JPH01228592A - Apparatus for producing ozonated water - Google Patents

Apparatus for producing ozonated water

Info

Publication number
JPH01228592A
JPH01228592A JP5160088A JP5160088A JPH01228592A JP H01228592 A JPH01228592 A JP H01228592A JP 5160088 A JP5160088 A JP 5160088A JP 5160088 A JP5160088 A JP 5160088A JP H01228592 A JPH01228592 A JP H01228592A
Authority
JP
Japan
Prior art keywords
light
tube
ozone
oxygen
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5160088A
Other languages
Japanese (ja)
Other versions
JP2623499B2 (en
Inventor
Tatsumi Hiramoto
立躬 平本
Kuniharu Oono
大埜 邦治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP63051600A priority Critical patent/JP2623499B2/en
Publication of JPH01228592A publication Critical patent/JPH01228592A/en
Application granted granted Critical
Publication of JP2623499B2 publication Critical patent/JP2623499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To efficiently produce ozonated water with a reduced quantity of power by using an ultraviolet lamp sealed with rare gas based on xenon gas as a light emitting tube having a light transmitting region at least in a wavelength region of 150-180nm. CONSTITUTION:A lamp 1 used as an ultraviolet ray source is constituted by sealing rare gas based on xenon gas in a light emitting tube made of polycrystalline ceramic having a light transmitting region at least in a wavelength region of 150-180nm and the total quantity of light contributing to the formation of ozone is made extremely much. Further, the light emitting tube of this lamp is made of polycrystalline ceramic to enhance light transmissivity and light having a wavelength necessary for charged power is emitted to oxygen in large quantities and the ozone forming efficiency in an ultraviolet ray transmittable tube 4 is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、殺菌作用や酸化作用などを有するオゾン水の
製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for producing ozone water having sterilizing and oxidizing effects.

〔従来技術とその問題点〕[Prior art and its problems]

オゾンが水に溶解したオゾン水は1強力な殺菌作用や酸
化作用などを有するので、近年、例えば食品の鮮度を維
持したり保存期間を延長するためや、食品などの洗浄お
よび漂白、冷蔵庫内などの脱臭、更には上下水道水の脱
色や滅菌処理などに幅広く利用されるようになった。と
ころで、従来はオゾンを製造するために、無声放電を用
いる方法と紫外線を用いる方法が利用され来た。無声放
電は、酸素を含む空間内の電極間のグロー放電によって
オゾンを生成させるものであり、オゾンの生成効率は高
いが、使用する空気などを予め乾燥して除湿する必要が
あり、また、オゾン発生量のコントロールが不可能であ
り、更にはN○スも発生する問題点がある。
Ozonated water, which is ozone dissolved in water, has strong bactericidal and oxidizing effects, so in recent years it has been used to maintain food freshness and extend its shelf life, to wash and bleach foods, and to store them in refrigerators. It has come to be widely used for deodorizing water, as well as decolorizing and sterilizing water and sewage water. By the way, conventionally, in order to produce ozone, a method using silent discharge and a method using ultraviolet rays have been used. Silent discharge generates ozone by glow discharge between electrodes in a space containing oxygen, and although the ozone generation efficiency is high, it is necessary to dry and dehumidify the air used beforehand, and ozone There is a problem in that it is impossible to control the amount generated, and furthermore, NOx is also generated.

一方、紫外線によるオゾンの生成機構は次のように考え
られている。
On the other hand, the mechanism by which ozone is produced by ultraviolet rays is thought to be as follows.

0、(空中や水中の酸素)+hν→♂2→20 (1)
(hv=波長200nm以下の光) 0+0バ空中や水中の酸素)+M→○、+M  (2)
(M=N2,02) ここで、低圧水銀ランプは波長が185 nmの光を放
射するので、紫外線源として低圧水銀ランプが用いられ
てきた。しかしながら、低圧水銀ランプから放射する紫
外線は、波長が254nmの光が主であり、1850m
の光は従であって、線スペクトルであるので、その放射
量は僅かであり、投入電力に対する発光効率は2−・3
%程度しかなく、著しく低い。すなわち、オゾンの生成
効率が極めて低い。
0, (oxygen in the air or water) +hν→♂2→20 (1)
(hv = light with a wavelength of 200 nm or less) 0 + 0 oxygen in the air or water) +M → ○, +M (2)
(M=N2,02) Here, since a low-pressure mercury lamp emits light with a wavelength of 185 nm, a low-pressure mercury lamp has been used as an ultraviolet source. However, the ultraviolet rays emitted from low-pressure mercury lamps mainly have a wavelength of 254 nm;
Since the light is a linear spectrum, the amount of radiation is small, and the luminous efficiency with respect to the input power is 2-3.
It is only about %, which is extremely low. That is, the ozone generation efficiency is extremely low.

また、第3図は、式(1)におい工、hνが08に吸収
されるときの吸収係数どり、 vの波長の関係を示すが
、これから分かるように、波長が185nmの光の酸素
に対する吸収効率は低い、このため、185r+mの光
を十分に空気中の酸素に吸収さゼで有効に利用するため
には、低圧水銀ランプよりの放射を受ける空気層を例え
ば20C++1以−トの厚さにする必要があり、装置が
大型化する不具合がある。更には、低圧水銀ランプは、
封入された水銀蒸気圧の環境温度依存性が強く、10〜
60°C近辺の温度では効率よく発光するが、これ以下
の温度では185nmの光の放射量は彬端番J少くなり
、更し−は、点灯してから定常状態になるまでに数十分
のオーダーの時間を要する問題点もある。
In addition, Figure 3 shows the relationship between the absorption coefficient and the wavelength of v when the odor factor hν is absorbed by 08 in equation (1).As can be seen, the absorption of light with a wavelength of 185 nm by oxygen is The efficiency is low. Therefore, in order to effectively utilize the 185r+m light by absorbing it into the oxygen in the air, the air layer that receives the radiation from the low-pressure mercury lamp must be made thicker than, for example, 20C++1. However, there is a problem that the device becomes larger. Furthermore, low-pressure mercury lamps
The vapor pressure of encapsulated mercury has a strong dependence on the environmental temperature, 10~
It emits light efficiently at temperatures around 60°C, but at temperatures below this, the amount of 185nm light emitted decreases, and it takes several tens of minutes to reach a steady state after it is turned on. There is also the problem that it takes time to order.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、コンパクトな構造でオゾン水を効率良
く製造でき、環境温度依存性が低くて。
Therefore, the present invention has a compact structure, can efficiently produce ozonated water, and has low dependence on environmental temperature.

かつ除湿の必要性やNOxの発生もないオゾン水製造装
置を提供することを目的とする。
It is an object of the present invention to provide an ozone water production device that does not require dehumidification or generate NOx.

〔発明の構成とその作用〕[Structure of the invention and its effects]

本発明のオゾン水製造装置は、水が充填される容器と、
この容器内に配置された紫外線透過性チューブと、少な
くとも1500m乃至180nmの波長域に光の透過域
を有する多結晶質セラミック製発光管にキセノンガスを
主成分とする希ガスが封入され、チューブ内に配置され
た紫外線ランプと、紫外線ランプを励起発光せしめる電
源装置と、チューブに酸素ないし酸素を含む気体を送風
する手段と、チューブ内のオゾンを含む気体を該容器内
の水に7a解させる手段とを具備する。:とを特徴どす
゛るものである。
The ozone water production device of the present invention includes a container filled with water;
A rare gas mainly composed of xenon gas is sealed in an ultraviolet transmitting tube placed in this container and a polycrystalline ceramic arc tube having a light transmitting region in a wavelength range of at least 1500 m to 180 nm. an ultraviolet lamp disposed in the tube, a power supply device for exciting the ultraviolet lamp to emit light, a means for blowing oxygen or a gas containing oxygen into the tube, and a means for dissolving the ozone-containing gas in the tube into the water in the container. and. : It is characterized by:

すなわら、本烙明は、紫外線を利用し1てオゾンを生成
するので、無声枚重のように、除湿を必要としたり、N
OXが発生しない。そして、紫外線源どして使用するラ
ンプは、少なくとも150nm乃至180nmの波長域
に光の透過域を有する多結晶質セラミック製発光管にキ
セノンガスを主成分とする希ガスが封入されたものであ
るので、その発光波長は、その−例を第2図に示すよう
に、波長178nmの光をピ・−りとした連続スペクト
ルであり、オゾンの生成に寄与する光のトータル量は極
めて多い。そして、ランプの発光管は、多結晶質セラミ
ック製であるので、光の透過率が極めて高く、結局のと
ころ、投入電力に対I、で必要とする波長の光を酸素す
しくけ酸素を含む気体に多く放射することができ、紫外
a透過性チューブ内におけるオゾン生成効率が権めて高
くなる。また、チューブ内の酸Mを^む気体も容器内の
水に溶解されるが、これらが溶解した水に、チューブを
透過した光が照射するので7、更に、水に溶解した酸素
がオゾンに転化するので、オゾン水の生成効率が極めて
高くなる。
In other words, since Honsakumei uses ultraviolet rays to generate ozone, it does not require dehumidification or N
OX does not occur. The lamp used as the ultraviolet source is a polycrystalline ceramic arc tube that has a light transmission range in the wavelength range of at least 150 nm to 180 nm and is filled with a rare gas mainly composed of xenon gas. Therefore, the emission wavelength is a continuous spectrum with a peak of light having a wavelength of 178 nm, as shown in FIG. 2, and the total amount of light that contributes to the production of ozone is extremely large. Since the arc tube of the lamp is made of polycrystalline ceramic, it has an extremely high light transmittance, and after all, the light of the wavelength required for the input power is filtered through oxygen, and the oxygen-containing gas is The ozone generation efficiency within the ultraviolet a-transparent tube becomes extremely high. In addition, the gas containing the acid M in the tube is also dissolved in the water in the container, but the light that has passed through the tube illuminates the dissolved water,7 and the oxygen dissolved in the water becomes ozone. Because of this conversion, the production efficiency of ozonated water becomes extremely high.

次に1本紫外線ランプは、波長が180nm以−ドの光
の承が多いが、第:3図から理解できるよう番、”二、
酸素に対する吸収係数が大きく、良く酸素に吸収される
ので、酸素もしくは酸素を含む気体が送風されるチュー
ブは小さなものでよく、コンパクトな構造にすることが
できる。そして、低圧水銀ランプと異なり2本紫外線ラ
ンプは、環境温度依存性がほとんどなく、環境温度が1
0℃以下の低温2であっても効率良く紫外線を放射し、
かつ始動時の立ち上りも速い利点を有する。
Next, a single ultraviolet lamp often emits light with a wavelength of 180 nm or more, but as you can understand from Figure 3,
Since it has a large absorption coefficient for oxygen and is well absorbed by oxygen, the tube through which oxygen or oxygen-containing gas is blown can be small and can have a compact structure. Unlike low-pressure mercury lamps, dual ultraviolet lamps have almost no dependence on environmental temperature;
It efficiently emits ultraviolet rays even at low temperatures below 0℃2.
It also has the advantage of quick start-up.

〔実施例〕〔Example〕

以下に図面に示す実施例に基いて本発明を具体的に説明
する・ 第1図は、本願発明のオゾン水製造装置に使用される紫
外線ランプ1の断面図を示す。発光管11は、少なくと
も150n11乃至180nmの波長域に光の透過域を
有する多結晶質セラミック製でちるが、本実施例では、
内径が6InI11″′c′あり、真空紫外域を良く透
過する多結晶アルミナ管からなる。
The present invention will be specifically described below based on embodiments shown in the drawings. FIG. 1 shows a cross-sectional view of an ultraviolet lamp 1 used in the ozone water production apparatus of the present invention. The arc tube 11 is made of polycrystalline ceramic having a light transmission range in the wavelength range of at least 150n11 to 180nm, but in this embodiment,
It is made of a polycrystalline alumina tube that has an inner diameter of 6InI11'''c' and that transmits well in the vacuum ultraviolet region.

この発光管11の両端には、例えばニオブからなるキャ
ップ12が嵌着して封止している。キャップ12には電
極13が取付けられており、その間隔(放電長)は8c
mである。電極13はステンレス筒14とその内部に配
置されたタングステンコイル15からなり、コイル15
には、エミッターとして、SrO,BaOおよびCaO
の三元アルカリ土類酸化物が塗布されている。発光管1
1内には、キセノンガスまたはキセノンガスに数%の他
の希ガスが混入したガスが封入される。封入ガス圧は、
50〜500 Torr程度が好ましい。封入ガス圧が
50Torrより低いと、総発光量が減少し、しかも前
記発光管11の透過率の低い波長域の発光が増え、投入
電力に対するオゾンを生成できる波長である200nm
以ドの波長の光の放射量の比。
Caps 12 made of, for example, niobium are fitted to both ends of the arc tube 11 for sealing. Electrodes 13 are attached to the cap 12, and the interval (discharge length) between them is 8c.
It is m. The electrode 13 consists of a stainless steel tube 14 and a tungsten coil 15 placed inside the tube.
contains SrO, BaO and CaO as emitters.
ternary alkaline earth oxide is applied. Arc tube 1
1 is filled with xenon gas or a gas containing xenon gas mixed with several percent of other rare gases. Filled gas pressure is
Approximately 50 to 500 Torr is preferable. When the filled gas pressure is lower than 50 Torr, the total amount of light emission decreases, and moreover, the light emission in the wavelength range where the transmittance of the arc tube 11 is low increases, and the wavelength range is 200 nm, which is the wavelength at which ozone can be generated with respect to the input power.
The ratio of the amount of light emitted at the following wavelengths.

すなわちオゾン生成効率が低下する。一方、封入ガス圧
が500 Torrより高いと、放電開始電圧や放電維
持電圧が高くなるので、電源装置が大きくなって、コス
トも高くなり、経済性が劣る。
In other words, the ozone generation efficiency decreases. On the other hand, if the filled gas pressure is higher than 500 Torr, the discharge starting voltage and discharge sustaining voltage will be high, so the power supply device will be large and the cost will be high, resulting in poor economic efficiency.

かかる紫外線ランプ1をマイクロ波、ラジオ波や、商用
交流或いは直流などの電力で励起発光させると、第2図
に示すような連続スペクトルが得られる。第2図は、封
入ガスがキセノンガス100%でその圧力が300 T
orr 、投入電力が約50KIIzの高周波電力で5
W/cmの条件で発光させた場合のスペクトルであるが
、前述の通り、ピークが波長1.78nnの光であり、
オゾンの生成に寄与する波長200nm以下の光が多く
放射する。そして、低圧水銀ランプと異なり5本紫外線
ランプ1は、キセノンガスを主成分とするガスを使用す
るので、環境温度依存性がほとんどなく、】、0℃以下
の低温であっても効率良く発光し、低温時の始動性も優
れている。
When the ultraviolet lamp 1 is excited to emit light using microwaves, radio waves, commercial alternating current or direct current, etc., a continuous spectrum as shown in FIG. 2 is obtained. Figure 2 shows that the sealed gas is 100% xenon gas and the pressure is 300 T.
orr, 5 when input power is high frequency power of about 50KIIz
This is the spectrum when emitting light under conditions of W/cm, but as mentioned above, the peak is light with a wavelength of 1.78 nn,
A large amount of light with a wavelength of 200 nm or less, which contributes to the production of ozone, is emitted. Unlike low-pressure mercury lamps, the 5-UV lamp 1 uses xenon gas as its main component, so it has almost no dependence on environmental temperature and can emit light efficiently even at temperatures as low as 0℃ or below. It also has excellent startability at low temperatures.

次に、第4図は、本オゾン水Mq造装置の実施例を示す
。円筒状の容器3の周面の下側には吸入D31が、上側
には排出[」32が設けられており、吸入1」31から
入った水が容器3に充填され、オゾン水になって排出口
32から取りだされる。この容器3内の中央部にはチュ
ーブ4が配置されているが、このチューブ4は1例えば
無水合成石英ガラスからなり、紫外線を透過する。この
チューブ4内には、前記の紫外線ランプ1が配置され。
Next, FIG. 4 shows an embodiment of the present ozonated water Mq production apparatus. A suction D31 is provided on the lower side of the circumferential surface of the cylindrical container 3, and a discharge 32 is provided on the upper side, and the water that enters from the suction 1'' 31 is filled into the container 3 and becomes ozonated water. It is taken out from the discharge port 32. A tube 4 is disposed in the center of the container 3, and the tube 4 is made of, for example, anhydrous synthetic quartz glass and transmits ultraviolet rays. The ultraviolet lamp 1 described above is placed inside the tube 4.

電源装置2によって発光励起される。そして、酸素ない
し酸素を含む気体を送風する手段であるブロアー5によ
って、チューブ4内に空気が送風される。ここで、チュ
ーブ11の大きさは、前述の通り、紫外線ランプ]がら
空気に吸収されやすい波長の光が放射するので、従来の
低圧水銀ランプを使用したものよりも、ずっと小さくな
っている7このチューブ4内の大気中の酸素に、紫外線
ランプ1の光が放射されてオゾンが生成4″る。そして
、酸素を含む空気もオゾンと共にバイブロ1で容器3に
導かれる。容器3の底面には、オゾンを水に溶解する手
段である?−・ころの、微小な噴出孔が多数形成された
ノズル6が配置されており、バイブロ1で導かれたオゾ
ンはこのノズル6から水中に噴出して溶解し、オゾン水
が製造される9このとき、オゾンのみでなく、酸素も水
に溶解するが。
It is excited to emit light by the power supply device 2. Then, air is blown into the tube 4 by a blower 5, which is a means for blowing oxygen or a gas containing oxygen. Here, as mentioned above, the size of the tube 11 is much smaller than that using a conventional low-pressure mercury lamp, because an ultraviolet lamp emits light of a wavelength that is easily absorbed by the air. The light from the ultraviolet lamp 1 is emitted to the oxygen in the atmosphere inside the tube 4, producing ozone 4''.Then, the air containing oxygen is also led to the container 3 by the vibro 1 along with the ozone. , is a means of dissolving ozone in water. A nozzle 6 with many small ejection holes is arranged, and the ozone guided by the vibro 1 is ejected from this nozzle 6 into the water. 9 At this time, not only ozone but also oxygen dissolves in water.

チューブ4を透過した波長が200nm以下の光によっ
て溶解している酸素がオゾンに転化し、このオゾンがバ
イブロ1で導かれたオゾンに加算されるので、少ない投
入電力eオゾン水を極めて効率良く製造することができ
る。
Dissolved oxygen is converted into ozone by light with a wavelength of 200 nm or less transmitted through the tube 4, and this ozone is added to the ozone introduced by the vibro 1, so that less power is input and ozone water is produced extremely efficiently. can do.

〔発明の効果〕〔Effect of the invention〕

以、ヒ説明したように、本発明のオゾン水製造装置は、
紫外線源として、少なくとも]、50nm乃至180n
mの波長域に光の透過域を有する多結晶質セラミック製
発光管にキ・セノンガスを主成分とする希ガスが封入さ
れた紫外線ランプを使用するので、オゾンの生成に寄与
する波長が200nm以下の光の放射量が多く、かつ酸
素に月する吸収性が良い波長の光が多い。このため、紫
外線ランプを内蔵するチュ・−ブを小型化してもこれら
の光を十分に活用でき、かつ水に溶解した酸素にもチコ
ーブシ透過した光が照射されるので、少ない投入電力で
効率良くオゾン水を製造ずろことができる。
As explained below, the ozone water production device of the present invention has the following features:
As a UV source, at least], 50nm to 180n
Since we use an ultraviolet lamp with a polycrystalline ceramic arc tube filled with a rare gas mainly composed of xenon gas, the wavelength that contributes to ozone production is 200 nm or less. There is a large amount of light emitted, and there are many wavelengths of light that are well absorbed by oxygen. For this reason, even if the tube containing the ultraviolet lamp is made smaller, the light can be fully utilized, and oxygen dissolved in water is also irradiated with the light that has passed through the Chicobushi, making it efficient with less power input. It is possible to produce ozonated water.

そして、この紫外線ランプは、環境温度依存性がほとん
どなく、低温であっても効率良く発光し、低温時の始動
性も優才1ているが、(には、除湿の必要性がなく、N
Oxも発生し、ない。
This ultraviolet lamp has almost no dependence on environmental temperature, emits light efficiently even at low temperatures, and has excellent start-up performance at low temperatures.
Ox is also generated and there is no.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は紫外線ランプの断面図、第2図は発光スペクト
ルの説明図、第3図は吸収係数説明図、第4図は本発明
実施例の説明図である。
FIG. 1 is a sectional view of an ultraviolet lamp, FIG. 2 is an explanatory diagram of an emission spectrum, FIG. 3 is an explanatory diagram of an absorption coefficient, and FIG. 4 is an explanatory diagram of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 水が充填される容器と、該容器内に配置された紫外線透
過性チューブと、少なくとも150nm乃至180nm
の波長域に光の透過域を有する多結晶質セラミック製発
光管にキセノンガスを主成分とする希ガスが封入され、
該チューブ内に配置された紫外線ランプと、該紫外線ラ
ンプを励起発光せしめる電源装置と、該チューブに酸素
ないし酸素を含む気体を送風する手段と、該チューブ内
のオゾンを含む気体を該容器内の水に溶解させる手段と
を具備するオゾン水製造装置。
a container filled with water; a UV-transparent tube disposed within the container;
A rare gas mainly composed of xenon gas is sealed in a polycrystalline ceramic arc tube that has a light transmission range in the wavelength range of
an ultraviolet lamp disposed in the tube; a power source for exciting the ultraviolet lamp to emit light; a means for blowing oxygen or a gas containing oxygen into the tube; and a means for blowing oxygen or a gas containing oxygen into the tube; An ozone water production device comprising means for dissolving it in water.
JP63051600A 1988-03-07 1988-03-07 Ozone water production equipment Expired - Lifetime JP2623499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051600A JP2623499B2 (en) 1988-03-07 1988-03-07 Ozone water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051600A JP2623499B2 (en) 1988-03-07 1988-03-07 Ozone water production equipment

Publications (2)

Publication Number Publication Date
JPH01228592A true JPH01228592A (en) 1989-09-12
JP2623499B2 JP2623499B2 (en) 1997-06-25

Family

ID=12891396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051600A Expired - Lifetime JP2623499B2 (en) 1988-03-07 1988-03-07 Ozone water production equipment

Country Status (1)

Country Link
JP (1) JP2623499B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000697A (en) * 2004-06-15 2006-01-05 Matsushita Electric Ind Co Ltd Ozone water producing apparatus and ozone water/ozone gas producing apparatus
JP2006035009A (en) * 2004-07-22 2006-02-09 Matsushita Electric Ind Co Ltd Ozone water making apparatus, ozone mist producer and ozone gas making apparatus
JP2010101561A (en) * 2008-10-23 2010-05-06 Ihi Corp Method and device for manufacturing ozone ice
JP2012020238A (en) * 2010-07-15 2012-02-02 Adson Corp Ozone mist generator
JP2016195054A (en) * 2015-04-01 2016-11-17 学校法人上智学院 Microwave excitation electrodeless lamp and aqueous solution treatment system using the same
CN108325402A (en) * 2018-04-24 2018-07-27 南京林业大学 A kind of device preparing nano bubble Ozone Water using ultraviolet light
JP2021155260A (en) * 2020-03-26 2021-10-07 株式会社オーク製作所 Ozone generation apparatus and discharge lamp apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104903A (en) * 1979-02-02 1980-08-11 Toshiba Corp Production of ozone
JPS61263691A (en) * 1985-05-20 1986-11-21 Iwasaki Electric Co Ltd Water treating apparatus
JPS61294752A (en) * 1985-06-21 1986-12-25 Hamamatsu Photonics Kk Discharge tube for ultraviolet light source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104903A (en) * 1979-02-02 1980-08-11 Toshiba Corp Production of ozone
JPS61263691A (en) * 1985-05-20 1986-11-21 Iwasaki Electric Co Ltd Water treating apparatus
JPS61294752A (en) * 1985-06-21 1986-12-25 Hamamatsu Photonics Kk Discharge tube for ultraviolet light source

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000697A (en) * 2004-06-15 2006-01-05 Matsushita Electric Ind Co Ltd Ozone water producing apparatus and ozone water/ozone gas producing apparatus
JP2006035009A (en) * 2004-07-22 2006-02-09 Matsushita Electric Ind Co Ltd Ozone water making apparatus, ozone mist producer and ozone gas making apparatus
JP4710270B2 (en) * 2004-07-22 2011-06-29 パナソニック株式会社 Ozone water generator, ozone mist generator, and ozone gas generator
JP2010101561A (en) * 2008-10-23 2010-05-06 Ihi Corp Method and device for manufacturing ozone ice
JP2012020238A (en) * 2010-07-15 2012-02-02 Adson Corp Ozone mist generator
JP2016195054A (en) * 2015-04-01 2016-11-17 学校法人上智学院 Microwave excitation electrodeless lamp and aqueous solution treatment system using the same
CN108325402A (en) * 2018-04-24 2018-07-27 南京林业大学 A kind of device preparing nano bubble Ozone Water using ultraviolet light
JP2021155260A (en) * 2020-03-26 2021-10-07 株式会社オーク製作所 Ozone generation apparatus and discharge lamp apparatus

Also Published As

Publication number Publication date
JP2623499B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
US6398970B1 (en) Device for disinfecting water comprising a UV-C gas discharge lamp
JPH01228592A (en) Apparatus for producing ozonated water
US5300859A (en) IR-radiation source and method for producing same
JP2002373625A (en) Electric discharge lamp, black light and operating method therefor
JP2623497B2 (en) Ozone water activation device
JPH0794150A (en) Rare gas discharge lamp and display device using the lamp
JP2561901B2 (en) Active oxygen production equipment and active oxygen water production equipment
JP2623498B2 (en) Active oxygen water production equipment
JPH01226701A (en) Ozonizer and ozone water producing device
JP2913294B1 (en) UV light emitting lamp
Golovitskiı̆ Low-pressure inductive rf discharge in a rare gas-halogen mixture for economical mercury-free luminescence light sources.
CA1312114C (en) Ir-radiation source and method for producing same
JP3228090B2 (en) Dielectric barrier discharge lamp
US7733027B2 (en) High-pressure mercury vapor lamp incorporating a predetermined germanium to oxygen molar ratio within its discharge fill
JPH06310096A (en) Low-pressure mercury vapor lamp device
US6171452B1 (en) Electrodeless discharge system for controlled generation of ozone
CN215869290U (en) Light plasma lamp tube
JP2018198175A (en) Optical processing device and manufacturing method thereof
JPH1021880A (en) Discharge lamp, irradiation device, sterilizing device, and water treatment equipment
RU2223792C1 (en) Method and device for disinfecting fluid medium and concurrently illuminating it
JP2002358924A (en) Discharge lamp
JP2002097036A (en) Vitreous silica for short wavelength ultraviolet ray, discharge lamp using it, the container, and ultraviolet ray radiation device
JPH01136660A (en) Sterilizing lamp
KR200288954Y1 (en) Ozonizer
CN110947020A (en) Optical processing apparatus and optical processing method