JPS60147716A - Optical transmitter of extinction ratio control - Google Patents

Optical transmitter of extinction ratio control

Info

Publication number
JPS60147716A
JPS60147716A JP290984A JP290984A JPS60147716A JP S60147716 A JPS60147716 A JP S60147716A JP 290984 A JP290984 A JP 290984A JP 290984 A JP290984 A JP 290984A JP S60147716 A JPS60147716 A JP S60147716A
Authority
JP
Japan
Prior art keywords
waveguide
output
signal
modulator
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP290984A
Other languages
Japanese (ja)
Inventor
Katsumi Emura
克己 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP290984A priority Critical patent/JPS60147716A/en
Publication of JPS60147716A publication Critical patent/JPS60147716A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To hold an extinction ratio optimum without loss of signal light for variation of the ambient temperature by using the first waveguide output light of a waveguide-type optical modulator is a transmission signal light and detecting variation of the output of the second waveguide output light to control a bias point of the modulator. CONSTITUTION:An output light 2 of a transmission light source 1 is made incident on a waveguide-type optical modulator 3. A waveguide output 4 of the modulator 3 has the amplitude modulated by a modulating signal 5 and is used as the transmission signal. A waveguide output 6 of the modulator 3 is made incident on an optical fiber 7 and is led to a photodetector 8. An average output voltage 9 of the detector 8 is compared with a reference signal 11 by a comparator 10, and an output error signal 12 passes a modulator bias control circuit 13 to become a feedback signal 14, and the bias level of the modulator 3 is set to an optimum value. Thus, an extinction ratio is held optimum without loss of the signal light for variation of the ambient temperature.

Description

【発明の詳細な説明】 、 (発明の属する技術分野) 本発明は光通信用装置に関しさらに詳しくは送信信号の
消光比を一定値、特に最適値に保つ光信号送信装置に関
するものである。
TECHNICAL FIELD The present invention relates to an optical communication device, and more particularly to an optical signal transmitting device that maintains the extinction ratio of a transmitted signal at a constant value, particularly at an optimal value.

(従来技術の説明) 従来、光通信用の光源としては、主に半導体レーザが用
いられ、てきた。半導体レーザには、コンパクトで直接
強度変調が可能であるというメリットがあるが、直接変
調時に注入電流の変化にともなって発振周波数が変化′
するのでARK ヘテロダイン検波、P8にへテ關ダイ
ン検波等を用いるコヒーレント光伝送には通常、外部変
調器が用いられている。その外部変調器としては一般に
高速変調が可能な電気光学変調器が用いられているが、
この電気光学変調器には温度変化にともなう焦電効果等
によシ消光比が変化し、特に消光比が悪−ときには信号
復調時に不要な直流成分が生じ受信感度が悪くなるとい
う欠点があった。
(Description of Prior Art) Conventionally, semiconductor lasers have been mainly used as light sources for optical communications. Semiconductor lasers have the advantage of being compact and capable of direct intensity modulation, but during direct modulation, the oscillation frequency changes as the injected current changes.
Therefore, an external modulator is usually used for coherent optical transmission using ARK heterodyne detection, P8 heterodyne detection, etc. Generally, an electro-optic modulator capable of high-speed modulation is used as the external modulator.
This electro-optic modulator has the disadvantage that the extinction ratio changes due to pyroelectric effects caused by temperature changes, and when the extinction ratio is particularly poor, unnecessary DC components are generated during signal demodulation, resulting in poor reception sensitivity. .

(発明の目的) 本発明の目的は、前記した従来の欠点を解決して消光比
を一定値特に最適値に保つ、外部変調器を用いた光送信
装置を提供することにある。
(Object of the Invention) An object of the present invention is to provide an optical transmitter using an external modulator, which solves the above-mentioned conventional drawbacks and keeps the extinction ratio at a constant value, particularly an optimum value.

(発明の構成) 本発明の消光比制御光送信装置は、光源と、第1及び第
2の導波路を持ち第1.第2の一波路の結合を制御して
光源からの光の変調を行なう導波路形光変調器を含み、
この導波路形光変調器の第1の導波路からの出力光を送
信信号光とする光送信装置に1導波路形光変調器のバイ
アス点の変動を第2の導波路からの出力光の出力変動に
よシ検出する変動検出部と変動検出部から出力される誤
差信号によシ導波路形光変調器のバイアス点を制御する
制御部を加えるととによル得られる。
(Structure of the Invention) An extinction ratio controlled optical transmitter of the present invention includes a light source, first and second waveguides, and a first waveguide. a waveguide-type optical modulator that modulates light from a light source by controlling coupling of a second waveguide;
An optical transmission device that uses the output light from the first waveguide of this waveguide type optical modulator as the transmission signal light changes the bias point of the first waveguide type optical modulator to the output light from the second waveguide. This can be obtained by adding a variation detection section that detects the output variation and a control section that controls the bias point of the waveguide optical modulator based on the error signal output from the variation detection section.

(発明の原理) 次忙図面を用いて本発明の詳細な説明する〇第1図はL
 i N b Osを用いた導波路形光変調器の印加電
圧封筒1、第2の導波路の透過出力特性を示しえもので
ある。また、第2図はバイアス点の変化に対する第2の
導波路の平均出力の変化を示したものである。ここで導
波路形光変調器のバイアス電圧を第1図中のa点に設定
し、a点す点間で2値振幅変調を行なう場合を考える。
(Principle of the invention) Detailed explanation of the present invention using the following drawings: Figure 1 is L
This figure shows the transmitted output characteristics of the applied voltage envelope 1 and the second waveguide of a waveguide optical modulator using iNbOs. Moreover, FIG. 2 shows the change in the average output of the second waveguide with respect to the change in the bias point. Let us now consider the case where the bias voltage of the waveguide optical modulator is set at point a in FIG. 1, and binary amplitude modulation is performed between points a and a.

この場合には消光比はほぼ0となってお9理想的な信号
を送信する仁とが可能である。ところが温度変動によっ
てバイアス点が32点に変化したとすると送信出力はa
、bの2点に対応した出力となり信号復調導波路の平均
出力も、第2図中のe点からe′点に変化する。このe
点とe′点の出力の差によシ光変調器のバイアス点をも
とに戻すような制御信号を作シ出し、導波路形光変調器
のバイアス電圧、周囲温度等にフィードバックすれば消
光比を常に最適値に保つことができる。ここでバイアス
電圧を制御する場合を例にとって詳しく説明する。第2
の導波路の平均出力を光ファイバ等を介して光検出器で
検出する。この光検出器の出力電圧を、消光比が最適に
なるときの電圧レベルと比較しその差信号をバイアス電
圧にフィードバックする。このとき第2図中のe′点の
方向にバイアス点がずれた場合捉バイアス電圧を下げる
ようにフィードバック信号の符号を定めておけばバイア
ス点は消光比が最適になるe点に安定化される。
In this case, the extinction ratio becomes almost 0, making it possible to transmit an ideal signal. However, if the bias point changes to 32 points due to temperature fluctuation, the transmission output will be a
, b, and the average output of the signal demodulation waveguide also changes from point e to point e' in FIG. This e
By generating a control signal that returns the bias point of the optical modulator to its original state based on the difference between the outputs at point and point e', and feeding it back to the bias voltage of the waveguide optical modulator, ambient temperature, etc., extinction can be achieved. The ratio can always be kept at the optimum value. Here, a case in which the bias voltage is controlled will be explained in detail by taking as an example. Second
The average output of the waveguide is detected by a photodetector via an optical fiber or the like. The output voltage of this photodetector is compared with the voltage level at which the extinction ratio becomes optimal, and the difference signal is fed back to the bias voltage. At this time, if the bias point shifts in the direction of point e' in Figure 2, if the sign of the feedback signal is determined to lower the captured bias voltage, the bias point will be stabilized at point e, where the extinction ratio is optimal. Ru.

(実施例) 次に実施例によシ本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail by way of examples.

第3図は本発明の第1の実施例を説明するためのブロッ
ク図である。
FIG. 3 is a block diagram for explaining the first embodiment of the present invention.

送信光源1の出力光2は導波路形光変調器3に入射され
る。導波路形光変調器3の第1導波路出力4は変調信号
5で振幅変調されて、送信(it号として利用される。
Output light 2 from the transmitting light source 1 is input to a waveguide type optical modulator 3 . The first waveguide output 4 of the waveguide type optical modulator 3 is amplitude-modulated with a modulation signal 5 and used as a transmission (IT signal).

導波路形光変調器3の第2の導波路出力eti光ファイ
バ7に入射され、光検出器8に導かれる。光検出器8の
平均出力回圧9は比較器10によって基準信号11と比
較され、その出力誤差信号12は変調器バイアス回路]
3を通してフィードバック信号14となり導波路形光変
調器3のバイアスレベルが最適値に設定され常に消光比
が最適値に保たれる光送信装置が実現される。
The second waveguide output eti of the waveguide type optical modulator 3 enters the optical fiber 7 and is guided to the photodetector 8. The average output voltage 9 of the photodetector 8 is compared with a reference signal 11 by a comparator 10, and its output error signal 12 is sent to the modulator bias circuit]
3 becomes a feedback signal 14, and the bias level of the waveguide optical modulator 3 is set to the optimum value, thereby realizing an optical transmitter in which the extinction ratio is always kept at the optimum value.

この実施例において送信光源1としては半導体レーザを
用いた。導波路形光変調器3としては、導波路を2本も
つLiNb0.方向性結合形光変調器を用い、100M
b/8の振幅変調を行なった。光検出器8としてはフォ
トダイオードを用い比較器】Oは差動増幅器を用いて構
成した。
In this embodiment, a semiconductor laser was used as the transmission light source 1. As the waveguide type optical modulator 3, a LiNb0. 100M using directional coupling type optical modulator
Amplitude modulation of b/8 was performed. A photodiode was used as the photodetector 8, and a comparator O was constructed using a differential amplifier.

実際にこの光送信装置を用いて1ooMb/sの信号の
伝送を行なった。この時光送信装置の周囲温度が1σC
以上にわたって変化したにもかかわらず、L f N 
b Os方向性結合形光変調器のバイアス電圧が温度変
化忙ともなって変化し、出力信号の消光比は常に0.0
1 以下に保たれた。このため、光ヘテロダイン検波時
においても消光比劣化による受信感度の劣化を1dB以
内におさえることができた。
This optical transmitter was actually used to transmit a signal at a rate of 1ooMb/s. At this time, the ambient temperature of the optical transmitter is 1σC
Despite the above changes, L f N
b The bias voltage of the Os directionally coupled optical modulator changes as the temperature changes, and the extinction ratio of the output signal is always 0.0.
It was kept below 1. Therefore, even during optical heterodyne detection, it was possible to suppress the deterioration in receiving sensitivity due to extinction ratio deterioration to within 1 dB.

第4図は本発明め第2の実施例を説明するためのブロッ
ク図である。この実施例においては第2の導波路出力6
は、レンズ15を介して光検出器8に導かれる。又比較
器10の出力誤差信号12は温度制御回路16を通シ温
度制御信号17となル温度制御素子五8をコントロール
し、導波路形光変調器3の周囲温度を制御する。その他
の構成は第1の実施例と一様である。この実施例におい
てけ温度制御素子18としてベルチェ素子を用い、温度
によシバイアス点のコントロールを行なっているが蕗1
の実施例と同様、出力信号の消光比を常KO,01以下
に保つことができた。
FIG. 4 is a block diagram for explaining a second embodiment of the present invention. In this example, the second waveguide output 6
is guided to the photodetector 8 via the lens 15. Further, the output error signal 12 of the comparator 10 is passed through the temperature control circuit 16 as a temperature control signal 17 to control the temperature control element 58 to control the ambient temperature of the waveguide optical modulator 3. The other configurations are the same as the first embodiment. In this embodiment, a Bertier element is used as the temperature control element 18 to control the bias point depending on the temperature.
As in the example described above, the extinction ratio of the output signal could be kept at or below KO.01.

本発明においては以上の実施例の他にもさまざまな変形
が可能である。例えば導波路形光変i11.9器3とし
ては方向性結合形光変調器の他に1干渉形光変調器、モ
ード変換形光変調器、回折形光変調器を用いる場合にも
同様な消光比制御光送信装置を構成することができる。
In addition to the above-described embodiments, various modifications can be made to the present invention. For example, when using an interferometric optical modulator, a mode conversion optical modulator, or a diffractive optical modulator in addition to a directional coupling optical modulator as the waveguide optical modulator 3, similar extinction occurs. A ratio control optical transmitter can be configured.

又第2の導波路からの検出信号としては平均出力ではな
く信号の交流成分を用いることも可能であるし、符号1
0レベル送信時あるいは符号00レベル送信時のみの出
力レベルをモニターするようにすることも可能である。
It is also possible to use the AC component of the signal instead of the average output as the detection signal from the second waveguide, and it is possible to use the AC component of the signal as the detection signal from the second waveguide.
It is also possible to monitor the output level only when transmitting 0 level or when transmitting code 00 level.

なお、出力誤差信号12を得るだめの基準値号11とし
ては、変調信号Iを分岐し、分岐された変調信号の平均
値を用いることも可能である。
Note that it is also possible to branch the modulated signal I and use the average value of the branched modulated signals as the reference value number 11 for obtaining the output error signal 12.

基準信号11として変調信号の平均値を用いれば、信号
のマーク率変動があっても、このマーク率変動に応じて
基準信号11 と光検出@Hの平均出力電圧9とは同じ
割合で変化するから、出力誤差信号12は変化し々い、
従って変調信号の!−り率変動がある場合でも、安定に
消光比を一定値、特に最適値に制御することが出来る。
If the average value of the modulation signal is used as the reference signal 11, even if there is a signal mark rate fluctuation, the reference signal 11 and the average output voltage 9 of the photodetector@H will change at the same rate according to this mark rate fluctuation. Therefore, the output error signal 12 changes rapidly,
Therefore of the modulated signal! Even when there are fluctuations in the extinction ratio, the extinction ratio can be stably controlled to a constant value, especially to an optimal value.

(発明の効果) 以上のように本発明によりば、外部変調器の周囲温度が
変化しても変調器出力の消光比を一定ρに最適忙保つこ
とができるので消光比劣化が大きな問題となるコヒーレ
ント伝送時等に消光比の影響の少ない光送信装置を提供
することができる。
(Effects of the Invention) As described above, according to the present invention, even if the ambient temperature of the external modulator changes, the extinction ratio of the modulator output can be optimally maintained at a constant ρ, thereby eliminating the problem of extinction ratio deterioration. It is possible to provide an optical transmitter that is less affected by the extinction ratio during coherent transmission and the like.

又本装置では第2の導波路の出力により消光比の変化を
検出するので第1の導波路出力すなわち信号光出力によ
シ消光比の変化を検出する場合に比べ、信号光の損失な
く消光比を制御することができるという利点がある。
In addition, this device detects the change in extinction ratio using the output of the second waveguide, so compared to the case where the change in extinction ratio is detected using the output of the first waveguide, that is, the signal light output, extinction is possible without loss of signal light. The advantage is that the ratio can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するためIc、 LiNb
O5を用へ九導波路形光変調器の印加電圧に対する透過
出力特性を示した図、第2図はバイアス電圧の変化に対
する第2の導波路の平均出力電圧の変化を示した図であ
る。笛3図は本発明の第1の実施例を説明するためのブ
ロック図、第4図は本発明の第2の実施例を説明するた
めのブロック図である。 図において、l・・・送信光源、2・・・出力光、3・
・・導波路形光変調器、4,6・・・導波路出力、5・
−・変調信号、7・・・光ファイバ、8・・・光検出器
、9・・・平均出力電圧、10・・・比較器、11・・
・基準信号、12・・・出力誤差信号、13・・・変調
器バイアス回路、14・・・フィードバック信号、15
・・・レンズ、16・・・温度制御回路、17・・・温
度制御信号、18・・・温度制御素子である。 第2図 バイアス電圧の支イ乙 第5図
FIG. 1 shows Ic, LiNb for detailed explanation of the present invention.
FIG. 2 is a diagram showing the transmitted output characteristics of a nine-waveguide optical modulator using O5 with respect to applied voltage, and FIG. 2 is a diagram showing changes in the average output voltage of the second waveguide with respect to changes in bias voltage. FIG. 3 is a block diagram for explaining the first embodiment of the present invention, and FIG. 4 is a block diagram for explaining the second embodiment of the present invention. In the figure, 1... transmitting light source, 2... output light, 3...
... Waveguide optical modulator, 4, 6... Waveguide output, 5.
- Modulation signal, 7... Optical fiber, 8... Photodetector, 9... Average output voltage, 10... Comparator, 11...
- Reference signal, 12... Output error signal, 13... Modulator bias circuit, 14... Feedback signal, 15
... Lens, 16 ... Temperature control circuit, 17 ... Temperature control signal, 18 ... Temperature control element. Figure 2 Bias voltage support Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1) 光源と、嬉1及び第2の導波路を持ち、前記第
1、第2の導波路の結合を制御して前記光源からの光の
変調を97なう導波路形光変調器を含み、前記導波路形
光変調器の前記第1の導波路からの出力光を送信信号光
とする消光比制御先送4M装置□ において、前記導波路形光変調器のバイアス点の変動を
前記第2の導波路からの田力先の出力変動忙よシ、検出
する変動検出部へ、前記変動検出部から出力される誤差
信号により AiI記導波路形光変調器のバイアス点を
制御する制御部を含むことを特徴とする消光比制御光送
信装置。
(1) A waveguide-type optical modulator that has a light source and first and second waveguides, and modulates the light from the light source by controlling the coupling between the first and second waveguides. In the extinction ratio control forwarding 4M device □, which uses the output light from the first waveguide of the waveguide optical modulator as the transmission signal light, the fluctuation of the bias point of the waveguide optical modulator is A control section that controls the bias point of the AiI waveguide optical modulator using an error signal output from the fluctuation detection section to a fluctuation detection section that detects the output fluctuation from the second waveguide. An extinction ratio controlled optical transmitter comprising:
JP290984A 1984-01-11 1984-01-11 Optical transmitter of extinction ratio control Pending JPS60147716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP290984A JPS60147716A (en) 1984-01-11 1984-01-11 Optical transmitter of extinction ratio control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP290984A JPS60147716A (en) 1984-01-11 1984-01-11 Optical transmitter of extinction ratio control

Publications (1)

Publication Number Publication Date
JPS60147716A true JPS60147716A (en) 1985-08-03

Family

ID=11542480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP290984A Pending JPS60147716A (en) 1984-01-11 1984-01-11 Optical transmitter of extinction ratio control

Country Status (1)

Country Link
JP (1) JPS60147716A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134349A (en) * 1987-11-19 1989-05-26 Tdk Corp Driving circuit for optical waveguide switch
US4938185A (en) * 1987-11-26 1990-07-03 Nissan Motor Co., Ltd. Engine cooling arrangement
JPH04253023A (en) * 1990-03-29 1992-09-08 Hughes Aircraft Co Automatic bias controller for electric/optical modulator and control method thereof
FR2712096A1 (en) * 1993-11-01 1995-05-12 Hitachi Ltd Optical amplifier, optical transmitter (emitter), optical receiver, method of controlling them and method for transmitting a check signal
WO1996029625A1 (en) * 1995-03-22 1996-09-26 Minnesota Mining And Manufacturing Company System for tuning an integrated optical switch element
EP1380874A1 (en) * 2002-07-11 2004-01-14 Agilent Technologies, Inc. - a Delaware corporation - Control loop apparatus and method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218344A (en) * 1975-08-01 1977-02-10 Canon Inc Bias point regulator for photomodulator
JPS5335562A (en) * 1976-09-14 1978-04-03 Victor Co Of Japan Ltd Bias stabilizer of light modulator
JPS58142320A (en) * 1982-02-17 1983-08-24 Fujitsu Ltd Waveguide type optical switch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218344A (en) * 1975-08-01 1977-02-10 Canon Inc Bias point regulator for photomodulator
JPS5335562A (en) * 1976-09-14 1978-04-03 Victor Co Of Japan Ltd Bias stabilizer of light modulator
JPS58142320A (en) * 1982-02-17 1983-08-24 Fujitsu Ltd Waveguide type optical switch

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134349A (en) * 1987-11-19 1989-05-26 Tdk Corp Driving circuit for optical waveguide switch
US4938185A (en) * 1987-11-26 1990-07-03 Nissan Motor Co., Ltd. Engine cooling arrangement
JPH04253023A (en) * 1990-03-29 1992-09-08 Hughes Aircraft Co Automatic bias controller for electric/optical modulator and control method thereof
FR2712096A1 (en) * 1993-11-01 1995-05-12 Hitachi Ltd Optical amplifier, optical transmitter (emitter), optical receiver, method of controlling them and method for transmitting a check signal
WO1996029625A1 (en) * 1995-03-22 1996-09-26 Minnesota Mining And Manufacturing Company System for tuning an integrated optical switch element
US5566263A (en) * 1995-03-22 1996-10-15 Minnesota Mining And Manufacturing Company System for tuning an integrated optical switch element
EP1380874A1 (en) * 2002-07-11 2004-01-14 Agilent Technologies, Inc. - a Delaware corporation - Control loop apparatus and method therefor

Similar Documents

Publication Publication Date Title
US4561119A (en) Optical frequency modulation system
EP0235662B1 (en) Optical transmitter comprising an optical frequency discriminator
US5295013A (en) Optical receiver of direct detection type
US5208817A (en) Modulator-based lightwave transmitter
US4847477A (en) Reducing phase fluctuations in a coherent radiation beam using feedforward control
US5307197A (en) Optical circuit for a polarization diversity receiver
EP0357799B1 (en) Method and apparatus for modulating a semiconductor laser
JPS6128243A (en) Light receiver
US5978129A (en) Wavelength converter for binary optical signals
JP3210061B2 (en) Operating point stabilizer for optical interferometer
AU576678B2 (en) Optical homodyne detection
US6539038B1 (en) Reference frequency quadrature phase-based control of drive level and DC bias of laser modulator
JPS60147716A (en) Optical transmitter of extinction ratio control
US5245461A (en) Analog optical FM receiver
US4234971A (en) Precise RF timing signal distribution to remote stations
US4765738A (en) Method and apparatus of measuring frequency response in an optical receiving system
JPH02165117A (en) Operation stabilizing method for waveguide type optical modulator
JPS63198426A (en) Intermediate frequency stabilization method
JPH0117614B2 (en)
JPH0564490B2 (en)
JPS62258528A (en) Optical transmission equipment
JPS61212932A (en) Phase shift modulation light transmitter
JP2000206474A (en) Optical transmission circuit
JPH05198887A (en) Measurement-control equipment of optical frequency deviation amount of laser
Midwinter Coherent optical communication