JPH0564490B2 - - Google Patents

Info

Publication number
JPH0564490B2
JPH0564490B2 JP59001639A JP163984A JPH0564490B2 JP H0564490 B2 JPH0564490 B2 JP H0564490B2 JP 59001639 A JP59001639 A JP 59001639A JP 163984 A JP163984 A JP 163984A JP H0564490 B2 JPH0564490 B2 JP H0564490B2
Authority
JP
Japan
Prior art keywords
output
waveguide
extinction ratio
signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59001639A
Other languages
Japanese (ja)
Other versions
JPS60145737A (en
Inventor
Katsumi Emura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59001639A priority Critical patent/JPS60145737A/en
Publication of JPS60145737A publication Critical patent/JPS60145737A/en
Publication of JPH0564490B2 publication Critical patent/JPH0564490B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 本発明は光通信用装置に関し、さらに詳しく
は、光送信信号の消光比を最適値に保ちつつ、光
送信信号の出力を安定に保つ光信号送信装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical communication device, and more particularly to an optical signal transmitting device that maintains the extinction ratio of an optically transmitted signal at an optimal value and stabilizes the output of the optically transmitted signal. .

近年コヒーレント光伝送が注目されるようにな
り、送信信号の変調に外部変調器が用いられる可
能性が高まつている。通常外部変調器としては高
速変調が可能な電気光学変調器が用いられている
が、この電気光学変調器には温度変化、焦電効果
等にともなつて消光比が変化し、信号復調時に特
性劣化をもたらすという欠点があつた。また消光
比が変化する変調器の場合、消光比の変化に従つ
て出力の平均レベルが変化するために、光源の出
力変動および光源と光変調器の結合の変動を消光
比の変化による変動と分離して検出することが難
しく、信号光出力の安定化が困難である等の欠点
もあつた。
In recent years, coherent optical transmission has attracted attention, and the possibility of using an external modulator to modulate the transmitted signal is increasing. Usually, an electro-optic modulator capable of high-speed modulation is used as an external modulator, but the extinction ratio of this electro-optic modulator changes due to temperature changes, pyroelectric effects, etc. The drawback was that it caused deterioration. In addition, in the case of a modulator whose extinction ratio changes, the average level of the output changes as the extinction ratio changes. Therefore, fluctuations in the output of the light source and fluctuations in the coupling between the light source and the optical modulator can be considered as fluctuations due to changes in the extinction ratio. It also had drawbacks such as difficulty in separate detection and difficulty in stabilizing signal light output.

そこで、本発明の目的は、前記した従来の欠点
を解決して、信号の消光比を最適値に保ちつつ、
光送信信号の出力を安定に保つ光信号送信装置を
提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned conventional drawbacks and maintain the extinction ratio of the signal at an optimum value.
An object of the present invention is to provide an optical signal transmitter that maintains stable output of an optical transmission signal.

本発明の光信号送信装置は、光源と導波路形光
変調器を含み、導波路形光変調器の第1及び第2
の導波路の結合を制御して光源からの光の変調を
行ない、導波路形光変調器の第1の導波路からの
出力光を送信信号光とする光信号送信装置におい
て、導波路形光変調器の第1の導波路からの出力
光の一部と第2の導波路からの出力を用いて光信
号送信装置の出力の変動を検出する出力変動検出
部と、導波路形光変調器の第1の導波路からの出
力光の一部と第2の導波路からの出力のうちの少
なくとも一方を用いて、光信号送信当該装置の消
光比の変化を検出する消光比変化検出部と、出力
変動検出部からの誤差信号により光信号送信装置
の出力を制御する出力制御部と、消光比変化検出
部からの誤差信号により、光信号送信装置の消光
比を制御する消光比制御部を備える構成になつて
いる。次に図面を用いて本発明の原理を簡単に説
明する。
The optical signal transmitting device of the present invention includes a light source and a waveguide type optical modulator, and includes a first and a second waveguide type optical modulator.
In an optical signal transmitting device that modulates light from a light source by controlling the coupling of waveguides, the output light from the first waveguide of a waveguide optical modulator is used as transmission signal light. an output fluctuation detection section that detects fluctuations in the output of the optical signal transmitter using a portion of the output light from the first waveguide and the output from the second waveguide of the modulator; and a waveguide type optical modulator. an extinction ratio change detection unit that detects a change in the extinction ratio of the optical signal transmission device using at least one of the output light from the first waveguide and the output from the second waveguide; , an output control section that controls the output of the optical signal transmission device using an error signal from the output fluctuation detection section; and an extinction ratio control section that controls the extinction ratio of the optical signal transmission device using the error signal from the extinction ratio change detection section. The structure has been prepared. Next, the principle of the present invention will be briefly explained using the drawings.

第1A図はLiNbO3を用いた導波路形光変調器
の印加電圧対第1、第2の導波路の透過出力特性
を示したものである。また、第1B図は上記、導
波路形光変調器の第1、第2の導波路の透過出力
を合わせた全出力パワーの印加電圧依存性を示し
たものである。第1B図から明らかなように導波
路形光変調器のバイアス点が変化して出力信号の
消光比が変化しても、導波路形光変調器の全出力
パワーはほとんど変化しない。従つてビームスプ
リツター等を用いて第1、第2の導波路からそれ
ぞれ等しい割合で出力を分離し、この分離された
2つの光のパワーの和をモニターすることによ
り、出力の変動を知ることができる。この変動に
対応して導波路形光変調器への入射パワーを制御
することにより光信号送信装置の出力パワーを一
定に保つことができる。
FIG. 1A shows the applied voltage versus transmitted output characteristics of the first and second waveguides of a waveguide optical modulator using LiNbO 3 . Further, FIG. 1B shows the dependence of the total output power, which is the sum of the transmitted outputs of the first and second waveguides of the waveguide type optical modulator, on the applied voltage. As is clear from FIG. 1B, even if the bias point of the waveguide optical modulator changes and the extinction ratio of the output signal changes, the total output power of the waveguide optical modulator hardly changes. Therefore, by using a beam splitter or the like to separate the output from the first and second waveguides in equal proportions, and monitoring the sum of the powers of the two separated lights, it is possible to know the fluctuations in the output. I can do it. By controlling the input power to the waveguide optical modulator in response to this variation, the output power of the optical signal transmitter can be kept constant.

一方、信号出力の消光比は次のようにして最適
値に保つことができる。ここで、導波路形光変調
器のバイアス電圧を第1図中のa点に設定し、a
点、b点間で2値振幅変調を行なう場合を考え
る。この場合には消光比はほぼ0となつており理
想的な信号を送信することが可能である。ところ
が温度変動等によつてバイアス点がa′点に変化し
たとすると送信出力はa′,b′の2点に対応した出
力となり、信号復調時に消光比劣化が生じる。こ
のとき第2の導波路のバイアス点もc点からc′点
に移動している。第2図にこのバイアス点の変化
に対する第2の導波路の平均出力の変化の様子を
示す。バイアス点のa点からa′点への変化に対応
して第2の導波路の平均出力も第2図中のe点か
らe′点に変化する。このe点とe′点の出力の差に
より導波路形光変調器のバイアス点をもとに戻す
ような制御信号を作り出し、導波路形光変調器の
バイアス電圧や周囲温度等にフイードバツクすれ
ば消光比を常に最適値に保つことができる。この
消光比の変化の検出方法として、第1の導波路出
力の平均値を用いる方法、第1の導波路出力の一
部あるいは第2の導波路の出力の交流成分の変
動、あるいはその1次微分を用いる方法、交流成
分と平均出力双方の変動を用いる方法、第1、第
2の導波路平均出力の比を用いる方法等を用いる
こともできる。次に実施例により本発明を詳しく
説明する。
On the other hand, the extinction ratio of the signal output can be maintained at an optimal value as follows. Here, the bias voltage of the waveguide optical modulator is set at point a in FIG.
Let us consider the case where binary amplitude modulation is performed between point and point b. In this case, the extinction ratio is approximately 0, and it is possible to transmit an ideal signal. However, if the bias point changes to point a' due to temperature fluctuations, etc., the transmission output becomes an output corresponding to two points a' and b', and extinction ratio degradation occurs during signal demodulation. At this time, the bias point of the second waveguide has also moved from point c to point c'. FIG. 2 shows how the average output of the second waveguide changes with respect to changes in the bias point. Corresponding to the change in the bias point from point a to point a', the average output of the second waveguide also changes from point e to point e' in FIG. By creating a control signal that returns the bias point of the waveguide optical modulator to its original state based on the difference in output between points e and e', and providing feedback to the bias voltage of the waveguide optical modulator, ambient temperature, etc. The extinction ratio can always be kept at the optimum value. Methods for detecting changes in extinction ratio include methods that use the average value of the first waveguide output, fluctuations in the alternating current component of a part of the first waveguide output or the output of the second waveguide, or its primary It is also possible to use a method using differentiation, a method using fluctuations in both the AC component and the average output, a method using the ratio of the average outputs of the first and second waveguides, and the like. Next, the present invention will be explained in detail with reference to Examples.

第3図は本発明の第1の実施例を説明するため
のブロツク図である。半導体レーザ1の出力光2
はまず導波路形光変調器3に入射される。導波路
形光変調器3は変調信号4で駆動される。導波路
形光変調器3の第1の導波路出力5および第2の
導波路出力6は、反射率の等しい第1のビームス
プリツター7および第2のビームスプリツター8
でそれぞれ第1の参照光9と信号光10および第
2の参照光11と第3の参照光12に分けられ
る。第1の参照光9および第2の参照光11はそ
れぞれ第1の光検出器13および第2の光検出器
14で光電変換され、第1の電気信号15および
第2の電気信号16が得られる。このとき第1の
電気信号15と第2の電気信号16の和が導波路
形光変調器3の全出力パワーに比例した出力にな
るように光電変換時に2つの電気信号レベルの相
対的な大きさの調整を行なつた。第1の電気信号
15および第2の電気信号16は出力変動検出回
路17で第1の基準信号18と比較され、出力誤
差信号19が得られる。この出力誤差信号19は
温度制御回路20を通り、温度制御信号21とな
り温度制御素子22をコントロールして半導体レ
ーザ1の出力を調整し、導波路形光変調器3の出
力の安定化を行なつた。
FIG. 3 is a block diagram for explaining the first embodiment of the present invention. Output light 2 of semiconductor laser 1
is first incident on the waveguide type optical modulator 3. The waveguide type optical modulator 3 is driven by a modulation signal 4. The first waveguide output 5 and the second waveguide output 6 of the waveguide type optical modulator 3 are connected to a first beam splitter 7 and a second beam splitter 8 with equal reflectance.
are divided into a first reference light 9 and a signal light 10, and a second reference light 11 and a third reference light 12, respectively. The first reference light 9 and the second reference light 11 are photoelectrically converted by a first photodetector 13 and a second photodetector 14, respectively, and a first electrical signal 15 and a second electrical signal 16 are obtained. It will be done. At this time, the relative magnitudes of the two electrical signal levels are determined during photoelectric conversion so that the sum of the first electrical signal 15 and the second electrical signal 16 becomes an output proportional to the total output power of the waveguide optical modulator 3. Adjustments were made. The first electrical signal 15 and the second electrical signal 16 are compared with a first reference signal 18 in an output fluctuation detection circuit 17 to obtain an output error signal 19. This output error signal 19 passes through a temperature control circuit 20, becomes a temperature control signal 21, controls a temperature control element 22, adjusts the output of the semiconductor laser 1, and stabilizes the output of the waveguide optical modulator 3. Ta.

一方、第3の参照光12は光フアイバ23に入
射され、第3の光検出器24に導かれる。第3の
光検出器24の平均出力電圧25は比較器26に
よつて消光比を最適に保つための第2の基準信号
27と比較され、それによる消光比誤差信号28
は変調器バイアス回路29を通して電圧フイード
バツク信号30となり、導波路形光変調器3のバ
イアスレベルが最適値に設定されて常に消光比が
最適値に保たれる。
On the other hand, the third reference light 12 is incident on the optical fiber 23 and guided to the third photodetector 24. The average output voltage 25 of the third photodetector 24 is compared by a comparator 26 with a second reference signal 27 for keeping the extinction ratio optimal, resulting in an extinction ratio error signal 28.
becomes a voltage feedback signal 30 through the modulator bias circuit 29, and the bias level of the waveguide optical modulator 3 is set to the optimum value, so that the extinction ratio is always kept at the optimum value.

この実施例において、導波路形光変調器3とし
ては、導波路を2本もつLiNbO3方向性結合形光
変調器を用い100Mb/sの振幅変調を行なつた。
ビームスプリツター7,8としては反射率が5%
のガラス板を用いた。また、光検出器13,1
4,24としてはフオトダイオードを用い、温度
制御素子22としてはペルチエ素子を用いた。出
力変動検出回路17は加算器と差動増幅器で構成
し、温度コントロールループは1KHz以下の低周
波域で動作させた。また、比較器26は差動増幅
器で構成し、変調器バイアスのコントロールルー
プは1KHz以上の高周波域で動作させた。実際に
この系で100Mb/sの信号光の送信を行なつた。
このとき光信号送信装置の周囲温度は10℃以上に
わたつて変化したが、半導体レーザのマウントの
温度はペルチエ素子により比較的安定に保たれ、
この結果、光信号送信装置の出力変動は0.1%以
下に抑えられた。またこのとき、周囲温度の変化
にともなつて方向性結合形光変調器のバイアス電
圧がコントロールされ、光変調器のバイアスレベ
ルは常に一定に保たれた。これにより、光送信信
号の消光比が常に0.01以下に保たれていることを
確認した。
In this example, a LiNbO 3 directionally coupled optical modulator having two waveguides was used as the waveguide optical modulator 3 to perform amplitude modulation at 100 Mb/s.
The reflectance for beam splitters 7 and 8 is 5%.
A glass plate was used. In addition, the photodetector 13,1
4 and 24 were used as photodiodes, and as the temperature control element 22, a Peltier element was used. The output fluctuation detection circuit 17 was composed of an adder and a differential amplifier, and the temperature control loop was operated in a low frequency range of 1 KHz or less. Further, the comparator 26 was configured with a differential amplifier, and the modulator bias control loop was operated in a high frequency range of 1 KHz or higher. We actually transmitted signal light at 100 Mb/s using this system.
At this time, the ambient temperature of the optical signal transmitter varied by more than 10°C, but the temperature of the semiconductor laser mount was kept relatively stable by the Peltier element.
As a result, the output fluctuation of the optical signal transmitter was suppressed to 0.1% or less. Also, at this time, the bias voltage of the directional coupling type optical modulator was controlled as the ambient temperature changed, and the bias level of the optical modulator was always kept constant. This confirmed that the extinction ratio of the optical transmission signal was always kept below 0.01.

第4図は本発明の第2の実施例を説明するため
のブロツク図である。この実施例において光源と
しては、He−Neレーザ31を用いた。また第3
の参照光12は、レンズ32によつて第3の光検
出器に導びかれるようにした。またこの実施例で
は、出力変動検出回路17への入力のうち第2の
電気信号16として、第3の参照光12を第3の
光検出器24で受けて得られる出力を、分岐して
得られる分岐出力33を用いた。ただし、このと
き分岐出力33はレベル調節器34により、第1
の電気信号15と相対的なレベルが一致するよう
にレベルの調節を行なつた。また、出力レベルの
安定化は、出力変動検出回路17によつて得られ
る出力誤差信号19でドライバ35を駆動し、光
可変減衰器36の透過率を変えることにより行な
つた。
FIG. 4 is a block diagram for explaining a second embodiment of the present invention. In this example, a He--Ne laser 31 was used as the light source. Also the third
The reference light 12 was guided by a lens 32 to a third photodetector. Furthermore, in this embodiment, the output obtained by receiving the third reference light 12 at the third photodetector 24 is branched as the second electrical signal 16 among the inputs to the output fluctuation detection circuit 17. The branch output 33 was used. However, at this time, the branch output 33 is controlled by the level adjuster 34 to
The level was adjusted so that the relative level matched that of the electrical signal 15. Further, the output level was stabilized by driving the driver 35 with the output error signal 19 obtained by the output fluctuation detection circuit 17 and changing the transmittance of the variable optical attenuator 36.

さらにこの実施例では、比較器26からの消光
比誤差信号28が温度制御回路20を通り、温度
制御信号21となり温度制御素子22としてのペ
ルチエ素子の駆動電流をコントロールして、導波
路形光変調器3の周囲温度を制御するようにし
た。その他の構成は第1の実施例と同様である。
この実施例においては変調信号4を分岐し、それ
によつて得られる、変調信号の平均値に比例した
信号を第2の基準信号27として用いた。この場
合、信号のマーク率変動があつても、このマーク
変変動に応じて第2の基準信号27と、第3の光
検出器24の平均出力電圧25が同じ割合で変化
するので、マーク率変動が消光比誤差信号28に
影響を与えない。このため、この実施例では変調
信号4にマーク率変動があつても、安定に消光比
を0.01以下に保つことができた。また、この時光
信号送信装置の出力変動は第1の実施例と同様に
0.1%以下であつた。
Furthermore, in this embodiment, the extinction ratio error signal 28 from the comparator 26 passes through the temperature control circuit 20, becomes a temperature control signal 21, and controls the driving current of the Peltier element as the temperature control element 22, thereby controlling the waveguide type optical modulation. The ambient temperature of container 3 was controlled. The other configurations are the same as in the first embodiment.
In this embodiment, the modulated signal 4 is branched, and the resulting signal proportional to the average value of the modulated signal is used as the second reference signal 27. In this case, even if there is a change in the mark rate of the signal, the second reference signal 27 and the average output voltage 25 of the third photodetector 24 change at the same rate in accordance with the mark change, so the mark rate changes. Variations do not affect the extinction ratio error signal 28. Therefore, in this example, even if the modulation signal 4 had a variation in mark rate, the extinction ratio could be stably maintained at 0.01 or less. Also, at this time, the output fluctuation of the optical signal transmitter is the same as in the first embodiment.
It was less than 0.1%.

本発明においては、以上の実施例の他にも様々
な変形が可能である。例えば導波路形光変調器3
としては、方向性結合形光変調器の他に干渉形光
変調器、モード変換形光変調器等を用いることも
可能である。又、第2の実施例の方式で出力レベ
ルの制御を行なう場合は、光源としてはHe−Ne
レーザ31の他に半導体レーザ、各種気体レーザ
固体レーザ、発光ダイオード等の使用が可能であ
る。又、光源として半導体レーザ、発光ダイオー
ドを用いる場合には、その注入電流に出力誤差信
号19をフイードバツクして、光信号送信装置の
出力安定化を行なうこともでき、出力安定化の方
法と消光比制御の方法の組合せを変えることによ
り様々な構成で本発明の出力並びに消光比安定化
光信号送信装置を実現することができる。
In the present invention, various modifications other than the above embodiments are possible. For example, waveguide type optical modulator 3
In addition to the directional coupling type optical modulator, it is also possible to use an interference type optical modulator, a mode conversion type optical modulator, etc. In addition, when controlling the output level using the method of the second embodiment, He-Ne is used as the light source.
In addition to the laser 31, semiconductor lasers, various gas lasers, solid state lasers, light emitting diodes, etc. can be used. Furthermore, when a semiconductor laser or a light emitting diode is used as a light source, the output error signal 19 can be fed back to the injected current to stabilize the output of the optical signal transmitter. By changing the combination of control methods, the output and extinction ratio stabilized optical signal transmitter of the present invention can be realized with various configurations.

さらに半導体レーザは、その周囲温度と注入電
流の制御により出力と発振波長の同時安定化が可
能であるので光源として半導体レーザを用いれば
出力レベル、波長、消光比を同時に安定化した光
信号送信装置を得ることもできる。
Furthermore, semiconductor lasers can simultaneously stabilize the output and oscillation wavelength by controlling the ambient temperature and injection current, so if a semiconductor laser is used as a light source, an optical signal transmitter can stabilize the output level, wavelength, and extinction ratio at the same time. You can also get

以上のように本発明によれば、外部変調器の周
囲温度等が変化しても、送信信号の出力レベルを
安定に保ち、消光比を最適に保つ、安定な光信号
送信装置を提供することができる。
As described above, according to the present invention, it is possible to provide a stable optical signal transmitter that maintains a stable output level of a transmitted signal and maintains an optimum extinction ratio even if the ambient temperature of an external modulator changes. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bは本発明の原理を説明するため
に、LiNbO3導波路形光変調器の印加電圧に対す
る透過出力特性を示した図、第2図は光変調時の
光変調器バイアス電圧の変化に対する光変調器の
第2の導波路の平均出力電圧の変化を示した図で
ある。また、第3図は本発明の第1の実施例を説
明するためのブロツク図、第4図は本発明の第2
の実施例を説明するためのブロツク図である。 図において、1……半導体レーザ、3……導波
路形光変調器、4……変調信号、7,8……ビー
ムスプリツター、13,14,24……光検出
器、17……出力変動検出回路、20……温度制
御回路、22……温度制御素子、23……光フア
イバ、26……比較器、29……変調器バイアス
回路、31……He−Neレーザ、32……レン
ズ、34……レベル調節器、35……ドライバ、
36……光可変減衰器、である。
Figures 1A and B are diagrams showing the transmitted output characteristics of a LiNbO 3 waveguide optical modulator with respect to applied voltage in order to explain the principle of the present invention, and Figure 2 is a diagram showing the optical modulator bias voltage during optical modulation. FIG. 3 is a diagram showing a change in the average output voltage of the second waveguide of the optical modulator with respect to a change in . Further, FIG. 3 is a block diagram for explaining the first embodiment of the present invention, and FIG. 4 is a block diagram for explaining the first embodiment of the present invention.
FIG. 2 is a block diagram for explaining an embodiment of the present invention. In the figure, 1... Semiconductor laser, 3... Waveguide optical modulator, 4... Modulation signal, 7, 8... Beam splitter, 13, 14, 24... Photodetector, 17... Output fluctuation Detection circuit, 20... Temperature control circuit, 22... Temperature control element, 23... Optical fiber, 26... Comparator, 29... Modulator bias circuit, 31... He-Ne laser, 32... Lens, 34... Level adjuster, 35... Driver,
36... Optical variable attenuator.

Claims (1)

【特許請求の範囲】[Claims] 1 光源と、導波路形光変調器を含み、前記導波
路形光変調器の第1及び第2の導波路の結合を制
御して前記光源からの光の変調を行ない、前記導
波路形光変調器の前記第1の導波路からの出力光
を送信信号光とする光信号送信装置において、前
記導波路形光変調器の前記第1の導波路からの出
力光の一部と前記第2の導波路からの出力を用い
て当該光信号送信装置の出力の変動を検出する出
力変動検出部と、前記導波路形光変調器の前記第
1の導波路からの出力光の一部と前記第2の導波
路からの出力のうちの少なくとも一方を用いて当
該光信号送信装置の消光比の変化を検出する消光
比変化検出部と、前記出力変動検出部からの誤差
信号により前記光信号送信装置の出力を制御する
出力制御部と、前記消光比変化検出部からの誤差
信号により前記光信号送信装置の消光比を制御す
る消光比制御部を含むことを特徴とする光信号送
信装置。
1 includes a light source and a waveguide-type optical modulator, modulates the light from the light source by controlling the coupling between the first and second waveguides of the waveguide-type optical modulator, and modulates the light from the light source; In an optical signal transmitter that uses output light from the first waveguide of a modulator as transmission signal light, a part of the output light from the first waveguide of the waveguide-type optical modulator and the second an output fluctuation detection unit that detects a fluctuation in the output of the optical signal transmitting device using the output from the waveguide; a portion of the output light from the first waveguide of the waveguide type optical modulator; an extinction ratio change detection section that detects a change in the extinction ratio of the optical signal transmission device using at least one of the outputs from the second waveguide; and an extinction ratio change detection section that detects a change in extinction ratio of the optical signal transmission device using at least one of the outputs from the second waveguide; An optical signal transmitting device comprising: an output control section that controls the output of the device; and an extinction ratio control section that controls the extinction ratio of the optical signal transmitting device based on an error signal from the extinction ratio change detection section.
JP59001639A 1984-01-09 1984-01-09 Optical signal transmitter Granted JPS60145737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59001639A JPS60145737A (en) 1984-01-09 1984-01-09 Optical signal transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59001639A JPS60145737A (en) 1984-01-09 1984-01-09 Optical signal transmitter

Publications (2)

Publication Number Publication Date
JPS60145737A JPS60145737A (en) 1985-08-01
JPH0564490B2 true JPH0564490B2 (en) 1993-09-14

Family

ID=11507092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59001639A Granted JPS60145737A (en) 1984-01-09 1984-01-09 Optical signal transmitter

Country Status (1)

Country Link
JP (1) JPS60145737A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810848B2 (en) * 1986-05-02 1996-01-31 日本電気株式会社 Optical transmitter

Also Published As

Publication number Publication date
JPS60145737A (en) 1985-08-01

Similar Documents

Publication Publication Date Title
US4561119A (en) Optical frequency modulation system
US4805235A (en) Optical transmitter comprising an optical frequency discriminator
EP0444688B1 (en) Optical transmitter
US5900621A (en) Light transmitter having an automatic bias control circuit
JP3445176B2 (en) Optical transmitter
US5208817A (en) Modulator-based lightwave transmitter
US4933929A (en) Wavelength multiplexed optical transmitter for generating constant-amplitude angle-modulated beams to eliminate phase noise in adjacent transmission channels
US7911675B2 (en) Optical modulation device and optical semiconductor device
US4700352A (en) FSK laser transmitting apparatus
JPH04192729A (en) Optical transmitter
JP3210061B2 (en) Operating point stabilizer for optical interferometer
JP2848942B2 (en) Optical transmitter
US5963357A (en) Optical modulator
US4638483A (en) High speed intensity modulated light source
JPH08184790A (en) Ln modulator dc bias circuit
EP0505048A2 (en) Optical FSK modulator
JPH0564490B2 (en)
JPS60147716A (en) Optical transmitter of extinction ratio control
JPH02165117A (en) Operation stabilizing method for waveguide type optical modulator
JPS62258528A (en) Optical transmission equipment
JP2820442B2 (en) Output Waveform Stabilization Method for Electroabsorption Optical Modulator
JP2560528B2 (en) Transmission and reception method for bidirectional optical transmission
JPH0774423A (en) Semiconductor laser device
JPH0876071A (en) Bias voltage control circuit for light external modulator
JPH02284114A (en) Detection of light output intensity of optical modulator and method and device for controlling light output intensity of laser light source device using this method