JP2997557B2 - Frequency stabilized light source with narrow linewidth oscillation frequency spectrum - Google Patents

Frequency stabilized light source with narrow linewidth oscillation frequency spectrum

Info

Publication number
JP2997557B2
JP2997557B2 JP3093215A JP9321591A JP2997557B2 JP 2997557 B2 JP2997557 B2 JP 2997557B2 JP 3093215 A JP3093215 A JP 3093215A JP 9321591 A JP9321591 A JP 9321591A JP 2997557 B2 JP2997557 B2 JP 2997557B2
Authority
JP
Japan
Prior art keywords
frequency
laser
semiconductor laser
absorption
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3093215A
Other languages
Japanese (ja)
Other versions
JPH04303981A (en
Inventor
功 小林
茂 衣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP3093215A priority Critical patent/JP2997557B2/en
Publication of JPH04303981A publication Critical patent/JPH04303981A/en
Application granted granted Critical
Publication of JP2997557B2 publication Critical patent/JP2997557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、発振周波数が安定化し
た、狭い線幅の発振周波数スペクトルをもつ周波数安定
化光源(以下、周波数安定化光源という。)に関する。
更に、詳しく述べれば、吸収セルと、光周波数シフタと
半透鏡とを用いて構成した光路手段に半導体レーザから
のレーザ光を通過させ、線形吸収スペクトル線のスロー
プ上に飽和吸収線を立たせるようにして飽和分光を行
い、この飽和吸収線の中心周波数にレーザ周波数を安定
化させ、かつ、線形吸収スペクトル線のスロープをFM
/AM変換器として利用しレーザ線幅を狭くした、周波
数安定化光源に関する。本発明の産業上の利用分野とし
ては、各種光計測用光源を始め、高精度光周波数基準光
源、物理・化学計測用安定化光源、コヒーレント光通信
用光源等に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency-stabilized light source (hereinafter, referred to as a frequency-stabilized light source) having a stable oscillation frequency and an oscillation frequency spectrum having a narrow line width.
More specifically, the laser beam from the semiconductor laser is passed through an optical path means configured using an absorption cell, an optical frequency shifter, and a semi-transparent mirror, and a saturated absorption line is formed on a slope of a linear absorption spectrum line. Is performed, and the laser frequency is stabilized at the center frequency of the saturated absorption line, and the slope of the linear absorption spectrum line is set to FM.
The present invention relates to a frequency stabilized light source which is used as an / AM converter and has a narrow laser line width. INDUSTRIAL APPLICABILITY The present invention is applied to various light measurement light sources, high-precision optical frequency reference light sources, stabilized light sources for physical and chemical measurements, light sources for coherent optical communication, and the like.

【0002】[0002]

【従来技術】従来技術として、同一出願人等による「周
波数安定化光源(特願平1−53722号、特開平2−
234484号)がある。この従来技術は、半導体レー
ザのレーザ周波数を、原子又は分子の線形吸収スペクト
ル線のスロープを用いることで安定化を行っている。更
に、詳しく述べれば、レーザ光を吸収セル内に透過させ
た後、これを検出器で受光し、その受光した光の光強度
を電気信号に変換することにより、レーザ周波数と電気
信号値とを対応させ、基準周波数に対応する基準値と実
際の電気信号値とを比較し、その差を零にするように電
気的に負帰還をかけ、レーザ周波数を基準周波数にロッ
クさせている。この方法は、差動型周波数安定化法と言
われており、この方法を用いてレーザ周波数の安定化を
行っている。しかし、原子又は分子の線形吸収スペクト
ル線は温度変化によって、その線幅や強度が変化してし
まうために安定化される基準周波数が変化するので、そ
れに伴って半導体レーザの発振周波数も変化してしまう
という欠点があった。その欠点を補うものとして、同一
出願人等による「周波数安定化レーザ光源」(特願平2
−25847号)があるが、これは、超微細準位による
飽和吸収線が線形吸収スペクトル線のスロープに立つ原
子を光周波数基準とした場合に、半導体レーザ光の発振
周波数を、その飽和吸収線に安定化させ、同時に線形吸
収スペクトル線のスロープを用いてレーザ線幅を狭くす
るものであった。しかし、この従来技術では、超微細準
位を持たない原子又は分子においては、飽和吸収線が線
形吸収スペクトル線の底に立つため、線形吸収スペクト
ル線を用いてレーザ線幅を狭くすることができないとい
う欠点があった。
2. Description of the Related Art As a prior art, a frequency-stabilized light source (Japanese Patent Application No. 1-53722;
No. 234484). In this prior art, the laser frequency of a semiconductor laser is stabilized by using a slope of a linear absorption spectrum line of an atom or a molecule. More specifically, after transmitting the laser light into the absorption cell, the laser light is received by a detector, and the light intensity of the received light is converted into an electric signal, whereby the laser frequency and the electric signal value are converted. The laser frequency is locked to the reference frequency by comparing the reference value corresponding to the reference frequency with the actual electric signal value, and electrically performing negative feedback so as to make the difference zero. This method is called a differential frequency stabilization method, and the laser frequency is stabilized using this method. However, a linear absorption spectrum line of an atom or a molecule changes its line width and intensity due to a change in temperature, so that the stabilized reference frequency changes, so that the oscillation frequency of the semiconductor laser also changes. There was a disadvantage that it would. To compensate for the disadvantage, a frequency-stabilized laser light source by the same applicant (Japanese Patent Application No.
This is because the oscillation frequency of the semiconductor laser light is expressed by the saturation absorption line of an atom whose saturation absorption line due to the hyperfine level stands on the slope of the linear absorption spectrum line. , And at the same time, narrow the laser line width by using the slope of the linear absorption spectrum line. However, according to this conventional technique, in an atom or a molecule having no hyperfine level, the saturation absorption line stands at the bottom of the linear absorption spectrum line, so that the laser line width cannot be reduced using the linear absorption spectrum line. There was a disadvantage.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明は、従
来技術における、つぎの課題を解決した周波数安定化光
源を提供することを目的とする。 (1)差動型によりレーザ周波数の安定化を行う場合、
原子又は分子を封入した吸収セルの温度変化で線形吸収
スペクトル線の線幅や強度が変化してしまうために、半
導体レーザのレーザ周波数を安定化しようとする特定周
波数が変化し、それに伴い安定化される半導体レーザの
レーザ周波数も変化してしまうこと。 (2)さらに、超微細準位を持たない原子又は分子の飽
和吸収線に安定化する場合、飽和吸収線が線形吸収スペ
クトル線の底に立つため、同時にレーザ線幅を狭くする
ことができないこと。
SUMMARY OF THE INVENTION An object of the present invention is to provide a frequency stabilized light source which solves the following problems in the prior art. (1) When stabilizing the laser frequency by the differential type,
Since the line width and intensity of the linear absorption spectrum line change due to the temperature change of the absorption cell containing atoms or molecules, the specific frequency for stabilizing the laser frequency of the semiconductor laser changes, and the stabilization occurs accordingly. The laser frequency of the semiconductor laser to be changed. (2) Further, in the case of stabilizing to a saturated absorption line of an atom or a molecule having no ultrafine level, the saturation absorption line stands at the bottom of the linear absorption spectrum line, so that the laser line width cannot be narrowed at the same time. .

【0004】[0004]

【課題を解決するための手段及び作用】したがって、本
発明においては、上述した(1)、(2)の課題に対し
て、つぎの技術的手段を取ることで特有の作用を持つ。 (1)光周波数シフタを光路中に加えることにより、線
形吸収スペクトル線のスロープ上に飽和吸収線を立た
せ、レーザ周波数を飽和吸収線の中心周波数に安定化さ
せることで、温度変化により生ずる線形吸収スペクトル
線の線幅や強度の変化による安定化しようとする特定周
波数の変化を防ぐことができる。 (2)(a)半導体レーザ光を、超微細構造を持たない
原子又は分子を封入した吸収セル内を透過させた後、光
周波数シフタにより、その透過した該半導体レーザ光の
レーザ周波数をシフトさせ、再び吸収セル内を同一光路
で透過させることで飽和吸収線を線形吸収スペクトル線
のスロープ上に立たせることができ、超微細構造を持つ
原子又は分子の飽和吸収スペクトル線と同じ効果を得る
ようにし、(1)に示したように、この飽和吸収線の中
心周波数にレーザ周波数を安定化させた。(b)同時
に、線形吸収スペクトル線のスロープを用いて効率良く
FM/AM信号変換することにより、レーザ周波数の安
定化と同時にレーザ線幅を狭くすることができる。
Therefore, in the present invention, the following technical means can be applied to the above-mentioned problems (1) and (2) to achieve a specific operation. (1) By adding an optical frequency shifter in the optical path, a saturated absorption line is made to stand on the slope of the linear absorption spectrum line, and the laser frequency is stabilized at the center frequency of the saturated absorption line, so that linear absorption caused by a temperature change is obtained. It is possible to prevent a change in a specific frequency to be stabilized due to a change in the line width or intensity of the spectral line. (2) (a) After transmitting the semiconductor laser light through an absorption cell in which atoms or molecules having no ultrafine structure are enclosed, the laser frequency of the transmitted semiconductor laser light is shifted by an optical frequency shifter. By transmitting the same light path again through the absorption cell, the saturated absorption line can be made to stand on the slope of the linear absorption spectrum line, so that the same effect as the saturation absorption spectrum line of the atom or molecule having the hyperfine structure can be obtained. Then, as shown in (1), the laser frequency was stabilized at the center frequency of the saturated absorption line. (B) At the same time, by efficiently converting the FM / AM signal using the slope of the linear absorption spectrum line, the laser line width can be narrowed while the laser frequency is stabilized.

【0005】[0005]

【実施例】本発明に係る周波数安定化光源の一実施例を
図1に示す。半導体レーザ1で発振されたレーザ光を、
1/2波長板2を透過した後、偏光ビームスプリッタ3
により、その水平偏波光をb方向に、その垂直偏波光を
a方向に分岐させる。半導体レーザ1からのレーザ光は
直線偏波光であるが、1/2波長板2を調整することに
よりa方向とb方向の分岐比を決定できる。この図1で
は、レーザ光の進路を2本の実線で成る矢印で示した。
a方向に分岐されたレーザ光(垂直偏波光)は出力光と
して利用し、b方向に分岐されたレーザ光(水平偏波
光)は1/4波長板4を透過させる。b方向に分岐され
たレーザ光は直線偏波光であるため、1/4波長板4を
透過させることにより円偏波光に変わる。これが半透鏡
5で反射された後、1/4波長板4を逆方向から透過す
ることにより、該円偏波光は、再び該直線偏波光に戻る
が、偏光方向は垂直偏波となるため、偏光ビームスプリ
ッタ3においてc方向にのみ出射される。
FIG. 1 shows an embodiment of a frequency stabilized light source according to the present invention. The laser light oscillated by the semiconductor laser 1 is
After passing through the half-wave plate 2, the polarization beam splitter 3
Thereby, the horizontally polarized light is branched in the direction b, and the vertically polarized light is branched in the direction a. The laser light from the semiconductor laser 1 is linearly polarized light, but by adjusting the half-wave plate 2, the branching ratio in the a-direction and the b-direction can be determined. In FIG. 1, the path of the laser beam is indicated by two solid arrows.
The laser light (vertically polarized light) branched in the direction a is used as output light, and the laser light (horizontal polarized light) branched in the direction b is transmitted through the quarter-wave plate 4. Since the laser light branched in the direction b is linearly polarized light, it is converted into circularly polarized light by passing through the quarter-wave plate 4. After being reflected by the semi-transparent mirror 5, the circularly-polarized light returns to the linearly-polarized light again by passing through the quarter-wave plate 4 from the opposite direction, but the polarization direction becomes vertical polarization. The light is emitted from the polarization beam splitter 3 only in the direction c.

【0006】1/2波長板2、偏光ビームスプリッタ
3、1/4波長板4の組み合わせ(光路手段8)によ
り、図1において、d方向から入射したレーザ光は、a
方向、b方向に分岐されるが、b方向から戻ってきたレ
ーザ光は、c方向にのみ出射される。b方向に出射され
たレーザ光を、1/4波長板4を透過した後、吸収セル
6内に透過させる。
In FIG. 1, the laser light incident from the direction d is a due to the combination of the half-wave plate 2, the polarizing beam splitter 3, and the quarter-wave plate 4 (optical path means 8).
Although the laser beam is branched in the directions b and b, the laser beam returning from the direction b is emitted only in the direction c. The laser light emitted in the direction b is transmitted through the quarter-wave plate 4 and then transmitted through the absorption cell 6.

【0007】吸収セル6の中には、例えばアセチレンの
ような超微細準位を持たない原子又は分子が封入されて
いる。吸収セル6内を透過した透過レーザ光は、光周波
数シフタ7により周波数シフトされた後、半透鏡5によ
り、その一部が同一光路上に反射される。
In the absorption cell 6, atoms or molecules having no ultrafine level such as acetylene are sealed. The transmitted laser light transmitted through the absorption cell 6 is frequency-shifted by the optical frequency shifter 7 and then partially reflected on the same optical path by the semi-transparent mirror 5.

【0008】光周波数シフタ7における周波数シフト量
をΔf、超微細準位を持たない原子又は分子の線形吸収
の中心周波数をfp、光速をC、原子又は分子の速度の
光軸成分をVとする。レーザ周波数Δf(=fp−Δ
f)のレーザ光を吸収セル6内に透過させれば、レ−ザ
光は、光軸方向の速度成分VがΔf=−fp(V/C)
なる関係式を満たす原子又は分子と反応して吸収され
る。この場合、吸収セル6内への透過光量を充分大きく
し、飽和吸収を起こさせておく。
The amount of frequency shift in the optical frequency shifter 7 is Δf, the center frequency of linear absorption of atoms or molecules having no ultrafine level is fp, the speed of light is C, and the optical axis component of the speed of atoms or molecules is V. . Laser frequency Δf (= fp−Δ
When the laser light of f) is transmitted through the absorption cell 6, the laser light has a velocity component V in the optical axis direction of Δf = −fp (V / C).
It reacts with atoms or molecules that satisfy the following relational expression to be absorbed. In this case, the amount of light transmitted into the absorption cell 6 is made sufficiently large to cause saturation absorption.

【0009】吸収セル6内を透過した透過レーザ光を、
光周波数シフタ7を通過させることで周波数シフト量Δ
f(=−fp(V/C))だけ周波数シフトさせ、次に
半透鏡5によって透過レーザ光の一部を反射させ、その
反射レーザ光を光周波数シフタ7に再度透過させること
により、2Δf(=−2fp(V/C))だけ周波数シ
フトされたレーザ周波数fp(1−V/C)の反射レー
ザ光を吸収セル6内に再度透過させる。その様子を図2
に示す。
The transmitted laser light transmitted through the absorption cell 6 is
By passing through the optical frequency shifter 7, the frequency shift amount Δ
The frequency is shifted by f (= −fp (V / C)), then a part of the transmitted laser light is reflected by the semi-transparent mirror 5, and the reflected laser light is transmitted through the optical frequency shifter 7 again, so that 2Δf ( = −2 fp (V / C)), and the reflected laser light of the laser frequency fp (1−V / C) is transmitted through the absorption cell 6 again. Figure 2
Shown in

【0010】すなわち、吸収セル6内を1回目はレーザ
周波数fp(1+V/C)のレーザ光を透過させ、光軸
方向に速度成分Vを持つ原子又は分子に飽和吸収を起こ
させる。2回目は、同一光路上を逆向きにレーザ周波数
fp(1−V/C)の反射レーザ光を透過させること
で、1回目と同様に光軸方向に速度成分Vを持つ原子又
は分子と反応させる。しかし、1回目で飽和吸収が起き
ているため2回目に透過させる反射レーザ光は、殆ど吸
収されずに透過してしまう。このため、光路手段8によ
ってc方向に分岐された反射レーザ光を受光する飽和吸
収量検出器9においては、図3に示すような線形吸収ス
ペクトル線のスロープ上においてfp−Δf(=fp
(1+V/C))の光周波数位置に鋭い突起Aが見られ
る。これが、飽和吸収線である。
That is, the laser beam having the laser frequency fp (1 + V / C) is transmitted through the absorption cell 6 for the first time, and the atoms or molecules having the velocity component V in the direction of the optical axis undergo saturated absorption. In the second time, the reflected laser light having the laser frequency fp (1-V / C) is transmitted in the opposite direction on the same optical path to react with the atoms or molecules having the velocity component V in the optical axis direction as in the first time. Let it. However, since the saturated absorption occurs at the first time, the reflected laser light transmitted at the second time is transmitted without being absorbed. For this reason, in the saturated absorption amount detector 9 which receives the reflected laser light branched in the c direction by the optical path means 8, fp-Δf (= fp) on the slope of the linear absorption spectrum line as shown in FIG.
A sharp protrusion A is seen at the optical frequency position of (1 + V / C). This is the saturated absorption line.

【0011】もし、光周波数シフタ7をΔf1 周波数シ
フトさせるように制御した場合、fp−Δf1 の光周波
数位置に飽和吸収線を立たせることができる。また、光
周波数シフタ7をΔf2 周波数シフトさせるように制御
した場合、fp−Δf2 の光周波数位置に飽和吸収線を
立たせることができる。この様子を図4(a)と図4
(b)に示す。図4では、|Δf1 |<|Δf2 |とし
てある。このように、光周波数シフタ7を制御すること
で、線形吸収スペクトル線のスロープ上に出力される飽
和吸収線すなわち、AとBの位置を変えることが可能で
ある。通常、光周波数シフタ7により周波数シフトでき
る幅は、±(80MHz〜120MHz)程度である。
[0011] If the optical frequency shifter 7 is controlled so as to Delta] f 1 frequency shift, it is possible to stand the saturated absorption lines in the optical frequency positions of fp-Δf 1. Further, when the optical frequency shifter 7 is controlled so as to Delta] f 2 frequency shift, it is possible to stand the saturated absorption lines in the optical frequency positions of fp-Δf 2. This situation is shown in FIG.
(B). In FIG. 4, | Δf 1 | <| Δf 2 |. As described above, by controlling the optical frequency shifter 7, it is possible to change the positions of the saturated absorption lines output on the slope of the linear absorption spectrum line, that is, the positions of A and B. Usually, the width that can be frequency-shifted by the optical frequency shifter 7 is about ± (80 MHz to 120 MHz).

【0012】仮に、超微細準位を持たない原子又は分子
において、飽和分光の際に光周波数シフタ7を用いない
と、次のようになる。 まず始めに、図5に示すように
レーザ周波数fLD(=fp(1+V/C))のレーザ光
を吸収セル6内に透過させた後、そのまま半透鏡5等で
反射させ、再び吸収セル6内に透過させた場合を考え
る。この場合、吸収セル6内への1回目のレーザ光の透
過により、光軸方向に速度成分Vを持つ原子又は分子を
飽和させるが、2回目の反射レーザ光(f(1+V/
C))の透過では、光軸方向に速度成分(−V)を持つ
原子又は分子を反応させるため、飽和吸収線は出力され
ない。
If an optical frequency shifter 7 is not used for saturation spectroscopy in an atom or a molecule having no hyperfine level, the following will occur. First, as shown in FIG. 5, a laser beam having a laser frequency fLD (= fp (1 + V / C)) is transmitted into the absorption cell 6, and then reflected by the semi-transparent mirror 5 or the like, and again inside the absorption cell 6. Consider the case where light is transmitted through In this case, the transmission of the first laser light into the absorption cell 6, but to saturate the atoms or molecules having a velocity component V in the optical axis direction, the second reflected laser beam (f p (1 + V /
In the transmission of C)), a saturated absorption line is not output because atoms or molecules having a velocity component (-V) react in the optical axis direction.

【0013】次に、原子又は分子の線形吸収の中心周波
数fpと同じレーザ周波数fLDのレーザ光を吸収セル6
内に透過させた後、半透鏡5により反射された反射レー
ザ光fを吸収セル内に再透過させた場合について考え
てみる。この場合の概略図を図6に示す。この場合は、
光軸方向の速度成分が零の原子又は分子を反応させるた
め、飽和吸収線Aは線形吸収スペクトル線の底に立ち、
半導体レーザ1のレーザ周波数は図7に示すように線形
吸収スペクトル線の底に安定化されるので、同時にレー
ザ線幅を狭くすることができない。
Next, a laser beam having the same laser frequency fLD as the center frequency fp of the linear absorption of atoms or molecules is applied to the absorption cell 6.
After transmission within, consider the case where re transmitting the reflected laser beam reflected f p in the absorption cell by half mirror 5. FIG. 6 shows a schematic diagram of this case. in this case,
In order to react atoms or molecules having zero velocity component in the optical axis direction, the saturated absorption line A stands at the bottom of the linear absorption spectrum line,
Since the laser frequency of the semiconductor laser 1 is stabilized at the bottom of the linear absorption spectrum line as shown in FIG. 7, the laser line width cannot be reduced at the same time.

【0014】半導体レーザ1のレーザ周波数fLDを、飽
和吸収線Aの中心周波数fRP付近に合わせ、図8に示す
ように、変調信号源10からの変調信号を半導体レーザ
制御器11に入力することにより、レーザ周波数を直接
変調すると、飽和吸収量検出器9には図8に示すような
出力が得られる。この出力を図1に示す位相検波器12
で位相検波すれば、半導体レーザ1のレーザ周波数fLD
に対する飽和吸収線の微分値出力が得られる。この飽和
吸収線の微分値出力なる位相検波器出力Vdを図9に示
す。
The laser frequency fLD of the semiconductor laser 1 is adjusted to be close to the center frequency fRP of the saturated absorption line A, and a modulation signal from a modulation signal source 10 is input to a semiconductor laser controller 11 as shown in FIG. When the laser frequency is directly modulated, an output as shown in FIG. This output is output to the phase detector 12 shown in FIG.
, The laser frequency fLD of the semiconductor laser 1
Is obtained as the differential value output of the saturated absorption line with respect to. FIG. 9 shows a phase detector output Vd which is a differential value output of the saturated absorption line.

【0015】半導体レーザ1のレーザ周波数fLDが飽和
吸収線の中心周波数fRP近傍にあるとき、レーザ周波数
fLDと飽和吸収線の中心周波数fRPとの差周波数と、位
相検波器出力Vdとの間には直線関係があり、この位相
検波器出力Vdを図1に示す半導体レーザ制御器11に
電気的負帰還を行い、常に位相検波器出力Vdが零にな
るようにすれば、図1に示す半導体レーザ1のレーザ周
波数fLDは、飽和吸収線の中心周波数fRPに安定化され
ることになる。半導体レーザ1のレーザ周波数fLDの安
定化を行う帰還ループの周波数制御帯域は、DC〜1k
HZである。
When the laser frequency fLD of the semiconductor laser 1 is near the center frequency fRP of the saturated absorption line, there is a difference between the difference frequency between the laser frequency fLD and the center frequency fRP of the saturated absorption line and the output Vd of the phase detector. If the phase detector output Vd is electrically negatively fed back to the semiconductor laser controller 11 shown in FIG. 1 so that the phase detector output Vd always becomes zero, the semiconductor laser shown in FIG. The one laser frequency fLD is stabilized at the center frequency fRP of the saturated absorption line. The frequency control band of the feedback loop for stabilizing the laser frequency fLD of the semiconductor laser 1 is DC to 1 k
HZ.

【0016】図1に示す半透鏡5を透過したレーザ光
は、線形吸収量検出器13で電気信号に変換されて図1
0に示すような線形吸収スペクトル線として出力され
る。図1に示す半導体レーザ1のレーザ周波数fLDは、
線形吸収スペクトル線のスロープの位置(山の上もしく
は谷の底ではなく、傾斜をもっている位置)にある飽和
吸収線に安定化されているため、光周波数雑音を感度良
く言い換えれば、周波数のゆらぎから大きな振幅をもつ
光強度雑音に変換でき、この出力を半導体レーザ1に電
気的負帰還を行うことにより、レーザ周波数の安定化と
同時に、線形吸収スペクトル線を用いたレーザ線幅の狭
窄化を行うことができる。レーザ線幅の狭窄化を行う帰
還ループの周波数制御帯域は、1kHz〜100MHzであ
る。このように、光周波数シフタ7を用いて制御するこ
とにより、線形吸収スペクトル線のスロープの位置に飽
和吸収線を立たせ、飽和吸収線の中心周波数fRPに半導
体レーザ1のレーザ周波数を安定化させ、同時に線形吸
収スペクトル線のスロープを用いてレーザ線幅を狭くし
た周波数安定化光源を実現することができた。
The laser light transmitted through the semi-transparent mirror 5 shown in FIG. 1 is converted into an electric signal by the linear absorption detector 13 and is converted into an electric signal.
0 is output as a linear absorption spectrum line. The laser frequency fLD of the semiconductor laser 1 shown in FIG.
Since it is stabilized by the saturated absorption line at the slope position of the linear absorption spectrum line (the position where the slope is not at the top of a mountain or at the bottom of a valley), optical frequency noise can be expressed with high sensitivity. The laser output can be converted into light intensity noise having the following characteristics. This output is subjected to electrical negative feedback to the semiconductor laser 1, thereby stabilizing the laser frequency and narrowing the laser line width using the linear absorption spectrum line. it can. The frequency control band of the feedback loop for narrowing the laser line width is 1 kHz to 100 MHz. In this way, by controlling using the optical frequency shifter 7, the saturated absorption line is made to stand at the slope position of the linear absorption spectrum line, and the laser frequency of the semiconductor laser 1 is stabilized at the center frequency fRP of the saturated absorption line, At the same time, a frequency-stabilized light source with a narrow laser linewidth using the slope of the linear absorption spectrum line was realized.

【0017】[0017]

【発明の効果】以上、述べたように、本発明による周波
数安定化光源は、光路中に挿入した光周波数シフタの周
波数シフト量を制御することで飽和吸収線を線形吸収ス
ペクトル線のスロープの位置に立たせ、この飽和吸収線
のピーク周波数に半導体レーザ光の周波数を安定化さ
せ、同時に線形吸収スペクトル線を用いてレーザ線幅を
狭窄化することにより、次に示すような固有の効果を有
する。 (1)温度が変化しても光周波数位置の変化しない飽和
吸収線に半導体レーザのレーザ周波数を安定化させてい
るため、温度変化があっても半導体レーザの発振周波数
は変化しない。 (2)さらに、光周波数シフタを用いて飽和吸収スペク
トル線のスロープの位置に飽和吸収線を立たせ、そこに
半導体レーザのレーザ周波数を安定化させているため、
レーザ周波数の安定化と同時に、線形吸収スペクトル線
のスロープを用いたレーザ線幅を狭くすることができ
た。
As described above, the frequency-stabilized light source according to the present invention controls the frequency shift amount of the optical frequency shifter inserted in the optical path so that the saturated absorption line is shifted to the position of the slope of the linear absorption spectrum line. By stabilizing the frequency of the semiconductor laser light at the peak frequency of the saturated absorption line and narrowing the laser line width using the linear absorption spectrum line, the following specific effects are obtained. (1) Since the laser frequency of the semiconductor laser is stabilized at the saturated absorption line where the optical frequency position does not change even if the temperature changes, the oscillation frequency of the semiconductor laser does not change even if the temperature changes. (2) Further, since the saturated absorption line is made to stand at the slope position of the saturated absorption spectrum line by using the optical frequency shifter, and the laser frequency of the semiconductor laser is stabilized there,
At the same time as the stabilization of the laser frequency, the laser line width using the slope of the linear absorption spectrum line could be narrowed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る周波数安定化光源の一実施例によ
る構成を示した図。
FIG. 1 is a diagram showing a configuration of an embodiment of a frequency stabilized light source according to the present invention.

【図2】吸収セル内ににおけるレ−ザ光の透過と反射の
関係を示した図。
FIG. 2 is a diagram showing a relationship between transmission and reflection of laser light in an absorption cell.

【図3】図2で観測される飽和吸収線を示した図。FIG. 3 is a view showing a saturated absorption line observed in FIG. 2;

【図4】光周波数シフタに対しΔf1 周波数シフト制御
した場合における飽和吸収線を示した図(a)と、光周
波数シフタに対しΔf2 周波数シフト制御した場合にお
ける飽和吸収線を示した図(b)。
FIG. 4A is a diagram illustrating a saturated absorption line when Δf 1 frequency shift control is performed on an optical frequency shifter, and FIG. 4B is a diagram illustrating a saturated absorption line when Δf 2 frequency shift control is performed on an optical frequency shifter. b).

【図5】レーザ光を吸収セル内に透過後、そのまま半透
鏡により反射させ吸収セル内に再透過させた様子を示し
た図。
FIG. 5 is a diagram showing a state in which laser light is transmitted through an absorption cell, then reflected by a semi-transparent mirror, and transmitted again through the absorption cell.

【図6】超微細準位を持たない原子又は分子の線形吸収
の中心周波数と同じレーザ周波数のレーザ光を吸収セル
内に透過後、そのまま半透鏡により反射させ吸収セル内
に再透過させた様子を示した図。
FIG. 6 shows a state in which laser light having the same laser frequency as the center frequency of linear absorption of atoms or molecules having no ultrafine level is transmitted through the absorption cell, reflected by the semi-transparent mirror, and transmitted again through the absorption cell. FIG.

【図7】図6で観測される飽和吸収線と、原子又は分子
の線形吸収スペクトル線を示した図。
FIG. 7 is a diagram showing a saturated absorption line observed in FIG. 6 and a linear absorption spectrum line of an atom or a molecule.

【図8】半導体レーザ制御器に変調信号を出力してレー
ザ周波数を直接変調した場合に飽和吸収量検出器から出
力される波形を示した図。
FIG. 8 is a diagram showing a waveform output from a saturated absorption amount detector when a modulation signal is output to a semiconductor laser controller to directly modulate a laser frequency.

【図9】図8で示す出力を位相検波器で位相検波して得
られる飽和吸収線の微分値出力Vdを示した図。
9 is a diagram showing a differential value output Vd of a saturated absorption line obtained by phase detection of the output shown in FIG. 8 by a phase detector.

【図10】線形吸収スペクトル線を示した図。FIG. 10 is a diagram showing a linear absorption spectrum line.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 1/2波長板 3 偏光ビームスプリッタ 4 1/4波長板 5 半透鏡 6 吸収セル 7 光周波数シフタ 8 光路手段 9 飽和吸収量検出器 10 変調信号源 11 半導体レーザ制御器 12 位相検波器 13 線形吸収量検出器 DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 1/2 wavelength plate 3 Polarization beam splitter 4 1/4 wavelength plate 5 Semi-reflection mirror 6 Absorption cell 7 Optical frequency shifter 8 Optical path means 9 Saturation absorption amount detector 10 Modulation signal source 11 Semiconductor laser controller 12 Phase detection 13 Linear absorption detector

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01S 3/18 H01S 3/133 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01S 3/18 H01S 3/133 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体レーザ(1)と、該半導体レーザか
ら出射されたレーザ光を透過させる、原子または分子を
封入した吸収セル(6)と、該吸収セルを透過したレー
ザ光の周波数を任意の周波数だけシフトさせる光周波数
シフタ(7)と、該光周波数シフタによって周波数シフ
トされたレーザ光の一部を同一光路上に反射させる半透
鏡(5)と、該半透鏡を透過したレーザ光を受光し、該
吸収セルによる線形吸収量を電気信号に変換する線形吸
収量検出器(13)と、該半透鏡によって反射された反
射レーザ光を、再び該光周波数シフタと該吸収セルを同
一光路で透過させることにより線形吸収スペクトル線内
のスロープ上に飽和吸収線を発生させ、前記半導体レー
ザから出射されたレーザ光と異なる方向に出射させる光
路手段(8)と、該光路手段から出射された反射レーザ
光を受光し、飽和吸収量を電気信号に変換する飽和吸収
量検出器(9)と、該半導体レーザへの注入電流を制御
する半導体レーザ制御器(11)と、該半導体レーザか
ら出射されたレーザ光の周波数を該半導体レーザ制御器
を通して変調するための変調信号を出力する変調信号源
(10)と、該変調信号源から出力された変調信号と前
記飽和吸収量検出器から出力された電気信号とにより位
相検波を行い、該半導体レーザから出射されたレーザ光
の周波数と前記飽和吸収線の中心周波数との差に依存し
た信号を出力する位相検波器(12)とから成り、前記
位相検波器から出力された信号を前記半導体レーザ制御
器に電気的に負帰還することにより、前記半導体レーザ
のレーザ周波数を飽和吸収線の中心周波数に安定化させ
るとともに、前記線形吸収量検出器から出力された信号
を周波数雑音信号として前記半導体レーザ制御器に電気
的に負帰還することにより前記半導体レーザのレーザ線
幅を狭くしたことを特徴とする狭い線幅の発振周波数ス
ペクトルをもつ周波数安定化光源。
1. A semiconductor laser (1), an absorption cell (6) in which atoms or molecules are sealed for transmitting a laser beam emitted from the semiconductor laser, and a frequency of the laser beam transmitted through the absorption cell is arbitrarily set. An optical frequency shifter (7) that shifts the laser light by the frequency described above, a semi-transparent mirror (5) that reflects a part of the laser light frequency-shifted by the optical frequency shifter on the same optical path, and a laser light transmitted through the semi-transparent mirror. A linear absorption detector (13) for receiving the light and converting the linear absorption by the absorption cell into an electric signal; and transmitting the reflected laser light reflected by the semi-transparent mirror again to the optical frequency shifter and the absorption cell in the same optical path. An optical path means (8) for generating a saturated absorption line on a slope within the linear absorption spectrum line by transmitting the laser beam in a direction different from the laser beam emitted from the semiconductor laser; A saturated absorption amount detector (9) for receiving the reflected laser light emitted from the optical path means and converting the saturated absorption amount into an electric signal; and a semiconductor laser controller (11) for controlling an injection current to the semiconductor laser. A modulation signal source (10) for outputting a modulation signal for modulating the frequency of laser light emitted from the semiconductor laser through the semiconductor laser controller; a modulation signal output from the modulation signal source; A phase detector (12) that performs phase detection based on the electric signal output from the quantity detector and outputs a signal that depends on the difference between the frequency of the laser light emitted from the semiconductor laser and the center frequency of the saturated absorption line. ), The signal output from the phase detector is electrically negatively fed back to the semiconductor laser controller, so that the laser frequency of the semiconductor laser is set at the center of the saturated absorption line. The laser line width of the semiconductor laser is reduced by stabilizing the wave number and electrically negatively feeding back the signal output from the linear absorption detector as a frequency noise signal to the semiconductor laser controller. A frequency-stabilized light source having a narrow linewidth oscillation frequency spectrum.
JP3093215A 1991-03-29 1991-03-29 Frequency stabilized light source with narrow linewidth oscillation frequency spectrum Expired - Fee Related JP2997557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3093215A JP2997557B2 (en) 1991-03-29 1991-03-29 Frequency stabilized light source with narrow linewidth oscillation frequency spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3093215A JP2997557B2 (en) 1991-03-29 1991-03-29 Frequency stabilized light source with narrow linewidth oscillation frequency spectrum

Publications (2)

Publication Number Publication Date
JPH04303981A JPH04303981A (en) 1992-10-27
JP2997557B2 true JP2997557B2 (en) 2000-01-11

Family

ID=14076342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3093215A Expired - Fee Related JP2997557B2 (en) 1991-03-29 1991-03-29 Frequency stabilized light source with narrow linewidth oscillation frequency spectrum

Country Status (1)

Country Link
JP (1) JP2997557B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3716574B2 (en) * 1997-10-07 2005-11-16 株式会社ニコン Method of predicting durability of optical member against excimer laser irradiation and method of selecting quartz glass optical member
EP3511728A1 (en) * 2018-01-12 2019-07-17 Koninklijke Philips N.V. Single-point dixon method for fat-water separation in chemical exchange saturation transfer magnetic resonance imaging

Also Published As

Publication number Publication date
JPH04303981A (en) 1992-10-27

Similar Documents

Publication Publication Date Title
US4856899A (en) Optical frequency analyzer using a local oscillator heterodyne detection of incident light
AU2007302314B2 (en) Method and device for generating a synthetic wavelength
GB2187592A (en) Semiconductor laser wavelength stabilizer
CN112366515B (en) Bidirectional beam expansion frequency stabilization method and device for cold atom interferometer
Bertinetto et al. Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method
CN110658635A (en) Laser polarization beam control and synthesis system based on optical heterodyne phase locking
JP2997557B2 (en) Frequency stabilized light source with narrow linewidth oscillation frequency spectrum
US7420689B2 (en) Method for determining the refractive index during interferometric length measurement and interferometric arrangement therefor
US7006542B2 (en) System and method for stabilizing a laser output frequency
US3747004A (en) Injection-locked laser stabilizer
JP2012513617A (en) Laser system with frequency servo
CN115102031A (en) Device and method for adjusting output frequency of laser based on atomic transition
CN118198843A (en) Laser autocorrelation phase-locking frequency stabilization device and method based on Mach-Zehnder interferometer
Wu et al. Phase noise reduction by optical phase-locked loop for a coherent bichromatic laser based on the injection-locking technique
JP3880791B2 (en) High-precision optical frequency marker generation method and apparatus
JP2612919B2 (en) Laser oscillation frequency stabilizer
JP2986239B2 (en) Frequency stabilized light source
JP3018615B2 (en) Frequency stabilized laser light source
Chou et al. Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter
JPH0644656B2 (en) Frequency stabilized semiconductor laser device
JPH088392B2 (en) Variable wavelength light source
JP2995854B2 (en) Semiconductor laser oscillator
Tyurikov et al. Saturated dispersion spectroscopy of OsO/sub 4
KR950007488B1 (en) Starilization method and apparatus of laser frequency and power
JPH0453014Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees