JPH0350192A - Production of superconducting film and its device - Google Patents

Production of superconducting film and its device

Info

Publication number
JPH0350192A
JPH0350192A JP1183896A JP18389689A JPH0350192A JP H0350192 A JPH0350192 A JP H0350192A JP 1183896 A JP1183896 A JP 1183896A JP 18389689 A JP18389689 A JP 18389689A JP H0350192 A JPH0350192 A JP H0350192A
Authority
JP
Japan
Prior art keywords
film
substrate
raw material
superconducting
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1183896A
Other languages
Japanese (ja)
Inventor
Hitoshi Oyama
仁 尾山
Hideo Itozaki
糸崎 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1183896A priority Critical patent/JPH0350192A/en
Publication of JPH0350192A publication Critical patent/JPH0350192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form the multi-component oxide superconducting film having a high critical temp. and large critical current density by a spray pyrorinse method by atomizing a raw material soln. having a specific compsn. by means of ultrasonic oscillation and passing the raw material together with oxygen as a carrier gas through the surface of a perpendicularly held high temp. substrate. CONSTITUTION:A device having a flexible film 8 consisting of vinyl, etc., in the bottom is immersed into water 10 in a water tank 9 having an ultrasonic oscillator 11 in the bottom. The raw material soln. 2 of, for example, a Bi-Sr-Ca-Cu system, is put into the device and a narrow and rectangular film forming chamber 3 is provided above the device and a raw material atomizing chamber 2 below the same. The substrate 6 consisting of an MgO single crystal, etc., is mounted in the film forming chamber 3 and is heated by a heater 7 to 450 to 800 deg.C. The raw material soln. 1 is atomized by the ultrasonic oscillation generated by the ultrasonic oscillator 11 and gaseous O2 as the carrier gas is supplied from a gas introducing port 4 and is risen as the gaseous mixture with the atomized raw materials in the region within 10mm from the surface of the substrate 6, by which the superconducting film consisting of the multi component oxide of the B-Sr-Ca-Cu-O system having a high critical temp. and a large critical current density is formed on the surface of the substrate 6.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導膜の作製方法とそのための装置に関す
る。より詳細には、本発明は、スプレーパイロリシス法
により、厚さ0.5μm〜1000μm程度の特性の優
れた超電導膜を作製する方法と、この方法を実施するた
めに使用する装置の新規な構成に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a superconducting film and an apparatus therefor. More specifically, the present invention provides a method for producing a superconducting film with excellent characteristics with a thickness of approximately 0.5 μm to 1000 μm by a spray pyrolysis method, and a novel configuration of an apparatus used to carry out this method. Regarding.

従来の技術 近年発見された複合酸化物系超電導材料は、従来の金、
嘱系超電導材料に比して極めて高い超電導臨界温度を有
することから、超電導技術の各種応用の実用化に向けて
各分野で種々の研究が行われている。
Conventional technology Complex oxide superconducting materials discovered in recent years are
Since it has an extremely high superconducting critical temperature compared to other superconducting materials, various research is being conducted in various fields toward the practical application of superconducting technology.

複合酸化物系超電導材料の最も一般的な製造法である粉
末冶金法により製造された超電導材料は、超電導臨界電
流密度が低く、特に磁場の存在下では極端に低下するこ
とが知られている。これに対して、薄膜として作製され
た超電導材料では、早い時期から高い臨界電流密度が観
測され、これを更に改善する努力が続けられている。
It is known that superconducting materials manufactured by powder metallurgy, which is the most common manufacturing method for composite oxide-based superconducting materials, have a low superconducting critical current density, which decreases extremely in the presence of a magnetic field. In contrast, high critical current densities have been observed in superconducting materials fabricated as thin films from an early stage, and efforts are being made to further improve this.

複合酸化物系超電導薄膜の成膜方法としては、スパッタ
リング法、電子ビーム蒸着法等が代表的なものとして知
られている。これらの方法では、結晶配向性の優れた超
電導薄膜を作製することができ、高い臨界温度と共に高
い臨界電流密度を有す名題電導薄膜が作製できることが
知られている。
Sputtering, electron beam evaporation, and the like are known as representative methods for forming composite oxide superconducting thin films. It is known that these methods can produce superconducting thin films with excellent crystal orientation, and can produce conductive thin films having high critical temperatures and high critical current densities.

しかしながら、これらの方法は、複雑な真空装置やその
操作が必要な上に、一般に成膜速度が極めて遅く、決し
て実用に適した方法とは言えない。
However, these methods require complicated vacuum equipment and its operation, and generally have extremely slow film formation speeds, so they cannot be said to be methods suitable for practical use.

そこで、スプレーパイロリシス法と呼ばれる方法による
超電導膜の作製が提案されている。このスプレーパイロ
リシス法は、原料の硝酸塩、酢酸塩、塩化物等を溶液化
したものを、加熱した基板上に噴霧することにより、基
板上に膜を形成するする方法であり、以下のような優れ
た特徴を有している。
Therefore, it has been proposed to fabricate a superconducting film by a method called spray pyrolysis. This spray pyrolysis method is a method of forming a film on a heated substrate by spraying a solution of raw materials such as nitrate, acetate, chloride, etc. It has excellent characteristics.

■真空装置が不要で、大面積化が容易である。■No vacuum equipment is required, making it easy to expand the area.

■成膜速度が早い。■Fast film formation speed.

■成膜面またはその近傍まで溶液状のまま原料が到達す
るので、特に多元素系薄膜の成膜において組成制御が正
確に行なえる。
(2) Since the raw material reaches the deposition surface or its vicinity in a solution state, composition control can be performed accurately, especially in the deposition of multi-element thin films.

■一般的に結晶性の優れた成膜が可能である。■It is generally possible to form films with excellent crystallinity.

尚、スプレーパイロリシス法による超電導薄膜の作製に
ついては、Japanese Journal of 
AppliedPhysics Vol、27(198
8)、 Nα肌pp、L1669や、■丸善出版/新技
術開発事業団監修の高温超電導データブック第26頁等
に記載がある。
Regarding the preparation of superconducting thin films by the spray pyrolysis method, please refer to the Japanese Journal of
Applied Physics Vol, 27 (198
8), Nα Hada pp, L1669, ■ High Temperature Superconductivity Data Book supervised by Maruzen Publishing/New Technology Development Corporation, page 26, etc.

発明が解決しようとする課題 上述のような文献に記載されたスプレーパイロリシス法
で作製した超電導膜は、適切な基板を選択することによ
って良好なC軸配向性を示すと共に、比較的高い温度で
有効な超電導特性を示すことが確認されている。
Problems to be Solved by the Invention The superconducting film produced by the spray pyrolysis method described in the above-mentioned literature shows good C-axis orientation by selecting an appropriate substrate, and can be used at relatively high temperatures. It has been confirmed that it exhibits effective superconducting properties.

しかしながら、現在実施されている方法では、例えば、
超電導臨界温度が、抵抗の下がり始める温度94Kに対
して抵抗が測定できなくなる温度が89に程度と明確な
差がある。また、従来法で得られた超電導膜では、高い
臨界電流密度はまだ実現されていない。
However, currently implemented methods, e.g.
There is a clear difference in the superconducting critical temperature between 94K, the temperature at which the resistance begins to decrease, and 89K, the temperature at which the resistance becomes unmeasurable. Moreover, high critical current density has not yet been achieved in superconducting films obtained by conventional methods.

そこで、本発明は、上記従来技術の問題点を解決し、基
本的にはスプレーパイロリシス法を採用して、より優れ
た特性を示す超電導膜を作製する新規な方法を提供する
ことをその目的としている。
Therefore, the purpose of the present invention is to solve the above-mentioned problems of the prior art and provide a new method for producing a superconducting film exhibiting better characteristics by basically adopting the spray pyrolysis method. It is said that

また、本発明により提供される方法を実施するための新
規な成膜装置を提供することも、本発明の目的のひとつ
である。
Another object of the present invention is to provide a novel film forming apparatus for carrying out the method provided by the present invention.

課題を解決するための手段 即ち、本発明に従うと、スプレーパイロリシス法により
酸化物超電導材料により形成された膜を基板上に形成す
る方法であって、下地となる基板を450〜800℃の
範囲に加熱し、目的とする酸化物超電導膜の構成元素を
含む霧状の原料ガスを、該基板の成膜面からlQmm以
内の領域に流通させることによって、該基板上に酸化物
膜を形成する工程を含むことを特徴とする超電導膜の作
製方法が提供される。
Means for Solving the Problems According to the present invention, there is a method of forming a film made of an oxide superconducting material on a substrate by a spray pyrolysis method, the underlying substrate being heated at a temperature in the range of 450 to 800°C. An oxide film is formed on the substrate by heating it to a temperature of A method for manufacturing a superconducting film is provided, the method comprising the steps of:

更に、本発明によると、上記本発明に係る超電導膜の作
製方法を実施する装置として、基板の成膜面が垂直にな
るように該基板を保持する手段と、目的とする酸化物超
電導材料の構成元素を含む液体原料を霧状にする霧化手
段と、該霧化手段により生成された霧状の原料ガスを搬
送する搬送ガスを供給する手段と、該供給手段により供
給された搬送ガスにより搬送される前記霧状の原料が、
前記基板の成膜面上を該成膜面と平行に、下方から上方
に向かって流れるように構成された原料ガスの案内手段
とを含むことを特徴とする超電導膜の作製装置が提供さ
れる。
Furthermore, according to the present invention, as an apparatus for carrying out the method for producing a superconducting film according to the present invention, a means for holding the substrate so that the film-forming surface of the substrate is perpendicular, and a means for holding the substrate so that the film-forming surface of the substrate is vertical, an atomizing means for atomizing a liquid raw material containing constituent elements; a means for supplying a carrier gas for conveying the atomized raw material gas generated by the atomizing means; and a carrier gas supplied by the supplying means. The atomized raw material being conveyed is
A superconducting film manufacturing apparatus is provided, comprising: a source gas guiding means configured to flow from below to above on the film forming surface of the substrate in parallel with the film forming surface. .

作用 本発明に係る超電導膜の製造方法は、成膜時の基板温度
を450〜800℃に限定したことをその主要な特徴の
ひとつとしている。
Function: One of the main features of the method for manufacturing a superconducting film according to the present invention is that the substrate temperature during film formation is limited to 450 to 800°C.

即ち、従来のスプレーパイロリシス法による超電導膜の
作製過程を詳細に検討したところ、従来法においては成
膜時の基板温度を400℃前後に設定していた。しかし
ながら、この基板温度で成膜した場合、Mi電導膜の内
部が緻密ではなく、このために高い臨界電流密度を実現
できないことが判った。そこで、種々の基板温度を検討
した結果、上記範囲が緻密な超電導膜の作製に好ましい
ことを見出した。
That is, a detailed study of the process of manufacturing a superconducting film using the conventional spray pyrolysis method revealed that in the conventional method, the substrate temperature during film formation was set at around 400°C. However, it was found that when the film was formed at this substrate temperature, the inside of the Mi conductive film was not dense, and therefore a high critical current density could not be achieved. Therefore, as a result of examining various substrate temperatures, it was found that the above range is preferable for producing a dense superconducting film.

ここで、基板温度が上記範囲よりも低い場合は、上述の
通り緻密な超電導膜が得られず、臨界電流密度等におい
て優れた特性を実現することができない。一方、基板温
度が上記範囲よりも高い場合は、基板の熱により成膜面
近傍に発生する熱対流により、原料ガスに含まれる原料
成分の成膜面への付着が阻害される。
Here, if the substrate temperature is lower than the above range, a dense superconducting film cannot be obtained as described above, and excellent characteristics such as critical current density cannot be achieved. On the other hand, when the substrate temperature is higher than the above range, thermal convection generated near the film forming surface due to the heat of the substrate inhibits the adhesion of the raw material components contained in the raw material gas to the film forming surface.

尚、本発明に係る成膜法では、従来法よりも基板温度が
高いので、上述のような熱対流の成膜への影響の点では
従来法よりも不利である。
In addition, in the film forming method according to the present invention, since the substrate temperature is higher than that in the conventional method, it is more disadvantageous than the conventional method in terms of the effect of thermal convection on film forming as described above.

そこで、本発明に係る方法の第2の主要な特徴として、
原料ガスの気流が基板の成膜面から10mm以内の領域
を流れるように制御しながら超電導膜を形成することが
提案される。
Therefore, as a second main feature of the method according to the present invention,
It is proposed to form a superconducting film while controlling the flow of source gas so that it flows in a region within 10 mm from the film-forming surface of the substrate.

即ち、原料ガスの流路を限定することにより、原料ガス
が熱対流により成膜面から離隔することを防止すること
ができる。
That is, by limiting the flow path of the source gas, it is possible to prevent the source gas from separating from the film forming surface due to thermal convection.

原料ガスの流通範囲を、成膜面からlQmm以内とした
理由は以下の通りである。即ち、スプレーパイロリシス
法による成膜工程においては霧状の水滴が原料成分を搬
送するので、乱流的な気流によりこの水滴が基板近傍ま
で到達するように条件を設定することが有利である。こ
のためには、流路を薄くして原料ガスの層流をより薄く
する方法が有効である。具体的に後述するように、この
ような効果が有意に顕れる範囲は、基板に対する流路の
厚さでlQmm以下である。
The reason why the flow range of the source gas was set within 1Q mm from the film forming surface is as follows. That is, in the film forming process using the spray pyrolysis method, since atomized water droplets transport the raw material components, it is advantageous to set conditions such that the water droplets reach the vicinity of the substrate by turbulent airflow. For this purpose, it is effective to make the flow path thinner so that the laminar flow of the source gas becomes thinner. As will be specifically described later, the range in which such an effect becomes significant is 1Q mm or less in terms of the thickness of the flow path with respect to the substrate.

尚、霧状の原料ガスが成膜室の狭い流路に進入した場合
に、その人口近傍で原料ガスの層流が薄くなる現象が“
人口効果”として知られている。
In addition, when atomized raw material gas enters the narrow flow path of the film forming chamber, there is a phenomenon in which the laminar flow of the raw material gas becomes thinner in the vicinity of the population.
This is known as the "demographic effect."

本発明の好ましい態様によれば、このようなパ人ロ効果
”を利用することが有利であり、具体的には、成膜時の
基板を原料ガスの入口から100mm以内の位置に載置
することが好ましい。
According to a preferred embodiment of the present invention, it is advantageous to make use of such a "Purro effect", and specifically, the substrate during film formation is placed within 100 mm from the inlet of the raw material gas. It is preferable.

また、前述のような熱対流により原料ガスが基板の成膜
面から離隔することを防止するために、成膜室を縦方向
に配置し、成膜面と平行に対流が生じるようにすること
も有利である。
In addition, in order to prevent the source gas from separating from the film-forming surface of the substrate due to thermal convection as described above, the film-forming chamber should be arranged vertically so that convection occurs parallel to the film-forming surface. is also advantageous.

更に、本発明は、上述のような本発明に係る超電導膜の
作製方法を実施するための装置を提案している。
Furthermore, the present invention proposes an apparatus for carrying out the method for producing a superconducting film according to the present invention as described above.

この装置は、原料の霧化手段と、原料ガスを基板の成膜
面に誘導する手段を備える点では従来のスプレーパイロ
リシス法を実施する装置と同じである。即ち、この装置
の主要な特徴は、具体的に後述するように、成膜面上を
流れる原料ガスの流路を、基板の成膜面からlQmm以
内の範囲に限定するように構成されていることである。
This apparatus is the same as an apparatus for carrying out a conventional spray pyrolysis method in that it includes means for atomizing the raw material and means for guiding the raw material gas to the film-forming surface of the substrate. That is, the main feature of this device, as will be specifically described later, is that it is configured to limit the flow path of the source gas flowing on the film-forming surface to a range within 1Q mm from the film-forming surface of the substrate. That's true.

このような構成を採ることにより、この装置では、基板
温度を450℃以上の高温に設定しても、原料ガスの漂
着が熱対流により阻害されることがない。
By adopting such a configuration, in this device, even if the substrate temperature is set to a high temperature of 450° C. or higher, drifting of the raw material gas is not inhibited by thermal convection.

また、本発明の好ましい特徴のひとつによれば、基板を
垂直に保持して、原料ガスを基板と平行に下方から上方
に向かって流通することによって、成膜面近傍の原料ガ
スを良好に置換すると共に、熱対流の影響を有効に排除
することができる。
Furthermore, according to one of the preferable features of the present invention, by holding the substrate vertically and flowing the source gas from below to above in parallel with the substrate, the source gas near the film forming surface can be favorably replaced. At the same time, the influence of thermal convection can be effectively eliminated.

前述のようなスプレーパイロリシス法の特徴は、複合酸
化物超電導材料のような多元素系の薄膜あるいは厚膜を
作製するには非常に有利であり、上述のような本発明の
方法および装置を使用することにより膜質の緻密な複合
酸化物膜を得ることができる。このような複合酸化物膜
を、常法に従って熱処理することによって、厚さ0.5
μm−1000μm程度の広範囲な膜厚の良質な超電導
膜が得られる。
The characteristics of the spray pyrolysis method described above are very advantageous for producing multi-element thin films or thick films such as composite oxide superconducting materials, and the method and apparatus of the present invention as described above can be used. By using this, a dense composite oxide film can be obtained. By heat-treating such a composite oxide film according to a conventional method, a thickness of 0.5
A high-quality superconducting film having a wide range of thickness from about μm to 1000 μm can be obtained.

尚、本発明に係る方法は、公知のLa−3r−Cu系、
Y −Ba−Cu系等の複合酸化物系超電導材料による
薄膜の作製にいずれも適用できるが、特に有利なものと
して、下記の式; %式% を満たす数を表す。〕 を満たす組成を有する複合酸化物系超電導材料が挙げら
れる。この複合酸化物系超電導材料は、臨界温度が10
0に以上と非常に高く、更に、作製後G劣化が少ない等
、有利な特徴を備えている。また、本発明の方法で有利
に使用できる下地基板としては、MgO1SrTi O
s 、Y S Z等が挙げられる。
In addition, the method according to the present invention can be applied to the known La-3r-Cu system,
Any of these can be applied to the production of thin films using composite oxide superconducting materials such as Y--Ba--Cu, but particularly advantageous is the number that satisfies the following formula: % formula %. ] A composite oxide-based superconducting material having a composition that satisfies the following is mentioned. This composite oxide superconducting material has a critical temperature of 10
It has advantageous features such as a very high G value of 0 or more, and less G deterioration after fabrication. Further, as a base substrate that can be advantageously used in the method of the present invention, MgO1SrTiO
s, Y S Z, etc.

以下、図面を参照して本発明をより具体的に説明するが
、以下の開示は本発明の一実施例に過ぎず、本発明の技
術的範囲を何ら限定するものではない。
Hereinafter, the present invention will be described in more detail with reference to the drawings, but the following disclosure is only one embodiment of the present invention, and does not limit the technical scope of the present invention in any way.

実施例 第1図は、本発明に係るスプレーパイロリシス法による
超電導膜の作製方法を実施する際に使用することのでき
る成膜装置の構成例を模式的に示す図である。
Embodiment FIG. 1 is a diagram schematically showing a configuration example of a film forming apparatus that can be used when carrying out the method for producing a superconducting film by spray pyrolysis according to the present invention.

第1図に示すように、この装置は、原料溶液1を収容す
る霧化室2と、霧化室2に連通した成膜室3とから主に
構成されている。霧化室2には、搬送ガスが供給される
供給孔4が設けられており、また、成膜室3の霧化室2
とは反対側には、搬送ガスの排出孔5が設けられている
。また、成膜室は、成膜に使用する基板6よりも大きい
幅を有する側壁と、後述するように3mmから3Qmm
まで幅を変えることができるように構成された側壁とに
より画成される略長方形の断面を有しており、その側壁
に、基板6を保持する基板ホルダと、基板6を加熱する
ためのヒータ7とを備えている。
As shown in FIG. 1, this apparatus is mainly composed of an atomization chamber 2 containing a raw material solution 1 and a film forming chamber 3 communicating with the atomization chamber 2. The atomization chamber 2 is provided with a supply hole 4 through which carrier gas is supplied, and the atomization chamber 2 of the film forming chamber 3 is provided with a supply hole 4 through which a carrier gas is supplied.
A carrier gas discharge hole 5 is provided on the opposite side. Further, the film forming chamber has a side wall having a width larger than the substrate 6 used for film forming, and a side wall having a width of 3 mm to 3 Q mm as described later.
It has a substantially rectangular cross section defined by a side wall configured such that the width can be changed up to 100 mm, and a substrate holder for holding the substrate 6 and a heater for heating the substrate 6 are mounted on the side wall. 7.

また、霧化室2の底部は、ビニール等の可撓性の膜8に
より閉塞されており、原料溶液1が外部に流出しないよ
うに構成されている。この霧化室2の底部は、水槽9内
に収容された水10の中に浸漬されており、霧化室2の
直下には、超音波振動子11が載置されている。
Further, the bottom of the atomization chamber 2 is closed with a flexible membrane 8 made of vinyl or the like to prevent the raw material solution 1 from flowing out. The bottom of the atomization chamber 2 is immersed in water 10 contained in a water tank 9, and an ultrasonic vibrator 11 is placed directly below the atomization chamber 2.

以上のように構成された成膜装置は、以下のように使用
される。
The film forming apparatus configured as described above is used as follows.

まず、霧化室2の内部に原料溶液1を収容すると共に、
基板6を成膜室3に固定する。ヒータ7によって、基板
6を所望の基板温度まで加熱した後、供給孔4より搬送
ガスを供給しながら超音波振動子11を作動させる。超
音波振動子11が発生した超音波は、水10および膜8
を介して原料溶液1を霧化する。霧化した原料溶液1は
、搬送ガスにと共に、原料ガスとして成膜室3へ流れる
。成膜室3では、原料ガスの一部が基板6の表面に付着
して、原料ガスの組成に基づく組成を有する薄膜を形成
する。
First, the raw material solution 1 is stored inside the atomization chamber 2, and
The substrate 6 is fixed in the film forming chamber 3. After the substrate 6 is heated to a desired substrate temperature by the heater 7, the ultrasonic transducer 11 is operated while supplying the carrier gas through the supply hole 4. The ultrasonic waves generated by the ultrasonic transducer 11 are transmitted to the water 10 and the membrane 8.
The raw material solution 1 is atomized through. The atomized raw material solution 1 flows into the film forming chamber 3 as a raw material gas together with the carrier gas. In the film forming chamber 3, part of the source gas adheres to the surface of the substrate 6, forming a thin film having a composition based on the composition of the source gas.

尚、超電導振動子11を、水およびビニール膜を介して
配置したのは、超電導振動子11が硝酸塩水溶液によっ
て腐食されるのを防止するためである。
The reason why the superconducting oscillator 11 is placed through water and a vinyl film is to prevent the superconducting oscillator 11 from being corroded by the nitrate aqueous solution.

作製例1 上述のように構成された成膜装置を使用して、本発明に
係る成膜方法に従って、超電導膜を作製した。
Fabrication Example 1 A superconducting film was fabricated according to the film forming method according to the present invention using the film forming apparatus configured as described above.

まず、原料溶液を調製した。本作製例では、水400m
j!に対して、 を溶解したものを使用した。一方、基板としてはMgO
単結晶基板を使用し、その(001)面が成膜面となる
ようにした。
First, a raw material solution was prepared. In this production example, the water is 400m
j! For this, a solution of was used. On the other hand, as a substrate, MgO
A single-crystal substrate was used, and its (001) plane was the film-forming surface.

超音波振動子11としては、三洋電機株式会社製のCF
K−8450F型加湿器のものを流用した。
As the ultrasonic transducer 11, CF manufactured by Sanyo Electric Co., Ltd.
The model K-8450F humidifier was used.

搬送ガスとしては02ガスを使用し、毎分1000cc
の流量で供給した。
02 gas is used as carrier gas, 1000cc/min
was supplied at a flow rate of

以上のような装置を使用し、下記の第1表に示すような
種々の条件で成膜を行った。尚、本作製例では、基板の
成膜面から成膜面に対向する成膜室壁までの幅をlQm
mに設定して成膜を実施した。
Films were formed using the apparatus described above under various conditions as shown in Table 1 below. In this manufacturing example, the width from the film forming surface of the substrate to the film forming chamber wall opposite to the film forming surface is lQm.
Film formation was performed with the setting at m.

こうして作製された各超電導膜試料は、成膜後にそれぞ
れ0気流中で930℃で4時間の熱処理を行った後、そ
れぞれの超電導臨界温度Tc  (電気抵抗が測定不能
になる温度)と77、3 Kにおける臨界電流密度Jc
とを測定して評価した。これらの評価結果を第1表に併
せて示す。
After film formation, each superconducting film sample produced in this way was heat-treated at 930°C for 4 hours in zero air flow, and then the superconducting critical temperature Tc (the temperature at which electrical resistance becomes unmeasurable) was 77, 3. Critical current density Jc at K
was measured and evaluated. These evaluation results are also shown in Table 1.

第1表 第1表から判るように、基板温度が600℃のときに、
最高の臨界温度と臨界電流密度とが達成されている。
Table 1 As can be seen from Table 1, when the substrate temperature is 600°C,
The highest critical temperatures and critical current densities are achieved.

作製例2 作製例1と同じ原料および基板を使用して、原料ガスの
種々の流通条件の下で超電導膜を作製した。
Production Example 2 Using the same raw materials and substrates as in Production Example 1, superconducting films were produced under various flow conditions of the raw material gas.

作製条件は、下記の第2表に示す通りである。The manufacturing conditions are as shown in Table 2 below.

尚、基板温度は600℃とした。また、作製した各超電
導膜試料は、成膜後にそれぞれ0気流中で930℃で4
時間の熱処理を行った後、それぞれの超電導臨界温度T
c  (電気抵抗が測定不能になる温度)と77、3 
Kにおける臨界電流密度Jcとを測定して評価した。こ
れらの評価結果を第2表に併せて示す。
Note that the substrate temperature was 600°C. In addition, each of the fabricated superconducting film samples was heated at 930°C in zero air flow after film formation.
After performing heat treatment for an hour, each superconducting critical temperature T
c (temperature at which electrical resistance becomes unmeasurable) and 77,3
The critical current density Jc at K was measured and evaluated. These evaluation results are also shown in Table 2.

第2表 第2表から判るように、流路幅が5mmのときに、最高
の臨界温度と臨界電流密度とが達成されている。また、
流路幅がlQmmを越えた場合は、得られた膜が有効な
超電導特性を示していない。
As can be seen from Table 2, the highest critical temperature and critical current density are achieved when the channel width is 5 mm. Also,
When the channel width exceeds 1Qmm, the obtained film does not exhibit effective superconducting properties.

発明の詳細 な説明したように、本発明に従うと、数々の優れた特徴
を有するスプレーパイロリシス法によって、高い臨界温
度と共に高い臨界電流密度を示す品質の高い超電導膜を
作製することができる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, according to the present invention, a high-quality superconducting film exhibiting a high critical temperature and high critical current density can be fabricated by a spray pyrolysis method having a number of excellent features.

前述のように、スプレーパイロリシス法は、他の成膜法
に比較すると成膜速度が非常に高いので、厚さ0.5μ
m〜1000μm程度の厚膜をも作製することができる
。従って、この方法で作製した超電導膜は、配線材料や
磁気遮蔽材としての応用も可能である。
As mentioned above, the spray pyrolysis method has a very high film formation rate compared to other film formation methods, so
It is also possible to produce a thick film of about m to 1000 μm. Therefore, the superconducting film produced by this method can also be applied as a wiring material or a magnetic shielding material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による超電導膜の作製方法を実施する
際に使用することができる成膜装置の構成を模式的に示
す図である。 〔主な参照番号〕 1・・・原料溶液、2・・ 3・・・成膜室、 4・・ 5・・・搬送ガス排気孔、 7・・・ヒータ、  8・・ 9・・・水槽、  11・・ 霧化室、 搬送ガス供給孔、 ・・・基板、 膜、 超音波振動子
FIG. 1 is a diagram schematically showing the configuration of a film forming apparatus that can be used when carrying out the method for producing a superconducting film according to the present invention. [Main reference numbers] 1... Raw material solution, 2... 3... Film forming chamber, 4... 5... Carrier gas exhaust hole, 7... Heater, 8... 9... Water tank , 11... Atomization chamber, carrier gas supply hole, ... Substrate, membrane, ultrasonic vibrator

Claims (2)

【特許請求の範囲】[Claims] (1)スプレーパイロリシス法により酸化物超電導材料
により形成された膜を基板上に形成する方法であって、 下地となる基板を450〜800℃の範囲に加熱し、目
的とする酸化物超電導膜の構成元素を含む霧状の原料ガ
スを、該基板の成膜面から10mm以内の領域に流通さ
せることによって、該基板上に酸化物膜を形成する工程
を含むことを特徴とする超電導膜の作製方法。
(1) A method of forming a film made of an oxide superconducting material on a substrate by spray pyrolysis, in which the underlying substrate is heated to a temperature in the range of 450 to 800°C, and the desired oxide superconducting film is formed. A superconducting film comprising the step of forming an oxide film on the substrate by flowing a mist of raw material gas containing the constituent elements in an area within 10 mm from the film-forming surface of the substrate. Fabrication method.
(2)請求項1に記載の方法を実施する装置であって、 基板の成膜面が垂直になるように該基板を保持する手段
と、目的とする酸化物超電導材料の構成元素を含む液体
原料を霧状にする霧化手段と、該霧化手段により生成さ
れた霧状の原料ガスを搬入する搬入ガスを供給する手段
と、該供給手段により供給された搬送ガスにより搬入さ
れる前記霧状の原料が、前記基板の成膜面上を該成膜面
と平行に、下方から上方に向かって流れるように構成さ
れた原料ガスの案内手段とを含むことを特徴とする超電
導膜の作製装置。
(2) An apparatus for carrying out the method according to claim 1, comprising means for holding the substrate so that the film-forming surface of the substrate is vertical, and a liquid containing constituent elements of the target oxide superconducting material. an atomizing means for atomizing the raw material; a means for supplying a carry-in gas for carrying in the atomized raw material gas generated by the atomizing means; and the mist carried in by the carrier gas supplied by the supply means. Preparation of a superconducting film characterized in that the method includes a source gas guiding means configured such that the raw material flows from below to above on the film forming surface of the substrate in parallel with the film forming surface. Device.
JP1183896A 1989-07-17 1989-07-17 Production of superconducting film and its device Pending JPH0350192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1183896A JPH0350192A (en) 1989-07-17 1989-07-17 Production of superconducting film and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1183896A JPH0350192A (en) 1989-07-17 1989-07-17 Production of superconducting film and its device

Publications (1)

Publication Number Publication Date
JPH0350192A true JPH0350192A (en) 1991-03-04

Family

ID=16143710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1183896A Pending JPH0350192A (en) 1989-07-17 1989-07-17 Production of superconducting film and its device

Country Status (1)

Country Link
JP (1) JPH0350192A (en)

Similar Documents

Publication Publication Date Title
US5993679A (en) Method of cleaning metallic films built up within thin film deposition apparatus
Lee et al. Deposition of ZnO thin films by the ultrasonic spray pyrolysis technique
US20120094030A1 (en) Direct formation of highly porous gas-sensing layers by in-situ deposition of flame-made nanoparticles
Shi et al. High B value Mn-Co-Ni spinel films on alumina substrate by RF sputtering
KR960034479A (en) METHOD FOR MANUFACTING OXIDE FILM AND METHOD FOR PRODUCING THE SAME
Kofstad et al. High Temperature Oxidation of Co‐10 w/o Cr Alloys: II. Oxidation Kinetics
CA2048740A1 (en) Method of preparing metal oxide films
JPH0350192A (en) Production of superconducting film and its device
US9017777B2 (en) Inorganic films using a cascaded source for battery devices
JP5378631B2 (en) Vapor growth crystal thin film manufacturing method
Solayappan et al. Chemical solution deposition (CSD) and characterization of ferroelectric and dielectric thin films
JP2767298B2 (en) LAMINATED THIN FILM AND PROCESS FOR PRODUCING THE SAME
CN110777329B (en) Method for improving wettability of steel in zinc liquid
JPS59224116A (en) Production device for amorphous silicon film
JP3342785B2 (en) Apparatus and method for producing oxide superconducting conductor
JPH01188677A (en) Production of superconducting thin film
CN113061857B (en) Method and equipment for depositing film by ion-assisted, inclined sputtering and reactive sputtering
JPH0645891B2 (en) Deposited film formation method
Polkovnikov et al. Effect of Isothermal Annealing on the Parameters of CuO Films Synthesized via Spray Pyrolysis and Sol–Gel Technology
JPH09241036A (en) Forming of thin film using laminar multiple oxide fine particle
JPH0218803A (en) Formation of thin film of na+ ion conductive solid electrolyte
JP3856995B2 (en) Oxide superconducting thin film manufacturing apparatus and oxide superconducting thin film manufacturing method
Levenson et al. Surface roughness of aluminum thin films deposited by effusive and ionized cluster beams
JPS62180054A (en) Production of thin carbon film
Nelms System innovations for aerosol MOCVD of YBCO superconducting thin films