizer/sweeper
US07/293,020 US4912526A (en) 1985-12-20 1989-01-03 Optical frequency synthesizer/sweeper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61011894A JPS62171174A (en) 1986-01-24 1986-01-24 Stabilizer for wavelength of semiconductor laser

Publications (2)

Publication Number Publication Date
JPS62171174A JPS62171174A (en) 1987-07-28
JPH0459796B2 true JPH0459796B2 (en) 1992-09-24

Family

ID=11790438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61011894A Granted JPS62171174A (en) 1985-12-20 1986-01-24 Stabilizer for wavelength of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62171174A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555660B2 (en) * 1988-01-08 1996-11-20 横河電機株式会社 Frequency standard
JP2830189B2 (en) * 1989-10-20 1998-12-02 横河電機株式会社 Variable frequency light source
EP1322006B1 (en) 2001-12-21 2009-08-26 Avago Technologies Fiber IP (Singapore) Pte. Ltd. Apparatus for detecting wavelength drift and method therefor
CN107045362A (en) * 2016-02-07 2017-08-15 渤海大学 The compensation heat radiation infrared light supply system and method for radiance
CN108646805A (en) * 2018-03-13 2018-10-12 上海思愚智能科技有限公司 The temperature control method of electronic equipment, heatable ground cushion and heatable ground cushion
CN108628365A (en) * 2018-05-11 2018-10-09 深圳技术大学(筹) TEC temperature control circuits

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130088A (en) * 1984-07-23 1986-02-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130088A (en) * 1984-07-23 1986-02-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device

Also Published As

Publication number Publication date
JPS62171174A (en) 1987-07-28

Similar Documents

Publication Publication Date Title
EP0401799B1 (en) Length measuring apparatus
JPH0459796B2 (en)
JP5065643B2 (en) Optical frequency stabilization light source and optical frequency stabilization device
JPH0453015Y2 (en)
JPH0482191B2 (en)
JPH0523513B2 (en)
JPH0453014Y2 (en)
JP2501484B2 (en) Wavelength stabilization laser device
JPH051990B2 (en)
JPH02244782A (en) Frequency stabilized semiconductor laser driver
JPH0482070B2 (en)
JP2520740B2 (en) Variable wavelength stabilized light source
JPH0523512B2 (en)
JPH0459797B2 (en)
JPS6152634A (en) Semiconductor laser optical modulating and demodulating system
JP2997557B2 (en) Frequency stabilized light source with narrow linewidth oscillation frequency spectrum
JPS62162382A (en) Highly-stabilized semiconductor laser light source
JPH0331089Y2 (en)
JPH04155878A (en) Frequency stabilizing device for semiconductor laser
JPH10256636A (en) Practical frequency stabilizer of yag-shg laser
JP2830189B2 (en) Variable frequency light source
JPH05275788A (en) Frequency-stabilized semiconductor laser
JPH04158591A (en) Frequency stabilized light source
JPH0462477B2 (en)
JPS63137494A (en) Frequency stabilizer for semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees