JPH0122810B2 - - Google Patents

Info

Publication number
JPH0122810B2
JPH0122810B2 JP4096381A JP4096381A JPH0122810B2 JP H0122810 B2 JPH0122810 B2 JP H0122810B2 JP 4096381 A JP4096381 A JP 4096381A JP 4096381 A JP4096381 A JP 4096381A JP H0122810 B2 JPH0122810 B2 JP H0122810B2
Authority
JP
Japan
Prior art keywords
thin film
gas
metal
film
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4096381A
Other languages
Japanese (ja)
Other versions
JPS57156030A (en
Inventor
Kaji Maezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4096381A priority Critical patent/JPS57156030A/en
Publication of JPS57156030A publication Critical patent/JPS57156030A/en
Publication of JPH0122810B2 publication Critical patent/JPH0122810B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は金属酸化物薄膜の製造方法に関するも
のであり、詳しくは、有機、無機材質基板表面に
附着した金属薄膜の表面に高温の反応性混合ガス
を吹きつけるとともに前記基板の反対側を冷却す
ることを特徴とする金属酸化薄膜の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metal oxide thin film, and more specifically, a high temperature reactive mixed gas is blown onto the surface of a metal thin film attached to the surface of an organic or inorganic substrate, and the The present invention relates to a method for manufacturing a metal oxide thin film, characterized in that the opposite side of the substrate is cooled.

近年、薄膜技術の進歩は著しく、その応用範囲
も多岐にわたつており例えば薄膜技術として、ス
パツタリング、真空蒸着、イオンプレーテイング
などがあり、その応用としてIC技術、電気材料
などのエレクトロニクスあるいは各種装飾に用い
られている。
In recent years, thin film technology has made remarkable progress, and its application range is wide-ranging.For example, thin film technology includes sputtering, vacuum evaporation, ion plating, etc., and its applications include IC technology, electronics such as electrical materials, and various decorations. It is used.

基板上に薄膜を形成する技術は一種元素から成
る場合はかなりの精度で再現性良くなしうるが、
化合物、あるいは合金にすることはむずかしい。
The technique of forming a thin film on a substrate can be done with considerable precision and good reproducibility when it consists of one type of element, but
It is difficult to make compounds or alloys.

従来、合金又は化合物の薄膜を形成する方法と
して反応性スパタリング、あるいは反応性蒸着法
で化合物を形成していた。反応性蒸着は例えば
SiO2薄膜を基板面に形成する場合、真空蒸着装
置に酸素ガスを導入し、酸素ガスの雰囲気中で
SiOを蒸着し、SiO2(SiOx:x=1〜2)を作る
方法が用いられている。反応は次の通りである。
Conventionally, a thin film of an alloy or a compound has been formed by reactive sputtering or reactive vapor deposition. Reactive deposition is e.g.
When forming a SiO 2 thin film on the substrate surface, oxygen gas is introduced into the vacuum evaporation equipment and the film is deposited in an oxygen gas atmosphere.
A method is used in which SiO is deposited to form SiO 2 (SiOx: x=1 to 2). The reaction is as follows.

SiO+O2→SiOx(x=1〜2) また反応性スパタリング法では、ターゲツトを
化合物にして化合物の薄膜を作ると、形成した薄
膜の成分がターゲツトの化合物と異なるために、
例えば酸化物のスパタリングでは、放電ガスの
Arの中に酸素ガスを適当に混合してO2を補い、
元の成分と同じ組成の薄膜を作るようにする方法
が用いられている。しかし反応性蒸着および反応
性スパタリングによる化合物の形成は、 (1) 元の成分と同じ組成、あるいは目的とする化
合物の組成を基板面に生成することがむずかし
い。
SiO + O 2 → SiOx (x = 1 to 2) In addition, in the reactive sputtering method, when a thin film of the compound is made using a compound as the target, the components of the formed thin film are different from the target compound.
For example, in oxide sputtering, the discharge gas
Properly mix oxygen gas into Ar to supplement O2 .
A method is used to create a thin film with the same composition as the original component. However, when forming a compound by reactive vapor deposition and reactive sputtering, (1) it is difficult to produce the same composition as the original component or the composition of the target compound on the substrate surface;

(2) 反応性スパタリングにおいては特に化合物の
薄膜生成速度が遅い。
(2) In reactive sputtering, the rate of compound thin film formation is particularly slow.

などの欠点があつた。There were drawbacks such as:

本発明者は、上記従来の欠点に鑑み、反応性蒸
着、反応性スパタリングの欠点をなくすべく種々
の実験、考察を行つた結果、高分子、無機材質の
基板面に形成した薄膜の表面に高温の反応性混合
ガスを吹きつけ、前記基板の反対側を冷却するこ
とで薄膜のごく表面層のみを酸素化合物に容易に
変りうることを見い出した。
In view of the above-mentioned conventional drawbacks, the present inventor conducted various experiments and studies in order to eliminate the drawbacks of reactive vapor deposition and reactive sputtering, and as a result, the inventors discovered that high temperature It has been found that only the very surface layer of the thin film can be easily converted into an oxygen compound by blowing a reactive mixed gas of 1 and cooling the opposite side of the substrate.

以下、本発明の実施例における金属酸化物薄膜
の製造方法の詳細を述べる。
Hereinafter, details of the method for manufacturing a metal oxide thin film in an example of the present invention will be described.

第1の実施例を示す第1図においてガラス基板
1にFe金属を真空蒸着し、同図に示すような真
ちゆうの冷却槽2に固定する。なお、ここで金属
膜の形成法としてスパツタリングを用いてNi膜
等を形成してもよい。冷却部3は液体窒素温度
(77〓)から常温(300〓)まで任意の温度設定が
出来る。冷媒3′はメチルアルコールとドライア
イスを用い、−10℃の温度条件下でおこない温度
測定には銅−コンスタンタン熱電対4を用いた。
蒸着したFe薄膜5側は、常温雰囲気におき、下
方より高温の混合ガス6を導入する。反応性混合
ガスは、一酸化炭素(以下CO)と酸素(O2)ガ
スを用いた。
In FIG. 1 showing a first embodiment, Fe metal is vacuum-deposited on a glass substrate 1 and fixed in a brass cooling tank 2 as shown in the same figure. Note that here, as a method for forming the metal film, a Ni film or the like may be formed using sputtering. The temperature of the cooling section 3 can be set arbitrarily from liquid nitrogen temperature (77〓) to room temperature (300〓). Methyl alcohol and dry ice were used as the refrigerant 3', and the temperature was measured at -10°C, and a copper-constantan thermocouple 4 was used to measure the temperature.
The side of the deposited Fe thin film 5 is placed in a room temperature atmosphere, and a high temperature mixed gas 6 is introduced from below. The reactive mixed gas used was carbon monoxide (hereinafter referred to as CO) and oxygen (O 2 ) gas.

反応性ガスは第2図に示すようにCO、O2とも
別個のノズル21から供給する。ガスはレギユレ
ーターで圧力調整後、流量計で流量調整を行い管
22を通つて加熱部23に導びかれる。加熱部2
3内はセラミツクヒーター24とC−A熱電対2
5で構成され、常温から800℃の温度範囲まで加
熱される。ガス流量は酸素ガス0.5/min一酸
化炭素ガス0.1/minで、ガス温度300℃で行な
つた。
The reactive gases are supplied from separate nozzles 21 for both CO and O 2 as shown in FIG. After the pressure of the gas is adjusted by a regulator, the flow rate is adjusted by a flow meter, and the gas is led to the heating section 23 through the pipe 22. Heating section 2
Inside 3 is a ceramic heater 24 and a C-A thermocouple 2.
5 and is heated from room temperature to 800℃. The gas flow rate was 0.5/min for oxygen gas and 0.1/min for carbon monoxide gas, and the gas temperature was 300°C.

次に本発明の第2の実施例における金属酸化物
薄膜の製造方法について説明する。Fe金属を真
空蒸着した高分子フイルム31を第3図に示すよ
うにフイルム送り軸32にセツトし、クーリング
キヤン33を経てフイルム巻取り軸34で巻取
る。鉄金属の蒸着は通常の電子ビームを用いて高
分子フイルム面に蒸着した。クーリングキヤン3
3は500φ中空円筒の表面にハードクロムを鏡面
仕上にし、高分子フイルム31の蒸着面と反対側
が密着するようにした。温度調整は冷媒を用い
て、常温から−30℃まで可変出来るようにした。
フイルム基板の蒸着面側の下方には、第1の実施
例の場合と同様の構造の高温の反応性ガスの供給
機能を備えている。すなわち、第4図に示すよう
にガスノズルが多数の孔を有し、蒸着フイルムの
幅方向に均一に分布させた。ガス供給部41、加
熱部42、及び温度調整部43の機能は第1の実
施例の場合と同様である。本実施例では、フイル
ム送り速度10m/min、COガス0.5/min、O2
ガス2/min、反応性ガス温度300℃の条件下
で金属酸化物薄膜の製造を行つた。
Next, a method for manufacturing a metal oxide thin film in a second embodiment of the present invention will be described. A polymer film 31 on which Fe metal is vacuum-deposited is set on a film feed shaft 32 as shown in FIG. Iron metal was deposited on the surface of the polymer film using an ordinary electron beam. Cooling Can 3
In No. 3, the surface of a 500φ hollow cylinder was mirror-finished with hard chrome, so that the side opposite to the vapor-deposited surface of the polymer film 31 was in close contact. The temperature can be adjusted from room temperature to -30℃ using a refrigerant.
A high temperature reactive gas supply function having the same structure as in the first embodiment is provided below the vapor deposition surface of the film substrate. That is, as shown in FIG. 4, the gas nozzle had a large number of holes, which were uniformly distributed in the width direction of the deposited film. The functions of the gas supply section 41, heating section 42, and temperature adjustment section 43 are the same as in the first embodiment. In this example, the film feed speed was 10 m/min, CO gas was 0.5/min, and O 2
A metal oxide thin film was produced under the conditions of a gas flow rate of 2/min and a reactive gas temperature of 300°C.

なお、第2の実施例において、鉄金属の蒸着の
代わりにコバルト金属、ニツケル金属、クロム金
属、チタン金属、SiO金属を真空蒸着法により高
分子フイルム面に形成することもできる。
In the second embodiment, instead of vapor depositing iron metal, cobalt metal, nickel metal, chromium metal, titanium metal, or SiO metal can also be formed on the surface of the polymer film by vacuum evaporation.

また、本実施例では高温の反応性ガスに水素
(H2)ガスと酸素ガス(O2)を用い、コバルト金
属を真空蒸着する場合が考えられる。
Further, in this embodiment, a case is considered in which cobalt metal is vacuum-deposited using hydrogen (H 2 ) gas and oxygen gas (O 2 ) as high-temperature reactive gases.

さらに、鉄金属を抵抗加熱法で高分子フイルム
面に蒸着することもできる。
Furthermore, ferrous metal can also be deposited on the surface of the polymer film using a resistance heating method.

次に本発明の前記第1および第2の実施例の効
果を調べるために、X線回折およびESCAによる
表面状態を調べた。その結果例えば第1の実施例
では蒸着金属はFeから、Fe2O3の鉄化合物に変化
していることが解つた。
Next, in order to examine the effects of the first and second embodiments of the present invention, the surface conditions were examined by X-ray diffraction and ESCA. As a result, it was found that, for example, in the first example, the deposited metal changed from Fe to an iron compound of Fe 2 O 3 .

次に、第2の実施例においてコバルト金属を用
いた場合には、表面層のみがCoからCo3O4に変化
しており、2〜3分子層程度までがCo3O4の酸化
状態であり、基板側であるフイルム側に入るに従
つてCoOの結晶構造になつていることが解つた。
蒸着膜の酸化状態は、反応ガス流量が多い程、ま
た、反応熱が多い程、ガス温度が高い程、蒸着膜
の内側まで進んでいることが解つた。ガス温度
は、蒸着膜の表面状態により異なるが、120℃〜
400℃位いが最適であり、反応性ガス流量も0.1
/min〜10/minが良く、酸素ガス過剰雰囲
気でなければならない。冷媒との接触時間は10-3
〜1秒程度が最適である。
Next, when cobalt metal was used in the second example, only the surface layer changed from Co to Co 3 O 4 , and up to about 2 to 3 molecular layers were in the oxidized state of Co 3 O 4 . It was found that the crystal structure changed to CoO as it entered the film side, which is the substrate side.
It was found that the oxidation state of the deposited film progresses to the inside of the deposited film as the reaction gas flow rate increases, as the reaction heat increases, and as the gas temperature increases. The gas temperature varies depending on the surface condition of the deposited film, but is 120℃~
The optimal temperature is around 400℃, and the reactive gas flow rate is 0.1
/min to 10/min, and the atmosphere must be rich in oxygen gas. Contact time with refrigerant is 10 -3
~1 second is optimal.

他のニツケルクロム、チタン、SiOの場合につ
いても同様に金属酸化物になつていることが確認
できた。
It was confirmed that other nickel chromium, titanium, and SiO were also converted into metal oxides.

本発明の金属酸化物薄膜の製造方法は無機又は
高分子フイルム基板面に真空蒸着又はスパツタリ
ングして形成した金属の表面層を高温加熱した反
応性混合ガスで局部反応させることにより、再現
性よく金属酸化物層が得られる効果がある。また
基板を冷媒で冷却しているため熱による基板の改
質を防ぐことができる。
The method for producing a metal oxide thin film of the present invention involves locally reacting a metal surface layer formed by vacuum evaporation or sputtering on an inorganic or polymeric film substrate surface with a reactive mixed gas heated at high temperature. This has the effect of providing an oxide layer. Furthermore, since the substrate is cooled with a refrigerant, modification of the substrate due to heat can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における金属酸
化物薄膜の製造方法を実施する装置の構成を示す
図、第2図は同装置の要部を示す図、第3図は本
発明の第2の実施例における金属酸化物薄膜の製
造方法を実施する装置の構成を示す図、第4図は
同装置の要部を示す図である。 1……ガラス基板、2……冷却槽、3……冷却
部、3′……冷媒、5……Fe薄膜、21……ノズ
ル、23……加熱部、24……セラミツクヒータ
ー、31……高分子フイルム、33……クーリン
グキヤン、41……ガス供給部、42……加熱
部、43……温度調整部。
FIG. 1 is a diagram showing the configuration of an apparatus for carrying out the method for manufacturing a metal oxide thin film according to the first embodiment of the present invention, FIG. 2 is a diagram showing the main parts of the same apparatus, and FIG. FIG. 4 is a diagram showing the configuration of an apparatus for carrying out the method for manufacturing a metal oxide thin film in the second embodiment, and FIG. 4 is a diagram showing the main parts of the apparatus. DESCRIPTION OF SYMBOLS 1...Glass substrate, 2...Cooling tank, 3...Cooling part, 3'...Refrigerant, 5...Fe thin film, 21...Nozzle, 23...Heating part, 24...Ceramic heater, 31... Polymer film, 33... Cooling can, 41... Gas supply section, 42... Heating section, 43... Temperature adjustment section.

Claims (1)

【特許請求の範囲】[Claims] 1 基板の一方主面に形成した金属薄膜を高温の
反応性混合ガスで加熱するとともに、前記基板の
他方主面を冷却する工程を有することを特徴とす
る金属酸化物薄膜の製造方法。
1. A method for producing a metal oxide thin film, comprising the steps of heating a metal thin film formed on one main surface of a substrate with a high-temperature reactive mixed gas, and cooling the other main surface of the substrate.
JP4096381A 1981-03-20 1981-03-20 Production of thin film of metallic oxide Granted JPS57156030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4096381A JPS57156030A (en) 1981-03-20 1981-03-20 Production of thin film of metallic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4096381A JPS57156030A (en) 1981-03-20 1981-03-20 Production of thin film of metallic oxide

Publications (2)

Publication Number Publication Date
JPS57156030A JPS57156030A (en) 1982-09-27
JPH0122810B2 true JPH0122810B2 (en) 1989-04-27

Family

ID=12595133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4096381A Granted JPS57156030A (en) 1981-03-20 1981-03-20 Production of thin film of metallic oxide

Country Status (1)

Country Link
JP (1) JPS57156030A (en)

Also Published As

Publication number Publication date
JPS57156030A (en) 1982-09-27

Similar Documents

Publication Publication Date Title
JP4638687B2 (en) A hybrid method for coating substrates by thermal deposition.
US3669724A (en) Method of vapor depositing a tungsten-tungsten oxide coating
JPH02213474A (en) Manufacture of thin molybdenum sulfide film, manufacture of molybdenum sulfide film and self-lubricating layer, electro-optical layer, and catalytically acting layer
JPH0122810B2 (en)
US4336280A (en) Method for continuous production of niobium-germanium layers on a substrate
US3916071A (en) Ceramic substrate for receiving resistive film and method of forming chromium/chromium oxide ceramic substrate
EP0619383B1 (en) Process and apparatus for supplying metal vapor continuously to a chemical vapor deposition
JPS5823826B2 (en) Manufacturing method of rapidly solidified alloy thin plate
JPH0131932B2 (en)
US5453303A (en) Low substrate temperature deposition of diamond coatings derived from glassy carbon
US3160550A (en) Metallized paper and process for making same
JPH01219016A (en) Production of thin superconducting ceramic film containing dispersed oxide
JPS55136552A (en) Production of broad amorphous metal tape and producing apparatus thereof
JPS6242996B2 (en)
JPS6357755A (en) Ni-base alloy powder for thermal spraying and its production
JPS5655910A (en) Production of optical multilayer film
JPS5960738A (en) Production of magnetic recording medium
JPH0350192A (en) Production of superconducting film and its device
JPS5814329A (en) Production of magnetic recording medium
JPH08225921A (en) Method and device for producing thin film
JPS61135458A (en) Apparatus for producing thin metallic strip
JPH03243779A (en) Device for producing oxide superconducting thin film
JPH05222521A (en) Manufacture of thin film and device therefor
JPH03226562A (en) Color coating method
JPH03272587A (en) Anti-corrosion member